Lezione del 05.04

Questa lezione si riferisce al Cap.4 "Basi e dimensione", Par.4.3 "L'algoritmo di Gauss come un metodo pratico ...", pp.83–86.

- **Problema I.** Dato un insieme di m vettori di uno spazio \mathbb{R}^n , determinare una base del sottospazio di \mathbb{R}^n generato dall'insieme.

Abbiamo visto che il problema si può risolvere come segue: si verifica se l'insieme dato è linearmente indipendente; in caso affermativo, lo stesso insieme è una base del sottospazio da esso generato; in caso negativo, si individua un vettore dell'insieme che è combinazione lineare degli altri vettori; si toglie il vettore dall'insieme e al restante insieme di m-1 vettori si applicano i passi precedenti. Si itera il procedimento fino a che si trova un insieme linearmente indipendente; questo insieme è una base del sottospazio generato dall'insieme dato. Per pochi vettori questo procedimento è piuttosto efficiente, specialmente se accompagnato da osservazioni, ma per molti vettori non lo è più.

Il problema si può risolvere anche in un altro modo: a grandi linee: si trasforma l'insieme dato con operazioni che lasciano invariato lo spazio generato e in modo che dal nuovo insieme si possa facilmente estrarre una base per lo spazio generato. Il metodo è basato sul procedimento di Gauss.

-Righe di una matrice, spazio generato ed operazioni elementari. Data una matrice di tipo $m \times n$ su \mathbb{R} , consideriamo ciascuna delle sue m righe come un vettore in \mathbb{R}^n , e consideriamo il sottospazio generato da questi vettori in \mathbb{R}^n .

Proposizione. Le operazioni elementari sulle righe di una matrice lasciano invariato il sottospazio generato dalle righe della matrice. In simboli. Siano R_1, \ldots, R_m in \mathbb{R}^n le righe di una matrice. Si applichi alle righe una delle operazioni elementari. Siano R'_1, \ldots, R'_m in \mathbb{R}^n le righe della matrice ottenuta. Allora

$$\langle R'_1, \dots, R'_m \rangle = \langle R_1, \dots, R_m \rangle.$$

Dimostrazione. Le operazioni elementari sulle righe di una matrice sono: (1) scambiare due righe $(R_i \leftrightarrow R_j)$ per due dati indici $i \neq j$); (2) moltiplicare una riga per uno scalare non nullo $(R_i \to \lambda R_i)$ per un dato indeice i ed un dato scalare $\lambda \neq 0$); (3) sommare ad una riga un multiplo scalare di un'altra riga $(R_i \to R_i + \mu R_j)$ per due dati indici $i \neq j$ ed unso scalare μ). Poichè ciascuna operazione elementare è invertibile, basta provare che

$$\langle R'_1, \dots, R'_m \rangle \subseteq \langle R_1, \dots, R_m \rangle.$$

È facile provare che l'enunciato per le operazioni (1) e (2); lo proviamo per l'operazione (3). Si ha

$$R_1, \ldots, R_i + \mu R_i, \ldots, R_i, \ldots, R_m \in \langle R_1, \ldots, R_i, \ldots, R_i, \ldots, R_m \rangle$$

(per il solo fatto che l'insieme al secondo membro contiene i vettori $R_1, \ldots, R_i, \ldots, R_j, \ldots, R_m$ ed è un sottospazio); da ciò segue

$$\langle R_1, \dots, R_i + \mu R_j, \dots, R_j, \dots, R_m \rangle \subseteq \langle R_1, \dots, R_i, \dots, R_j, \dots, R_m \rangle$$

(per il fatto che l'insieme al primo membro è il più piccolo sottospazio che contiene i vettori $R_1, \ldots, R_i + \mu R_j, \ldots, R_j, \ldots, R_m$).

Data una matrice A, applicando ad A il procedimento di Gauss, si ottiene una matrice a scala A'; per la proposizione precedente, lo spazio generato dalle righe di A coincide con lo spazio generato dalle righe di A'; è facile estrarre dalle righe di A' una base per lo spazio da esse generato.

- **Applicazione.** Dati i vettori

$$\underline{v}_1 = (1, 3, 2, -1), \ \underline{v}_2 = (2, 3, 1, -2), \ \underline{v}_3 = (1, 1, 0, -1) \in \mathbb{R}^4,$$

ci si pone il problema di determinare una base del sottospazio $\langle \underline{v}_1, \underline{v}_2, \underline{v}_3 \rangle$. Consideriamo la matrice 3×4 che ha questi vettori come righe

$$\begin{pmatrix} \underline{v}_1 \\ \underline{v}_2 \\ \underline{v}_3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & -1 \\ 2 & 3 & 1 & -2 \\ 1 & 1 & 0 & -1 \end{pmatrix};$$

applicando alla matrice il procedimento di Gauss si ottiene la matrice a scala

$$\begin{pmatrix} 1 & 3 & 2 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \underline{v}_1' \\ \underline{v}_2' \\ \underline{0} \end{pmatrix}.$$

Per la proposizione precedente si ha

$$\langle \underline{v}_1, \underline{v}_2, \underline{v}_3 \rangle = \langle \underline{v}_1', \underline{v}_2', \underline{0} \rangle.$$

Si vede facilmente che i vettori $\underline{v}_1', \underline{v}_2'$ sono una base di $\langle \underline{v}_1', \underline{v}_2', \underline{0} \rangle$, e dunque per la proposizione sono una base di $\langle \underline{v}_1, \underline{v}_2, \underline{v}_3 \rangle$.

- Spazio generato dalle righe di una matrice a scala.

Proposizione. Le righe non nulle R_1, \ldots, R_p di una matrice a scala A sono linearmente indipendenti.

Dimostrazione. Siano $j_1 < j_2 < \ldots < j_p$ gli indici di colonna dei pivot delle righe R_1, \ldots, R_p . Consideriamo l'equazione

$$\lambda_1 R_1 + \lambda_2 R_2 + \dots + \lambda_p R_p = \underline{0}$$

nei p scalari $\lambda_1, \lambda_2, \dots, \lambda_p$. Uguagliando la componente j_1 —esima al primo ed al secondo membro di ha

$$\lambda_1 a_{1j_1} + \lambda_2 0 + \dots + \lambda_p 0 = 0$$
, cioè $\lambda_1 a_{1j_1} = 0$

con $a_{1j_1} \neq 0$, dunque $\lambda_1 = 0$. L'equazione diviene

$$\lambda_2 R_2 + \dots + \lambda_p R_p = \underline{0}$$

Uguagliando la componente j_2 —esima al primo ed al secondo membro di ha

$$\lambda_2 a_{2j_2} + \lambda_3 0 + \dots + \lambda_p 0 = 0$$
 cioè $\lambda_2 a_{2j_2} = 0$

con $a_{2j_2} \neq 0$, dunque $\lambda_2 = 0$. Proseguendo in questo modo si trova infine che $\lambda_1 = \lambda_2 = \cdots = \lambda_p = 0$.

Da questa Proposizione segue direttamente la

Proposizione. L'insieme delle righe non nulle di una matrice A a scala per righe è una base per lo spazio generato dalle righe di A.

Applicazione, metodo generale. Dati m vettori $\underline{v}_1, \ldots, \underline{v}_m \in \mathbb{R}^n$, ci si pone il problema di determinare una base del sottospazio $\langle \underline{v}_1, \ldots, \underline{v}_m \rangle$. Un metodo per dare una soluzione del problema. Si considera la matrice $m \times n$ che ha i vettori $\underline{v}_1, \ldots, \underline{v}_m$ come righe; si applica alla matrice il procedimento di Gauss e si ottiene una matrice $m \times n$ a scala con certe righe non nulle $\underline{v}'_1, \ldots, \underline{v}'_p$. I vettori $\underline{v}'_1, \ldots, \underline{v}'_p$ sono una base di $\langle \underline{v}_1, \ldots, \underline{v}_m \rangle$.

- **Problema II**. Dato un insieme linearmente indipendente di m vettori di uno spazio \mathbb{R}^n , determinare un insieme di n-m vettori di \mathbb{R}^n tale che l'unione dei due insiemi sia una base di \mathbb{R}^n .

Abbiamo visto che il problema si può risolvere come segue: se m=n allora l'insieme dato è una base di \mathbb{R}^n ; se m< n, allora si individua un vettore della base canonica di \mathbb{R}^n che non è combinazione lineare dei vettori dati; si aggiunge il vettore all'insieme e al nuovo insieme di m+1 vettori si applicano i passi precedenti. Si itera il procedimento fino a che si trova un insieme linearmente indipendente di n vettori; questo insieme è una base di \mathbb{R}^n . Per n piccolo questo procedimento è piuttosto efficiente, specialmente se accompagnato da osservazioni, ma per n grande non lo è più.

Il problema si può risolvere anche in un altro modo. La prima idea è che insiemi linearmente indipendenti di un certo tipo si estendono facilmente ad una base dello spazio vettoriale ambiente; la seconda è che ci si può sempre ricondurre ad insiemi di questo tipo. Il metodo è basato sul procedimento di Gauss.

Un certo tipo di insiemi linearmente indipendenti. Consideriamo i vettori (0,3,-1,4), (0,0,1,2) linearmente indipendenti in \mathbb{R}^4 . Questi vettori possono essere visti come le righe della matrice a scala 2×4

$$\left(\begin{array}{cccc} 0 & 3 & -1 & 4 \\ 0 & 0 & 1 & 2 \end{array}\right);$$

questa matrice a scala può essere estesa in vari modi ad una matrice a scala 4×4

$$\begin{pmatrix} a & b & c & d \\ 0 & 3 & -1 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & e \end{pmatrix} \qquad (a, e \neq 0);$$

si hanno così varie sequenze di 4 vettori di \mathbb{R}^4 linearemnte indipendenti (a, b, c, d), (0, 3, -1, 4), (0, 0, 1, 2), (0, 0, 0, e) $(a, e \neq 0)$. Ciascuna di queste sequenze è una base di \mathbb{R}^4 che conmtiene i due vettori linearmente indipendenti dati.

In generale, vale il seguente

Fatto. Sia $\underline{v}_1, \ldots, \underline{v}_m$ una sequenza di m vettori non nulli in \mathbb{R}^n , tale che la sequenza degli indici dei loro pivot sia strettamente crescente. Sia A la matrice $m \times n$ a scala che ha questi vettori come righe e sia A' una qualsiasi matrice $n \times n$ che contiene A ed è a scala con tutte le righe non nulle. Allora la sequenza dei vettori riga $\underline{v}'_1, \ldots, \underline{v}'_n$ di A' contiene la sequenza dei vettori $\underline{v}_1, \ldots, \underline{v}_m$ ed è una base di \mathbb{R}^n .

-Righe di una matrice, indipendenza lineare, operazioni elementari. Data una matrice di tipo $m \times n$ su \mathbb{R} , consideriamo ciascuna delle sue righe come un vettore in \mathbb{R}^n , e di questi m vettori consideriamo la proprietà di indipendenza lineare.

Proposizione. Le operazioni elementari sulle righe di una matrice lasciano invariata la proprietà di indipendenza lineare delle righe della matrice. In simboli. Siano R_1, \ldots, R_m in \mathbb{R}^n le righe di una matrice. Si applichi alle righe una delle operazioni elementari. Siano R'_1, \ldots, R'_m in \mathbb{R}^n le righe della matrice ottenuta. Allora R_1, \ldots, R_m sono linearmente indipendenti se e solo se R'_1, \ldots, R'_m sono linearmente indipendenti.

Dimostrazione. Le operazioni elementari sulle righe di una matrice sono: (1) scambiare due righe $(R_i \leftrightarrow R_j)$ per due dati indici $i \neq j$; (2) moltiplicare una riga per uno scalare non nullo $(R_i \to \lambda R_i)$ per un dato indeice i ed un dato scalare $\lambda \neq 0$; (3) sommare ad una riga un multiplo scalare di un'altra riga $(R_i \to R_i + \mu R_j)$ per due dati indici $i \neq j$ ed unso scalare μ). Poichè ciascuna operazione elementare è invertibile, basta provare che se R_1, \ldots, R_m sono linearmente indipendenti allora anche R'_1, \ldots, R'_m lo sono. È facile provare che l'enunciato per le operazioni (1) e (2); lo proviamo per l'operazione (3), dove per semplicità prendiamo i = 1 e j = 2; Supponiamo che $R_1, R_2, R_3, \ldots, R_m$ siano linearmente indipendenti e proviamo che $R_1 + \mu R_2, R_3, \ldots, R_m$ sono linearmente indipendenti; condideriamo l'equazione

$$\lambda_1(R_1 + \mu R_2) + \lambda_2 R_2 + \lambda_3 R_3 + \dots + \lambda_m R_m = \underline{0};$$

questa equazione si può riscrivere

$$\lambda_1 R_1 + (\lambda_1 \mu + \lambda_2) R_2 + \lambda_3 R_3 + \dots + \lambda_m R_m = 0;$$

poichè $R_1, R_2, R_3, \ldots, R_m$ sono linearmente indipendenti si ha $\lambda_1 = 0, \ \lambda_1 \mu + \lambda_2 = 0$ $\lambda_3 = \cdots = \lambda_m = 0$, da cui segue $\lambda_1 = \lambda_2 = \lambda_3 = \cdots = \lambda_m = 0$.

-Il metodo. Mettendo insieme il fatto e la proposizione di sopra si ottiene la

Proposizione. Sia $\underline{v}_1, \ldots, \underline{v}_m$ una sequenza di m vettori liinearmente indipendenti in \mathbb{R}^n , e sia A la matrice $m \times n$ che ha questi vettori come righe. Si applichi alla matrice A il procedimento di Gauss e sia S la matrice a scala $m \times n$ ottenuta. Si scelga una qualsiasi matrice S' $n \times n$ che contiene S ed è a scala con tutte le righe non nulle. Sia A' la matrice ottenuta da S' sostituendo le righe di S con le righe di S. Allora la sequenza dei vettori riga $\underline{v}_1', \ldots, \underline{v}_n'$ di S' contiene la sequenza dei vettori S0 ed è una base di S1.

Applicazione Sono dati i vettori (1, -2, 3, 4), (-1, 2, 4, 5) di \mathbb{R}^4 e ci si pone il problema di determinare altri due vettori di \mathbb{R}^4 in modo che i quattro vettori formino una base di \mathbb{R}^4 . Consideriamo la matrice

$$A = \left(\begin{array}{rrr} 1 & -2 & 3 & 4 \\ -1 & 2 & 4 & 5 \end{array}\right);$$

con un'una operazione elementare otteniamo la matrice a scala

$$S = \left(\begin{array}{ccc} 1 & -2 & 3 & 4 \\ 0 & 0 & 7 & 9 \end{array}\right);$$

inseriamo questa matrice in una matrice 4×4 a scala con righe non nulle

$$S' = \left(\begin{array}{cccc} 1 & -2 & 3 & 4 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 7 & 9 \\ 0 & 0 & 0 & 3 \end{array}\right);$$

sostituiamo le righe di ${\cal S}$ con le righe di ${\cal A}$

$$A' = \left(\begin{array}{rrrr} 1 & -2 & 3 & 4 \\ 0 & 1 & 2 & 0 \\ -1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 3 \end{array}\right);$$

le righe di questa matrice contengono i due vettori dati e formano una base di \mathbb{R}^4 .