Lezione del 26.04

In questa lezione sono stati svolti i seguenti argomenti:

- 1- invertibilità e inversione di applicazioni lineari e di matrici;
- 2- metodo di Gauss per l'inversione;
- 3- metodo ricorsivo per il calcolo dei determinanti basato sugli sviluppi di Laplace;
- 4- caratterizzazione delle matrici invertibili e formula esplicita per la matrice inversa in termini di determinanti.

Gli argomenti 1 e 2 sono stati sviluppati in modo un po' diverso dal testo e vengono esposti in dettaglio di seguito. Per gli argomenti 3 e 4 si rimanda ai Par.7.3 "Calcolo del determinante: metodo ricorsivo" e Par.7.4 "Inversa di una matrice" del Cap.7 "Determinante e inversa".

-Funzione inversa fra insiemi.

Se una funzione f da un insieme X ad un insieme Y è biiettiva, allora la legge che a ciascun elemento di Y associa l'unica sua preimmagine in X definisce una funzione da Y ad X che si indica con f^{-1} . Le funzioni $f: X \to Y$ e $f^{-1}: Y \to X$ sono legate dalle relazioni $f^{-1} \circ f = \mathrm{id}_X$ e $f \circ f^{-1} = \mathrm{id}_Y$.

Definizione Sia data una funzione fra insiemi $f: X \to Y$. Una funzione $g: Y \to X$ si dice essere "una inversa" di f se

$$q \circ f = \mathrm{id}_X$$
 e $f \circ q = \mathrm{id}_Y$.

Una funzione si dice "invertibile" se possiede almeno una inversa.

Chiaramente, ogni funzione biiettiva è invertibile. Vale anche il viceversa, di più:

Proposizione. Sia $f: X \to Y$ una funzione fra insiemi. Allora

- f è invertibile se e solo se f è biiettiva;
- in tal caso, f^{-1} è l'unica inversa di f.

-Funzione inversa fra spazi vettoriali.

Definizione Sia data un'applicazione lineare $F:V\to W$. Un'applicazione lineare $G:W\to V$ si dice essere "una inversa" di F se

$$G \circ F = \mathrm{id}_V \quad \mathrm{e} \quad F \circ G = \mathrm{id}_W.$$

Un'applicazione lineare si dice "invertibile" se possiede almeno un'inversa.

Chiaramente, se un'applicazione lineare fra due spazi vettoriali è invertibile allora tale applicazione è invertibile anche come applicazione fra insiemi. In realtà vale anche il viceversa, come specificato dalla

Proposizione. Sia $F: V \to W$ un'applicazione lineare fra due spazi vettoriali.

- F è invertibile se e solo se F è bijettiva;
- in tal caso, F^{-1} è lineare ed è l'unica inversa di F.

La locuzione "applicazione lineare invertibile" è sinonimo di "isomorfismo". Per quanto visto in precedenza, fra due spazi vettoriali esiste qualche applicazione lineare invertibile se e solo se essi hanno la stessa dimensione.

Consideriamo ora applicazioni lineari fra spazi vettoriali \mathbb{R}^n .

Esempio. Consideriamo l'applicazione lineare $\mathbb{R}^2 \to \mathbb{R}^2$, $\underline{x} \to A\underline{x}$ dove

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 7 \end{array}\right).$$

Questa applicazione è biunivoca se e solo se per ogni $y \in \mathbb{R}^2$ esiste uno ad un solo $\underline{x} \in \mathbb{R}^2$ tale che $A\underline{x} = \underline{y}$; per esteso: per ogni $(y_1, y_2) \in \mathbb{R}^2$ esiste uno ed un solo $(x_1,x_2) \in \mathbb{R}^2$ tale che

$$\begin{cases} x_1 + 3x_2 = y_1 \\ 2x_1 + 7x_2 = y_2 \end{cases}$$

 $\begin{cases} x_1+3x_2=y_1\\ 2x_1+7x_2=y_2 \end{cases}.$ Questo è un sistema lineare nelle incognite x_1,x_2 dipendente dai parametri y_1,y_2 ; è descritto dalla matrice

$$\left(\begin{array}{cc|c} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{array}\right)$$

dove nelle colonne nel blocco di sinistra compaiono i coefficienti delle incongnite e nelle colonne del blocco di destra compaiono i coefficienti dei parametri. Sommando alla seconda riga un opportuno multiplo della prima si ottiene

$$\left(\begin{array}{cc|c}1 & 3 & 1 & 0\\0 & 1 & -2 & 1\end{array}\right);$$

sommando alla prima riga un opportuno multiplo della seconda si ottiene

$$\left(\begin{array}{cc|c} 1 & 0 & 7 & -3 \\ 0 & 1 & -2 & 1 \end{array}\right).$$

A questa matrice corrisponde il sistema

$$\begin{cases} x_1 = 7y_1 - 3y_2 \\ x_2 = -2y_1 + y_1 \end{cases}$$

che porge le incognite x_1,x_2 in funzione dei parametri y_1,y_2 . Dunque per ogni $y\in\mathbb{R}^2$ esiste uno ad un solo $\underline{x} \in \mathbb{R}^2$ tale che $A\underline{x} = y$ ed \underline{x} è dato da $\underline{x} = By$ dove

$$B = \left(\begin{array}{cc} 7 & -3 \\ -2 & 1 \end{array}\right).$$

Dunque l'applicazione lineare data è biiettiva e l'applicazione lineare $\mathbb{R}^2 \to \mathbb{R}^2$, $y \to By$ è la sua inversa.

Esempio. Si lascia al lettore di verificare che l'applicazione lineare $\mathbb{R}^2 \to \mathbb{R}^2$, $\underline{x} \to A\underline{x}$ dove

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array}\right)$$

non è invertibile.

Approfondendo ed usando la teoria delle applicazioni lineari si prova la

Proposizione. Sia $L: \mathbb{R}^n \to \mathbb{R}^n$ $L(\underline{x}) = A\underline{x}$ l'applicazione lineare associata ad una matrice $A n \times n$. Allora

- L è invertibile se e solo se rg(A) = n;
- in tal caso, la matrice $(A|I_n)$ si può trasformare mediante operazioni elementari in una matrice $(I_n|B)$, e l'inversa di L è l'applicazione lineare $L^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ $L^{-1}(\underline{y}) = B\underline{y}$ associata alla matrice B.

-Inversione di applicazioni lineari e matrici.

Per ogni spazio vettoriale \mathbb{R}^n , l'applicazione identica id $_n : \mathbb{R}^n \to \mathbb{R}^n$, id $_n(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n)$, è l'applicazione lineare associata alla matrice identità

$$I_n = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right).$$

In simboli,

$$\mathrm{id}_n = L_{\mathrm{I}_n}.$$

Siano A e B due matrici quadrate di ordine n, e siano L_A e L_B le corrispondenti applicazioni lineari $\mathbb{R}^n \to \mathbb{R}^n$. L'applicazione lineare L_B è una inversa di L_A se

$$L_B \circ L_A = \mathrm{id}_n = L_A \circ L_B.$$

Per la relazione fra composizione di applicazioni lineari e matrici, questa condizione si può riscrivere

$$L_{BA} = L_{I_n} = L_{AB},$$

e per l'unicità delle matrici associate alle applicazioni lineari,

$$AB = I_n = BA$$
.

Definizione. Siano A e B due matrici quadrate di ordine n; si dice che B è "una inversa" di A se

$$AB = I_n = BA$$
.

Una matrice si dice "invertibile" se possiede una inversa.

In base a questa definizione, possiamo esprimere le considerazioni precedenti come

Proposizione. Sia A una matrice quadrata di ordine n e sia $L_A : \mathbb{R}^n \to \mathbb{R}^n$, $L_A(\underline{x}) = Ax$ l'applicazione lineare associata. Allora

- A è invertibile se e solo se L_A è invertibile;
- in tal caso, una matrice B quadrata di ordine n è l'inversa di A se e solo se l'applicazione lineare L_B è l'inversa di L_A , in simboli:

$$B = A^{-1}$$
 se e solo se $L_B = (L_A)^{-1}$.

Dunque possiamo decidere dell'invertibilità di una matrice e in caso invertirla considerando l'applicazione lineare corrispondente.

Esempio. Dagli esempi del paragrafo precedente, deduciamo che

- la matrice
$$A=\left(\begin{array}{cc} 1 & 3 \\ 2 & 7 \end{array}\right)$$
 è invertibile e la sua inversa è $A^{-1}=\left(\begin{array}{cc} 7 & -3 \\ -2 & 1 \end{array}\right)$.

- la matrice $\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$ non è invertibile.

Il metodo per l'inversione di applicazioni lineari si traduce in un metodo per l'inversione di matrici, come specificato dalla seguente

Proposizione Sia A una matrice quadrata di ordine n. Allora

- la matrice A è invertibile se e solo se rg(A) = n;
- in tal caso, la matrice $(A|I_n)$ si può trasformare mediante operazioni elementari in una matrice del tipo $(I_n|B)$, e si ha $B=A^{-1}$.

Esempio. È data la matrice

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & k \end{array}\right)$$

dove k è un parametro in \mathbb{R} . Ci chiediamo per quali valori di k la matrice A è invertibile e per tali valori qual'è la sua inversa.

A è invertibile se e solo se rg(A) = 2 se e solo se $k \neq 6$; dunque A è invertibile se e solo se $k \neq 6$; sotto questa condizione cerchiamo l'inversa.

Consideriamo la matrice

$$(A|I_2) = \left(\begin{array}{cc|c} 1 & 3 & 1 & 0 \\ 2 & k & 0 & 1 \end{array}\right).$$

Sommando alla seconda riga un opportuno multiplo della prima si ottiene

$$\left(\begin{array}{cc|c}1&3&1&0\\0&k-6&-2&1\end{array}\right);$$

moltiplicando la seconda riga 1/(k-6) si ottiene

$$\left(\begin{array}{cc|c} 1 & 3 & 1 & 0 \\ 0 & 1 & \frac{-2}{k-6} & \frac{1}{k-6} \end{array}\right).$$

sommando alla prima riga un opportuno multiplo della seconda si ottiene

$$\left(\begin{array}{cc|c} 1 & 0 & \frac{k}{k-6} & \frac{-3}{k-6} \\ 0 & 1 & \frac{-2}{k-6} & \frac{1}{k-6} \end{array}\right).$$

Dunque, sotto la condizione $k \neq 6$, si ha

$$A^{-1} = \begin{pmatrix} \frac{k}{k-6} & \frac{-3}{k-6} \\ \frac{-2}{k-6} & \frac{1}{k-6} \end{pmatrix}.$$