Lezioni del 06 aprile. Registro

Numeri reali

Si sono considerate le equazioni $x^m - a$ (con $m \in \mathbb{N}^+$ ed $a \in \mathbb{R}$), si e' enunciato e dimostrato il relativo teorema (cfr. approfondimento qui sotto), e si e' ricordata la definizione di radice di un numero reale.

Si sono accennate le prime definizioni e proposizioni dell'analisi sui numeri reali, in particolare i concetti di successione convergente e di successione di Cauchy, l'equivalenza dei due concetti come formulazione della completezza di \mathbb{R} , e le serie e i prodotti di infiniti termini.

Si sono considerate le presentazioni dei numeri reali come limite di successioni o somma di serie o prodotti infiniti. Si sono considerate le scritture dei numeri reali non negativi in una data base, si e' ricordato il fatto che le scritture periodiche corrispondono ai numeri razionali, e si e' accennato al problema di stabilire l'ordine e calcolare somme e prodotti di numeri reali nei termini delle loro scritture. Si sono considerati la radice $\sqrt{2}$, il numero di Nepero e, e π e per ciascuno di essi si e' data una rappresentazione come limite di una successione e/o somma di una serie e/o prodotto infinito.

Per i polinomi di II grado a coefficienti reali, si e' ricordato il processo di completamento ad un quadrato, la descrizione nei termini del segno del discriminante dell'esistenza di radici reali, e la relativa formula.

Si e' ricordata la definizione di numero reale algebrico o trascendente, e si e' enunciato che i numeri e e π sono trascendenti. Per ciascun $\alpha \in \mathbb{R}$ si sono considerati l'epimorfismo di sostituzione $E_{\alpha}: \mathbb{Q}[x] \to \mathbb{Q}[\alpha], \ p(x) \mapsto p(\alpha)$ dall'anello dei polinomi nell'indeterminata x a coefficienti in \mathbb{Q} all'anello delle espressioni polinomiali in α a coefficienti in \mathbb{Q} , e l'isomorfismo associato $\mathbb{Q}[x]/\mathrm{Ker}(E_{\alpha}) \simeq \mathbb{Q}[\alpha]$; si e' dedotto che per α algebrico l'anello $\mathbb{Q}[\alpha]$ e' un campo e per α trascendente l'anello $\mathbb{Q}[\alpha]$ e' isomorfo a $\mathbb{Q}[x]$ (questo aromento verra' rispreso piu' avanti nella definizione del campo dei numeri complessi e nello studio delle estensioni dei suoi sottocampi).

Si sono ricordate le prime definzioni e proposizioni sulle funzioni reali di variabile reale continue, in particolare la continuita' delle funzini polinomiali e il teorema degli zeri per le funzioni continue. Si sono riconsiderate le equazioni $x^m - a$ (con $m \in \mathbb{N}^+$ ed $a \in \mathbb{R}$), si e' ridimostrato il relativo teorema usando il teorema degli zeri.

Approfondimento. Esistenza Radici, dimostrazione.

Teorema 1. Siano m un intero positivo ed $a \in \mathbb{R}$.

- Per m pari, l'equazione x^m a ha nessuna, una o due soluzioni opposte fra loro secondo che a sia minore, uguale o maggiore di 0.
- Per m dispari, l'equazione $x^m a$ ha sempre una ed una sola soluzione.

Riportiamo di seguito una dimostrazione per esemplificare come giocano la proprieta' di campo ordinato completo/continuo e archimedea. Ci limitiamo a provare che per ogni $m \in \mathbb{N}^+$ ed ogni $a \in \mathbb{R}^+$ l'equazione $x^m - a$ ha sempre una ed una sola soluzione.

Dim.

L'unicita' deriva dalla compatibilita' dell'ordine col prodotto. Mostriamo l'esistenza.

- Per ciascun $n \in \mathbb{N}^+$ consideriamo l'insieme F_n dei numeri razionali rappresentati da frazioni con denominatore $n, F_n = \{\frac{i}{n}; i \in \mathbb{N}\}$ e poniamo

$$u_n = \max\{f \in F_n : f^m \le a\};$$

$$v_n = \min\{f \in F_n : f^m \ge a\}.$$

Queste definizioni sono ben poste, essenzialmente perche' \mathbb{R} e' archimedeo ed \mathbb{N} possiede la proprieta' di minimo. Chiaramente si ha

$$0 \le v_n - u_n \le \frac{1}{n}, \quad \forall n \in \mathbb{N}^+.$$

- Gli insiemi $U = \{u_n; n \in \mathbb{N}^+\}$ e $V = \{v_n; n \in \mathbb{N}^+\}$ sono non vuoti e separati, dunque per la continuita' di \mathbb{R} esiste un $\xi \in \mathbb{R}$ elemento separatore fra U e V; in particolare si ha

$$u_n \le \xi \le v_n, \quad \forall n \in \mathbb{N}^+.$$

- Per la compatibilita' dell'ordine col prodotto si ha

$$u_n^m \le \xi^m \le v_n^m, \quad \forall n \in \mathbb{N}^+;$$

d'altro canto, per definizione, si ha

$$u_n^m \le a \le v_n^m, \quad \forall n \in \mathbb{N}^+;$$

inoltre si ha

$$0 \le v_n^m - u_n^m = (v_n - u_n) \sum_{i+j=m} v_n^i u_n^j \le \frac{C}{n},$$

dove C e' una costante che dipende da m ed a ma non da n.

- Dunque

$$-\frac{C}{n} \le \xi^m - a \le \frac{C}{n}, \quad \forall n \in \mathbb{N}^+,$$

ed essendo \mathbb{R} archimedeo, cio' e' possibile solo se

$$\xi^m = a$$
.