Nella lezione del 29 settembre i logaritmi sono stati presentati velocemente attraverso le funzioni logaritmo, viste come funzioni inverse delle funzioni esponenziali; nella lezione del 1 ottobre i logaritmi sono stati presentati direttamente prescindendo dalle funzioni; si ritiene che quest'ultima sia la presentazione piu' naturale, dunque il suo posto nello sviluppo del discorso e' come ultima lezione sui numeri reali, prima delle lezioni sulle funzioni.

Logaritmi.

1. Consideriamo l'equazione

$$2^{x} = 3$$

nell'incognita x in \mathbb{R} .

Osserviamo che questa equazione non ha alcuna soluzione in Q. Infatti se avesse una tale soluzione, essa sarebbe del tipo m/n con $m, n \in \mathbb{N}$ ed $m, n \neq 0$, si avrebbe l'uguaglianza $2^{m/n} = 3$ che equivale all'uguaglianza $2^m = 3^n$, che e' in contraddizione col teorema di fattorizzazione unica.

Dalle proprieta' delle operazioni e dell'ordine segue che per ogni $x_1, x_2 \in \mathbb{N}$ con n < m si ha $2^{x_1} < 2^{x_2}$; questo fatto si estende direttamente al caso $x_1, x_2 \in \mathbb{Z}$, quasi direttamente al caso $x_1, x_2 \in \mathbb{Q}$, e in modo non banale anche al caso $x_1, x_2 \in \mathbb{R}$. Dunque se l'equazione $2^x = 3$ ha una soluzione in \mathbb{R} , questa e' unica. Si prova in modo non banale che una tale soluzione esiste.

Diamo un'idea molto primitiva di come si possa costruire. Consideriamo la disequazione

$$2^{x} \le 3$$

nell'incognita x in \mathbb{Q}^+ ; fra le soluzioni intere ce ne e' una massima ed e' 1; fra le soluzioni con una cifra decimale ce ne e' una massima ed e' 1,1 (infatti $2^{11/10} < 3$ in quanto $2^{11} < 3^{10}$ mentre $2^{12/10} > 3$ in quanto $2^{12} > 3^{10}$); fra le soluzioni con due cifre decimali ce ne e' una massima ... si ottiene cosi' un numero reale $1,1\ldots$ Si puo' dimostrare che questo numero e' una soluzione dell'equazione data. Si dice che $1,1\ldots$ e' il logaritmo di 3 in base 2 e si scrive

$$\log_2(3) = 1, 1 \dots$$

2. Consideriamo l'equazione

$$2^x = a$$

nell'incognita x in \mathbb{R} , dove a e' un parametro in \mathbb{R} .

Dalla definizione di potenza segue direttamente che $2^x > 0$ per ogni $x \in \mathbb{Z}$ e piu' in generale per ogni $x \in \mathbb{Q}$; questo fatto si estende ad ogni $x \in \mathbb{R}$.

Dunque per ogni $a \le 0$ l'equazione data non ha soluzioni.

Si prova in modo non banale per ogni a > 0 l'equazione ha una ed una sola soluzione; questa soluzione viene detta "logaritmo di a in base 2" e viene indicata con $\log_2(a)$. Dunque per definizione si ha

$$\log_2(a) = c \Leftrightarrow 2^c = a.$$

Ci sono dei logaritmi ovvi, ad esempio

$$\begin{vmatrix} a & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & \sqrt{\frac{1}{2}} & 1 & \sqrt{2} & 2 & 4 & 8 \\ \log_2(a) & -3 & -2 & -1 & -\frac{1}{2} & 0 & \frac{1}{2} & 1 & 2 & 3 \end{vmatrix}$$

3. Consideriamo l'equazione

$$b^{x} = a$$

nell'incognita x in \mathbb{R} , dove a e b sono due parametri in \mathbb{R} .

Affinche' la potenza b^x sia definita per ogni $x \in \mathbb{R}$ e' necessario che b > 0. Osserviamo che per b = 1 l'equazione diviene $1^x = a$, che per $a \neq 1$ non ha soluzioni, e per a = 1 ha per soluzione ogni $x \in \mathbb{R}$.

Si prova in modo non banale per ogni $b \in \mathbb{R}$ con $0 < b \neq 1$ ed ogni $a \in \mathbb{R}$ con a > 0, l'equazione ha una ed una sola soluzione in \mathbb{R} ; questa soluzione viene detta "logaritmo di argomento a in base b" e viene indicata con $\log_b(a)$. Dunque per definizione si ha

$$\log_b(a) = c \Leftrightarrow b^c = a.$$

Dalle proprieta' delle potenze seguono le seguenti proprieta' dei logaritmi

$$\log_b(a_1 a_2) = \log_b(a_1) + \log_b(a_2) \qquad (a_1, a_2 > 0)$$

$$\log_b(a^{\alpha}) = \alpha \log_b(a) \qquad (a > 0)$$

Proviamo la prima proprieta'. Poniamo

$$\log_b(a_1 a_2) = c$$
, $\log_b(a_1) = c_1$ $\log_b(a_2) = c_2$,

per definizione di logaritmo cio' equivale a porre

$$b^c=a_1a_2,\quad b^{c_1}=a_1,\quad b^{c_2}=a_2;$$
 si ha $b^c=a_1a_2=b^{c_1}b^{c_2}=b^{c_1+c_2}$ e da cio' segue $c=c_1+c_2.$

4. Nella pratica vengono usati logaritmi in base 2, in base 10 e in base e dove e = 2,718... e' un numero irrazionale detto numero di Nepero, che definiremo piu' avanti. Di regola, noi useremo questi ultimi, e scriveremo $\log_e(a)$ semplicemente $\log(a)$.