Esercizi, I

Svolgere i seguenti esercizi con carta e penna; usare eventualmente una calcolatrice solo per verificare i risultati ottenuti.

- 1. Scrivere la frazione 15/7 come numero decimale.
- 2. Provare che l'equazione $x^2 = 3$ non ha radici in \mathbb{Q} .
- 3. Con un processo analogo a quello usato a lezione per determinare le prime due cifre decimali di $\sqrt{2}$, si determinino le prime due cifre decimali di $\sqrt{11}$.
- 4. Senza approssimare $\sqrt{2}$, si calcolino le espressioni seguenti e si stabilisca quale dei due risultati e' maggiore.

$$(3+5\sqrt{2})(7+11\sqrt{2}),$$
$$(5+7\sqrt{2})^{2}.$$

- 5. Si determini il corrispondente numerico della relazione geometrica "il perimetro di un quadrato inscritto in una circonferenza e' minore della lunghezza della circonferenza che a sua volta e' minore del perimetro di un quadrato circoscritto alla circonferenza."
- 6. Si risolva la disequazione

$$|x-1| < |x-3|$$

prima applicando direttamente la definizione, poi usando l'interpretazione del valore assoluto della differenza di due numeri reali come distanza fra due punti su una retta.

7. Si rappresentino i grafici delle seguenti funzioni $\mathbb{R} \to \mathbb{R}$

$$f(x) = -\frac{2}{3}x + 1;$$

$$g(x) = 2|x - 3| + 1;$$

- 8. Si provi che il grafico di una funzione pari e' simmetrico rispetto all'asse *y*, e che il grafico di una funzione dispari e' simmetrico rispetto all'origine.
- 9. Utilizzando la definizione, si provi che:
 - (a) la funzione $i: \mathbb{R} \{0\} \to \mathbb{R}, i(x) = \frac{1}{x}$ e' strettamente decrescente su $]0, +\infty[$;
 - (b) la funzione $c: \mathbb{R} \to \mathbb{R}$, $c(x) = x^3$ e' strettamente crescente su \mathbb{R} ;
 - (c) la funzione $q: \mathbb{R} \to \mathbb{R}$, $q(x) = x^2$ non e' ne' crescente ne' decrescente su R.
- 10. Si rappresentino e si confrontino i grafici delle funzioni esponenziali di base 2, 3, $\frac{1}{2}$, $\frac{1}{3}$.