Algebra delle matrici

Prodotto di una matrice per uno scalare Data una matrice A di tipo $m \times n$, e dato uno scalare $r \in \mathbb{R}$, moltiplicando r per ciascun elemento di A si ottiene una nuova matrice di tipo $m \times n$, detta matrice prodotto dello scalare r per la matrice A, ed indicata con A. In simboli, la matrice A e' definita elemento per elemento da

$$(rA)_{ij} = rA_{ij}$$
 $i = 1, ..., m; j = 1, ..., n.$

In modo analogo si definisce la matrice prodotto della matrice A per lo scalare r, indicata con Ar. Chiaramente si ha

$$rA = Ar$$
.

Esempio:

$$7 \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 21 & 28 \\ 35 & 42 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} 7.$$

Il prodotto di matrici per matrici e il prodotto di matrici per scalari soddisfano le proprieta'

$$r(sA) = (rs)A, \qquad r(AB) = (rA)B = A(rB),$$

per ogni $r, s \in \mathbb{R}$ ed ogni A, B matrici (per le quali esista il prodotto AB).

La moltiplicazione di una matrice A per uno scalare r puo' essere realizzata come la moltiplicazione a sinistra oppure come la moltiplicazione a destra di A per opportune matrici. Ad esempio, si ha

$$\begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 21 & 28 \\ 35 & 42 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}.$$

In generale, la moltiplicazione di una matrice A di tipo $m \times n$ per uno scalare r puo' essere realizzata come la premoltiplicazione di A per la matrice rI_m oppure come la postmoltiplicazione di A per la matrice rI_n :

$$rA = (rI_m)A = A(rI_n).$$

Per questa ragione, le matrici rI vengono dette matrici scalari

Matrici diagonali Una matrice quadrata, come

$$\left[\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right], \qquad \left[\begin{array}{cc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right],$$

nella quale tutti gli elementi fuori dalla diagonale discendente sono nulli, viene detta *matrice diagonale*. Per brevita' a volte rappresenteremo una matrice diagonale di ordine *n* come

$$D = \left[\begin{array}{ccc} a_1 & & \\ & a_2 & \\ & & \ddots & \\ & & & a_n \end{array} \right],$$

scrivendo solo gli elementi sulla diagonale.

Si verifica che il prodotto di due matrici diagonali e' una matrice diagonale, e gli elementi diagonali della matrice prodotto sono i prodotti degli elementi corrispondenti delle due matrici fattori:

$$\begin{bmatrix} a_1 & & & & \\ & a_2 & & & \\ & & \ddots & & \\ & & & a_n \end{bmatrix} \begin{bmatrix} b_1 & & & & \\ & b_2 & & & \\ & & \ddots & & \\ & & & b_n \end{bmatrix} = \begin{bmatrix} a_1b_1 & & & & \\ & a_2b_2 & & & \\ & & & \ddots & \\ & & & a_nb_n \end{bmatrix}$$

Determinanti Il determinante di comporta bene rispetto al prodotto di matrici, precisamente si ha

Teorema 1 (di Binet) Il determinantec della matrice prodotto di due matrici quadrate (dello stesso ordine) e' uguale al prodotto dei determinanti delle due matrici fattori:

$$det(AB) = det(A) det(B)$$
.

Non dimostriamo questo teorema. Osserviamo soltanto che e' ovvio per le matrici diagonali; infatti, se A e B sono due matrici quadrate dello stesso ordine n, entrambe diagonali, con elementi diagonali rispettivamente a_1, \ldots, a_n e b_1, \ldots, b_n , allora la matrice prodotto AB e' la matrice quadrata di ordine n diagonale con elementi diagonali a_1b_1, \ldots, a_nb_n e si ha

$$\det(AB) = \prod_{i=1}^{n} (a_i b_i) = \left(\prod_{i=1}^{n} a_i\right) \left(\prod_{j=1}^{n} b_j\right) = \det(A) \det(B).$$

Matrice inversa Per n=1, l'insieme $\mathbb{R}^{n\times n}$ delle matrici quadrate di ordine n diventa l'insieme \mathbb{R} dei numeri reali, e la moltiplicazione di matrici diventa la moltiplicazione di numeri reali. In \mathbb{R} , il numero 1 e' caratterizzato dalla proprieta' che il prodotto di 1 per un qualsiasi altro numero reale e' uguale a quell'altro numero reale:

$$1 a = a = a 1, \quad \forall a \in \mathbb{R}.$$

L'inverso a^{-1} di un numero reale non nullo a e' caratterizzato dalla proprieta' che il prodotto del numero reale per il suo inverso e' uguale a 1:

$$a a^{-1} = 1 = a^{-1} a$$
.

Un'equazione lineare

$$ax = b$$

nell'incognita reale x e' determinata se e solo se $a \neq 0$, e in tal caso l'unica soluzione si ottiene moltiplicando entrambi i membri per a^{-1} :

$$a^{-1}ax = a^{-\frac{1}{1}}b;$$
 $1x = a^{-1}b;$ $x = a^{-1}b.$

Di seguito vedremo come queste nozioni e questi fatti si estendono al caso delle matrici quadrate di un qualsiasi ordine $n \ge 1$.

Definizione 1 Si dice che una matrice A quadrata di ordine n e' invertibile se e solo se esiste una matrice B quadrata di ordine n tale che

$$AB = I_n = BA;$$

in tal caso si dice che B e' una inversa di A.

Sia A una matrice quadrata di ordine n. Se una matrice B quadrata di ordine n si comporta da inversa sulla sinistra di A e se una matrice C quadrata di ordine n si comporta da inversa sulla destra di A, allora queste due matrici coincidono; infatti

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

Dunque se A possiede un'inversa, questa e' unica; essa viene detta la matrice inversa di A, e viene denotata con

$$A^{-1}$$
.

Nella discussione dei seguenti esempi usiamo un approccio diretto. Vedremo in seguito un metodo efficiente per decidere se una matrice e' invertibile o meno e, in caso affermativo, determinarne l'inversa.

Esempi.

Chiedersi se la matrice

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right]$$

possiede una inversa destra significa chiedersi se esiste una matrice

$$B = \left[\begin{array}{cc} p & r \\ q & s \end{array} \right]$$

tale che

$$\left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right] \left[\begin{array}{cc} p & r \\ q & s \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right],$$

cioe'

$$\left[\begin{array}{cc} 2p & 2r \\ 3q & 3s \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right],$$

cioe'

$$p = \frac{1}{2}$$
, $q = 0$, $r = 0$, $s = \frac{1}{3}$.

Dunque c'e' una ed una sola matrice inversa destra di A, ed e'

$$B = \left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{array} \right].$$

Ora, si verifica che *B* e' anche inversa sinistra di *A*, dunque e' l'inversa di *A* :

$$A^{-1} = \left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{array} \right].$$

(2) Chiedersi se la matrice

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array}\right]$$

possiede una inversa destra significa chedersi se esiste una matrice

$$\left[\begin{array}{cc} p & r \\ q & s \end{array}\right]$$

tale che

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array}\right] \left[\begin{array}{cc} p & r \\ q & s \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right],$$

cioe'

$$\begin{cases} p + 3q = 1 \\ r + 3s = 0 \\ 2p + 6q = 0 \\ 2r + 6s = 1 \end{cases}$$

Ora, la seconda e la quarta equazione di questo sistema sono incompatibili. Dunque A non possiede alcuna inversa destra, e a maggior ragione non possiede alcuna inversa.

Si prova che una matrice quadrata del secondo ordine

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

e' invertibile se e solo se $ad - bc \neq 0$ e in tal coso la sua inversa e'

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

Si lascia al lettore di verificare che (sotto la condizione $ad - bc \neq 0$) questa seconda metrice e' davvero l'inversa della prima matrice.

Matrice inversa e sistemi lineari

Teorema 2 Sia A una matrice A quadrata di ordine n. Se A e' invertibile, allora ciascun sistema lineare con matrice dei coefficienti A

$$A\mathbf{x} = \mathbf{b}, \quad (\mathbf{b} \in \mathbb{R}^n)$$

e' determinato; inoltre, la sua soluzione e' data da

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

Dimostrazione. Dal fatto che A^{-1} e' inversa sinistra di A, si ha che

$$A\mathbf{x} = \mathbf{b}$$
implica $A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$
cioe' $(A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$
cioe' $I_n\mathbf{x} = A^{-1}\mathbf{b}$
cioe' $\mathbf{x} = A^{-1}\mathbf{b}$.

Usando il fatto che A^{-1} e' inversa destra di A, mostriamo che questa e' davvero una soluzione:

$$A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = I_n\mathbf{b} = \mathbf{b}.$$

cvd

Esempio. La matrice

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array} \right];$$

e' invertible ed ha inversa

$$A^{-1} = \left[\begin{array}{cc} -5 & 3 \\ 2 & -1 \end{array} \right].$$

Per il Th. precedente, possiamo dire che ciascuno dei sistemi $A\mathbf{x} = \mathbf{b}$ cioe'

$$\begin{cases} x_1 + 3x_2 = b_1 \\ 2x_1 + 5x_2 = b_2 \end{cases}$$

e' determinato, e la sua soluzione e' data da $\mathbf{x} = A^{-1}\mathbf{b}$, cioe'

$$\begin{cases} x_1 = -5b_1 + 3b_2 \\ x_2 = 2b_1 - b_2 \end{cases}.$$

Vale anche il viceversa del Teorema precedente:

Teorema 3 Sia A una matrice A quadrata di ordine n.

- (1) Se per ogni $\mathbf{b} \in \mathbb{R}^n$ il sistema lineare $A\mathbf{x} = \mathbf{b}$ e' determinato, allora A e' invertibile;
- (2) Se C e' una matrice quadrata di ordine n tale che per ogni $\mathbf{b} \in \mathbb{R}^n$ il sistema lineare $A\mathbf{x} = \mathbf{b}$ ha l'unica soluzione $\mathbf{x} = C\mathbf{b}$, allora $C = A^{-1}$.

Esempio. Ci chiediamo se la matrice

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right]$$

e' invertible e in tal caso quale sia la sua inversa.

Consideriamo il generico sistema lineare che ha A come matrice dei coefficienti

$$\begin{cases} x+y+z &= p \\ x+2y+2z &= q \\ x+2y+3z &= r \end{cases} (p,q,r \text{ parametri } \in \mathbb{R}).$$

Questo sistema ha soluzione

$$\begin{cases} x = 2p - q \\ y = -p + 2q - r \\ z = -q + r \end{cases}$$

dunque la matrice A e' invetibile e

$$A^{-1} = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array} \right].$$

Somma di matrici. Siano m ed n due interi positivi fissati. Date due matrici A, B di tipo $m \times n$, sommando a ciascun elemento di A il corrispondente elemento di B, si ottiene una nuova matrice di tipo $m \times n$, detta matrice somma di A e B ed indicata con A + B. Esempio:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 4 & 8 \\ 16 & 32 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 7 & 12 \\ 21 & 38 \end{bmatrix}.$$

In simboli, la matrice A + B e' definita elemento per elemento ponendo

$$(A+B)_{ij} = A_{ij} + B_{ij},$$
 $i = 1, ..., m, j = 1, ..., n.$

La somma di due matrici di tipi diversi non e' definita.

La somma di matrici e' un'operazione associativa e commutativa. La matrice di tipo $m \times n$ avente tutti gli elementi nulli viene detta matrice nulla ed indicata con 0. Questa matrice e' caratterizzata dalla proprieta'

$$A + \underset{m \times n}{0} = A = \underset{m \times n}{0} + A,$$
 (per ogni $A \in R^{m \times n}$).

Per ogni matrice A di tipo $m \times n$, prendendo di ciascun elemento di A il suo opposto, si ottiene una nuova matrice di tipo $m \times n$, detta matrice opposta di A ed indicata con -A. In simboli, la matrice -A e' definita elemento per elemento ponendo

$$(-A)_{ij} = -A_{ij}, \quad i = 1, ..., m, j = 1, ..., n.$$

Questa matrice e' caratterizzata dalla proprieta'

$$A + (-A) = 0$$

 $m \times n = (-A) + A.$

Nel caso m = n = 1 si ha l'usuale somma di numeri reali.

Proprieta' distributive L'operazione di moltiplicazione di matrici possiede le proprieta' distributive sinistra e destra rispetto all'addizione di matrici:

$$(A+B)C = AC+BC$$

 $B(C+D) = BC+BD$

per ogni A, B matrici di tipo $m \times n$ e C, D matrici di tipo $n \times p$.

Dimostriamo la proprieta' distributiva sinistra della moltiplicazione rispetto all'addizione di matrici. Per ogni $i=1,\ldots,m$ e $j=1,\ldots,p$, da un lato si ha

$$((A+B)C)_{ij} = \sum_{h=1}^{n} (A+B)_{ih}C_{hj}$$
$$= \sum_{h=1}^{n} (A_{ih} + B_{ih})C_{hj},$$

e dall'altro si ha

$$(AC + BC)_{ij} = (AC)_{ij} + (BC)_{ij}$$
$$= \sum_{h=1}^{n} A_{ih}C_{hj} + \sum_{h=1}^{n} B_{ih}C_{hj};$$

la forma finale della prima espressione si puo' trasformare nella forma finale della seconda espressione, applicando la proprieta' distributiva (della moltiplicazione rispetto all'addizione di numeri reali) a ciascun addendo e spezzando la sommatoria.

Prodotto di matrici per colonne e combinazioni lineari L'operazione di prodotto di due matrici puo' essere ricondotta all'operazione di combinazione lineare di vettori colonna, e viceversa. Ad esempio, si ha

$$\begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} ar_1 + dr_2 \\ br_1 + er_2 \\ cr_1 + fr_2 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} r_1 + \begin{bmatrix} d \\ e \\ f \end{bmatrix} r_2.$$

In generale si ha:

Il prodotto di una matrice A di tipo $m \cdot n$ per un vettore colonna $\mathbf{r} \in \mathbb{R}^n$ e' uguale alla combinazione lineare delle colonne di A con coefficienti le corrispondenti componenti di r:

$$A\mathbf{r} = \begin{bmatrix} A_{*1} & A_{*2} & \dots & A_{*n} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = A_{*1}r_1 + A_{*2}r_2 + \dots + A_{*n}r_n$$

Da questa identita' segue che per lo spazio colonna della matrice A si ha

$$C(A) = \{A_{*1}r_1 + \dots + A_{*n}r_n; r_1, \dots, r_n \in \mathbb{R}\} = \{A\mathbf{r}; \mathbf{r} \in \mathbb{R}^r\}.$$

Spazio nullo di una matrice Consideriamo un sistema lineare omogeneo di m equazioni in n incognite

$$A\mathbf{x} = \mathbf{0}, \qquad A \in \mathbb{R}^{m \times n}, \ \mathbf{0} \in \mathbb{R}^m.$$

Osserviamo che

(1) Se $\mathbf{s}, \mathbf{t} \in \mathbb{R}^n$ sono due soluzioni del sistema, cioe' se $A\mathbf{s} = \mathbf{0}$ e $A\mathbf{t} = \mathbf{0}$, allora si ha

$$A(s+t) = As + At = 0 + 0 = 0$$

cioe' anche $\mathbf{s} + \mathbf{t}$ e' una soluzione del sistema;

(2) Se $\mathbf{s} \in \mathbb{R}^n$ e' una soluzione del sistema, cioe' se $A\mathbf{s} = \mathbf{0}$, e se $\alpha \in \mathbb{R}$ allora si ha

$$A(\alpha \mathbf{s}) = \alpha(A\mathbf{s}) = \alpha \mathbf{0} = \mathbf{0}$$

cioe' anche α**s** e' una soluzione del sistema.

Dunque

Per ogni matrice A di tipo $m \times n$, l'insieme delle soluzioni del sistema lineare omogeneo $A\mathbf{x} = \mathbf{0}$ e' un sottospazio di \mathbb{R}^n ; questo sottospazio si dice "spazio nullo" della matrice A e si indica con $\mathcal{N}(A)$. In simboli, si ha

$$\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$