Funzioni reali di una variabile reale

Funzioni monotone

Proprietà dell'ordine Abbiamo visto che la relazione d'ordine fra i numeri reali è compatibile con le operazioni, in particolare che $\forall a, b, c \in \mathbb{R}$, se $a \leq b$ e $0 \leq c$ allora $ac \leq bc$; equivalentemente: $\forall a, b, c \in \mathbb{R}$, se a < b e 0 < c allora ac < bc. Questa proprietà può essere espressa in una forma più forte

$$\forall a, b, c, d \in \mathbb{R}, \quad (0 < a < b \in 0 < c < d) \Rightarrow ac < bd.$$

Infatti,

$$(0 < a < b e 0 < c) \Rightarrow ac < bc$$

 $(0 < b e 0 < c < d) \Rightarrow bc < bd$
 $(ab < bc e bc < bd) \Rightarrow ac < bd$.

Osserviamo che se nelle ipotesi si sostituisce 0 < a < b con a < b, si ottiene un'affermazione falsa. Infatti:

$$(-2 < -1 \text{ e } 1 < 5)$$
, ma $2 \times 1(=-2) > -1 \times 5(=-5)$.

Grafici. Di seguito descriviamo le prime nozioni sulle funzioni reali di variabile reale, e le proprietà salienti dei primi tipi di funzioni fondamenmtali. Per i relativi grafici rimandiamo al sito.

http://maxima-online.org/index.html

L'istruzione per ottenere il grafico di una funzione $f:[a,b] \to [c,d]$ è

L'istruzione per ottenere il grafico comparato di più funzioni $f(x), g(x), \ldots$ si ottiene da questa istruzione sostituendo a f(x) la sequenza $f(x), g(x), \ldots$

Funzioni monotone Una funzione $f: A \to B$, con $A, B \subseteq \mathbb{R}$ si dice "crescente" se

$$\forall x_1, x_2 \in A, \quad x_1 < x_2 \implies f(x_1) \le f(x_2),$$

e si dice "strettamente crescente" se

$$\forall x_1, x_2 \in A, \quad x_1 < x_2 \implies f(x_1) < f(x_2).$$

Analogamente per funzione "decrescente" e "strettamente decrescente". Una funzione si dice "monotona" se è "crescente oppure decrescente"; analogamente per "strettamente monotona".

Esempi.

- (0) Una funzione costante è sia crescente che desrescente; viceversa, una funzione sia crescente che decrescente è costante.
- (1) Una funzione polinomiale di I grado $p: \mathbb{R} \to \mathbb{R}$, p(x) = mx + q (x variabile in \mathbb{R} ; $m \neq 0$ e q numeri in \mathbb{R}) è sempre strettamente monotona, precisamente: strettamente crescente se m > 0 e strettamente decrescente se m < 0 (lo si verifichi usando la definzione e le proprietà dell'ordine).
- (2) La funzione $p: \mathbb{R} \to \mathbb{R}$, $p(x) = x^2$ ($x \in \mathbb{R}$) non è monotona (lo si verifichi usando la definzione).
- (2') La funzione $p: \mathbb{R}_{\geq 0} \to \mathbb{R}$, $p(x) = x^2$ ($x \in \mathbb{R}_{\geq 0}$) è strettamente crescente. Infatti, per ogni $x_1, x_2 \in \mathbb{R}$ con $0 \leq x_1 < x_2$, da $(0 \leq x_1 < x_2 \text{ e } 0 \leq x_1 < x_2)$ per le proprietà dell'ordine si ha $x_1^2 < x_2^2$, cioè $p(x_1) < p(x_2)$.
- (3) La funzione $c: \mathbb{R} \to \mathbb{R}$, $c(x) = x^3$ ($x \in \mathbb{R}$) è strettamente crescente. Ce ne si può fare un'idea valutando la funzione su un insieme di punti (ad esempio $0, \pm 1/2, \pm 1, \pm 2$). Si può dare una dimostrazione secondo le lineee del punto precedente (distinguendo i casi $x_1 < x_2 < 0$, $x_1 < 0 < x_2$, $0 < x_1 < x_2$)

Proposizione 1 (1) Ciascuna funzione strettamente monotona $f: A \to B$ è iniettiva; (2) Se una funzione strettamente crescente $f: A \to B$ è invertibile, allora anche la sua inversa $f^{-1}: B \to A$ è strettamente crescente; analogamente per decrescente.

La (1) si può provare come segue. Per ogni $x_1, x_2 \in A$, se $x_1 \neq x_2$ allora si ha $x_1 < x_2$ oppure $x_2 < x_1$ da cui $f(x_1) < f(x_2)$ oppure $f(x_2) < f(x_1)$ (essendo f strettamente crescente), da cui $f(x_1) \neq f(x_2)$.

Applicazione. La funzione $p: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $p(x) = x^2$ ($x \in \mathbb{R}_{\geq 0}$) è invertibile e strettamente crescente. Dalla proposizione segue che anche la funzione inversa $r: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $r(x) = \sqrt{x}$ ($x \in \mathbb{R}_{\geq 0}$) è strettamente crescente.

Funzioni potenza

Funzioni potenza, ad esponente reale positivo. Per ciascun numero naturale n, consideriamola funzione "elevamento alla poteza n—ma"

$$p_n: \mathbb{R} \to \mathbb{R}, \quad p_n(x) = x^n.$$

Osserviamo che

$$p_n(-x) = (-x)^n = (-1)^n x^n = \left\{ \begin{array}{cc} x^n & \text{se } n \text{ pari} \\ -x^n & \text{se } n \text{ dispari} \end{array} \right\} = \left\{ \begin{array}{cc} p_n(x) & \text{se } n \text{ pari} \\ -p_n(x) & \text{se } n \text{ dispari} \end{array} \right\}$$

Ciò suggerisce la seguente definizione. Sia $f:A\to B$ ($A,B\subseteq\mathbb{R}$) una funzione definita su un insieme A simmetrico rispetto a 0 (cioè per ogni x si ha che $x\in A$ se e solo se $-x\in A$).

Si dice che f è "pari" se

$$\forall x \in A, \quad f(-x) = f(x);$$

si dice che f è "dispari" se

$$\forall x \in A, \quad f(-x) = -f(x).$$

Una tale funzione è completamente determinata dalla sua restrizione alla parte positiva di A:

se f è pari, allora il grafico di f sulla parte negativa di A si ottiene, per simmetria rispetto all'asse x = 0, dal grafico di f sulla parte positiva di A;

se f è dispari, allora il grafico di f sulla parte negativa du A si ottiene, per simmetria rispetto al punto (0,0), dal grafico di f sulla parte positiva di A;

Si prova che

per ogni $n \ge 1$, la restrizione $\bar{p}_n : \mathbb{R}_{\ge 0} \to \mathbb{R}$ della funzione potenza p_n al semiasse positivo $\mathbb{R}_{>0}$ è una funzione strettamente crescente.

Per farsi un'idea dei grafici delle funzioni potenza ad esponente intero positivo:

$$plot2d([x^2, x^3, x^4], [x,-2,2], [y,-16,16]).$$

Piu in generale, per ciascun numero reale $r \ge 0$, consideriamo la funzione "elevamento alla poteza r—ma"

$$p_r: \mathbb{R}_{>0} \to \mathbb{R}, \quad p_r(x) = x^r.$$

Si prova che

per ogni r > 0, la funzione potenza p_r è una funzione strettamente crescente

Per farsi un'idea dei grafici delle funzioni potenza ad esponente reale positivo:

$$plot2d([x^2, x^3, x^{(1/2)}, x^{(1/3)}], [x,0,2], [y,0,8]).$$

Funzioni potenza, ad esponente reale negativo. Per ciascun numero intero negativo n, consideriamola funzione "elevamento alla poteza n—ma"

$$p_n: \mathbb{R}_{\neq 0} \to \mathbb{R}, \quad p_n(x) = x^n.$$

Come sopra, si ha che

$$p_n(-x) = \begin{cases} p_n(x) & \text{se } n \text{ pari} \\ -p_n(x) & \text{se } n \text{ dispari} \end{cases}$$

Si prova che

per ogni n < 0, la restrizione $\bar{p}_n : \mathbb{R}_{\geq 0} \to \mathbb{R}$ della funzione potenza p_n al semiasse positivo $\mathbb{R}_{\geq 0}$ è una funzione strettamente decrescente.

Per farsi un'idea comparata dei grafici delle funzioni potenza ad esponente intero negativo:

$$plot2d([x^{-1}, x^{-2}, x^{-3}], [x,-2,2], [y,-16,16]).$$

Piu in generale, per ciascun numero reale r < 0, consideriamo la funzione "elevamento alla poteza r—ma"

$$p_r: \mathbb{R}_{\neq 0} \to \mathbb{R}, \quad p_r(x) = x^r.$$

Si prova che

per ogni r < 0, la funzione potenza p_r è una funzione strettamente decrescente.

Per farsi un'idea comparata dei grafici delle funzioni potenza ad esponente reale negativo:

$$plot2d([x^{-2}, x^{-3}, x^{-1/2}, x^{-1/3}], [x,0,2], [y,0,8]).$$

Funzioni esponenziali e logaritmiche

Funzioni esponenziali A partire dai casi b=2 e $b=\frac{1}{2}$, si e' considerata per ciascun b>0 fissato, la funzione esponenziale

$$\exp_b : \mathbb{R} \to \mathbb{R}, \quad \exp_b(x) = b^x.$$

ciascuna di queste funzioni assume solo valori strettamente positivi. Si e' enunciato che:

- per b > 1 la funzione exp_b e' strettamente crescente;
- per b = 1 la funzione exp_1 e' costante uguale a 1;
- per 0 < b < 1 la funzione exp_b e' strettamente descrescente.

(La seconda affermaziione e' ovvia; la prima e la terza sono ovvie su \mathbb{N} , chiare su \mathbb{Z} , e si possono motivare in modo elementare su \mathbb{Q} .)

Proprietà delle funzioni esponenziali rispetto alle operazioni:

$$\forall x_1, x_2 \in \mathbb{R}$$
, $exp_b(x_1 + x_2) = exp_b(x_1)exp_b(x_2)$
 $\forall \alpha, x \in \mathbb{R}$, $exp_b(\alpha x) = (exp_b(x))^{\alpha}$

Per farsi un'idea comparata dei grafici delle funzioni esponenziali:

$$plot2d([2^x, 3^x, (-1/2)^x, (1/3)^x], [x,-2,2], [y,0,9]).$$

Logaritmi Consideriamo l'equazione

$$2^{x} = 3$$

nell'incognita x in \mathbb{R} . Per la monotonia della funzione esponenziale, se l'equazione ha una soluzione in \mathbb{R} , questa e' unica. Si prova in modo non banale che una tale soluzione esiste.

Diamo un'idea molto primitiva di come si possa costruire. Consideriamo la disequazione

$$2^{x} \le 3$$

nell'incognita x in \mathbb{Q}^+ ; fra le soluzioni intere ce ne e' una massima ed e' 1; fra le soluzioni con una cifra decimale ce ne e' una massima ed e' 1,1 (infatti $2^{11/10} < 3$ in quanto $2^{11} < 3^{10}$ mentre $2^{12/10} > 3$ in quanto $2^{12} > 3^{10}$); fra le soluzioni con due cifre decimali ce ne e' una massima ... si ottiene cosi' un numero reale 1,1 Si puo' dimostrare che questo numero e' una soluzione dell'equazione data. Si dice che 1,1 . . . e' il logaritmo di 3 in base 2 e si scrive

$$log_2(3) = 1, 1...$$

Logaritmi in base 2 Consideriamo ora l'equazione

$$2^x = a$$

nell'incognita x in \mathbb{R} , dove a e' un parametro in \mathbb{R} . Per ogni $a \leq 0$ l'equazione data non ha soluzioni. Si prova in modo non banale per ogni a > 0 l'equazione ha una ed una sola soluzione; questa soluzione viene detta "logaritmo di a in base 2" e viene indicata con $\log_2(a)$. Dunque per definizione si ha

$$\log_2(a) = c \Leftrightarrow 2^c = a;$$

in altri termini, $log_2(a)$ e' caratterizzato dalla condizione

$$2^{\log_2(a)} = a.$$

Logaritmi Consideriamo l'equazione

$$b^{x} = a$$

nell'incognita x in \mathbb{R} , dove a e b sono due parametri in \mathbb{R} . Affinche' la potenza b^x sia definita per ogni $x \in \mathbb{R}$ e' necessario che b > 0. Osserviamo che per b = 1 l'equazione diviene $1^x = a$, che per $a \neq 1$ non ha soluzioni, e per a = 1 ha per soluzione ogni $x \in \mathbb{R}$.

Si prova in modo non banale per ogni $b \in \mathbb{R}$ con $0 < b \neq 1$ ed ogni $a \in \mathbb{R}$ con a > 0, l'equazione ha una ed una sola soluzione in \mathbb{R} ; questa soluzione viene detta "logaritmo di a in base b" e viene indicata con $\log_b(a)$. Dunque per definizione si ha

$$\log_b(a) = c \Leftrightarrow b^c = a;$$

in altri termini, $\log_h(a)$ e' caratterizzato dalla condizione

$$b^{\log_b(a)} = a$$
.

Dalle proprieta' delle potenze seguono le seguenti proprieta' dei logaritmi

$$\log_b(a_1 a_2) = \log_b(a_1) + \log_b(a_2) \qquad (a_1, a_2 > 0)$$

$$\log_b(a^{\alpha}) = \alpha \log_b(a) \qquad (a > 0)$$

Proviamo la prima proprieta'. Si ha

$$b^{\log_b(a_1)} = a_1, \quad b^{\log_b(a_2)} = a_2;$$

moltiplicando membro a membro la seconda e la terza uguaglianza ed usando la prima proprieta' delle potenze si ottiene

$$b^{\log_b(a_1) + \log_b(a_2)} = a_1 a_2$$

dunque, per la stessa definizione di logaritmo si ha

$$\log_b(a_1 a_2) = \log_b(a_1) + \log_b(a_2).$$

Nella pratica vengono usati logaritmi in base 2, in base 10 e in base e dove e = 2,718...e' il numero di Nepero. Di regola, noi useremo questi ultimi, e scriveremo $\log_e(a)$ semplicemente $\log(a)$.

Esempio. Valutazione approssimata di $\log_{10} 3.937.428$, agli interi. Si ha

$$1.000.000(=10^6) < 3.937.428 < 10.000.000(=10^7)$$

dunque, poichè la funzione \log_{10} è strettamente crescente, si ha

$$6 < \log_{10} 3.937.428 < 7,$$

e dunque $\log_{10} 3.937.4286, \dots$

Funzioni esponenziali e funzioni logaritmiche Per ciascun $b \in \mathbb{R}$, con $0 < b \neq 1$, la funzione

$$\exp_h: \mathbb{R} \to [0, +\infty[, x \mapsto b^x]]$$

e' biiettiva ed ha per funzione inversa la funzione logaritmo in base b

$$\log_b : [0, +\infty[\to \mathbb{R}, \quad x \mapsto \log_b(x).$$

Dai grafici delle funzioni esponenziali, per simmetria rispetto alla retta y = x, si deducono grafici delle funzioni logaritmo.

Per farsi un'idea comparata dei grafici delle funzioni esponenziali e logaritmiche:

$$plot2d([2^x, (1/2)^x, log(x)/log(2), log(x)/log(1/2)], [x,-2,2], [y,-8,4]).$$