Algebra delle matrici

Matrice inversa

Proprietà dell'inversione. Si prova che: (1) se una matrice è invertibile, allora anche la sua inversa è invertibile, con inversa la matrice data; (2) se due matrici dello stesso tipo sono invertibili, allora anche la matrice loro prodotto è invertibile, con inversa il prodotto delle inverse, nell'ordine opposto. In simboli:

$$(A^{-1})^{-1} = A;$$
 $(AB)^{-1} = B^{-1}A^{-1}$

Queste due affermazioni si provano direttamenmte dalla definizione. La seconda si prova come segue:

$$(AB)B^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

 $B^{-1}A^{-1}(AB) = B^{-1}I_nB = B^{-1}B = I_n$

Matrice inversa ed equazioni matriciali

Problema - 1 Consideriamo l'equazione

$$\left[\begin{array}{cc} 3 & 7 \\ 2 & 5 \end{array}\right] X = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]$$

nella incognita X matrice 2×3 . Si ha che la matrice coefficiente della X è invertibile, con inversa

$$\left[\begin{array}{cc} 3 & 7 \\ 2 & 5 \end{array}\right]^{-1} = \left[\begin{array}{cc} 5 & -7 \\ -2 & 3 \end{array}\right].$$

Ci chiediamo come possiamo usare questa informazione per risolvere l'equazione.

Equazioni matriciali In generale, possiamo considerare un'equazione

$$AX = B$$

in una incognita X matrice $n \times p$, con A $n \times n$ e B $n \times p$ matrici date. Se A è invertibile, moltiplicando entrambe i mebri a sinistra per A^{-1} si ottiene

$$A^{-1}AX = A^{-1}B$$
, $I_nX = A^{-1}B$, $X = A^{-1}B$

Dunque questa è l'unica possibile soluzione dell'equazione. Ed è una soluzione, in quanto

$$A(A^{-1}B) = B.$$

Possiamo anche considerare un'equazione

$$XA = B$$

in una incognita X matrice $p \times n$, con A $n \times n$ e B $p \times n$ matrici date. Se A è invertibile, moltiplicando entrambe i mebri a destra per A^{-1} si ottiene

$$XAA^{-1} = BA^{-1}$$
, $XI_n = BA^{-1}$, $X = BA^{-1}$

Dunque questa è l'unica possibile soluzione dell'equazione. Ed è una soluzione, in quanto

$$(BA^{-1})A = B.$$

Abbiamo così mostrato la

Proposizione 1 Sia A una matrice $n \times n$ invertibile. Allora

per ogni B matrice $n \times p$, l'equazione AX = B ha una ed una sola soluzione: $X = A^{-1}B$; per ogni B matrice $p \times n$, l'equazione XA = B ha una ed una sola soluzione: $X = BA^{-1}$.

Problema - 2 Per la Proposizione precedente, l'equazione nella incognita X matrice 2×3

$$\left[\begin{array}{cc} 3 & 7 \\ 2 & 5 \end{array}\right] X = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]$$

ha una ed una sola soluzione:

$$X = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \cdots$$