Funzioni trigonometriche

Ricordiamo informalmente e brevemente la nozione di angolo e di misura di un angolo in radianti nel senso della geometria elementare. Per "angolo" intendiamo una parte di piano α delimitata da due semirette aventi la stessa origine O; su ciascuna circonferenza centrata in O l'angolo α individua un arco; si prova che il quoziente della lunghezza dell'arco sul raggio della circonferenza e' una costante indipendente dalla circonferenza; questa costante viene detta "misura in radianti" dell'angolo α ; la misura in radianti di α puo' essere pensata come il numero reale ottenuto considerando la circonferenza di raggio unitario con centro O, l'arco individuato da α su di essa, e prendendo la lunghezza di questo arco. Si ha dunque che l'angolo giro ha per misura in radianti la lunghezza della circonferenza di raggio unitario, cioe' 2π .

Coseno e seno. Descriviamo le funzioni trigonometriche a partire da una movimento periodico che descriviamo informalmente. Consideriamo un punto materiale P che si muove uniformemente su una circonferenza di raggio 1 con centro un punto O, percorrendo in senso antiorario un arco di circonferenza di lunghezza 1 ogni unita' di tempo, e sia P_t il punto in cui il punto materiale P si trova al tempo t. Supponiamo che questo movimento avvenga da sempre e per sempre, cosicche' t vari in tutto \mathbb{R} . Essendo la lunghezza della circonferenza 2π , si avra' che

$$P_{t+2\pi} = P_t$$
 per ogni $t \in \mathbb{R}$.

Per valori compresi fra 0 e 2π il numero reale t coincide con la misura in radianti dell'angolo avente per lati le semirette OP_0 e OP_t e contenente i punti P_u con $0 \le u \le t$ (P_0 e' il punto occupato dal punto materiale al tempo t = 0).

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale che abbia origine in O, punto untita' dell'asse x coincidente con P_0 , e punto untita' dell'asse y coincidente con $P_{\frac{\pi}{2}}$.

Per ogni $t \in \mathbb{R}$ definiamo il coseno $\cos(t)$ di t come l'ascissa di P_t e definiamo il seno $\sin(t)$ di t come l'ordinata di P_t ; in altri termini, indicate con A_t e B_t le proiezioni ortogonali di P_t sull'asse x e sull'asse y, definiamo

$$\cos(t) = OA_t, \quad \sin(t) = OB_t,$$

(qui OA_t indica la misura con segno del segmento orientato di estremi O e A_t ; analogo significato ha OB_t).

Dal fatto che il punto P_t sta sempre sulla circonferenza di raggio 1 con centro nell'origine del sistema di riferimento, e che questa circonferenza ha equazione $x^2 + y^2 = 1$, si ha che

$$\cos^2(t) + \sin^2(t) = 1, \quad \forall t \in \mathbb{R}.$$

In particolare, segue che

$$\begin{aligned} &-1 \leq \cos(t) \leq 1, & \forall t \in \mathbb{R}, \\ &-1 \leq \sin(t) \leq 1, & \forall t \in \mathbb{R}. \end{aligned}$$

Per la scelta del sistema di riferimento e per l'ipotesi sul moto del punto materiale si ha

$$P_0 = (1,0), \ P_{\pi/2} = (0,1), \ P_{\pi} = (-1,0), \ P_{3\pi/2} = (0,-1), \ P_{2\pi} = (1,0),$$

dunque si hanno i seguenti valori ovvi di coseno e seno

Funzioni coseno e seno. Periodicita'. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione e sia $p \in \mathbb{R}_{>0}$ un numero reale positivo. Diciamo che f e' "periodica di periodo p" se e solo se p e' il minimo numero reale positivo tale che

$$f(x+p) = f(x), \quad \forall x \in \mathbb{R}.$$

Se una tale funzione e' nota su un intervallo di ampiezza p, allora essa e' nota su tutto \mathbb{R} .

La funzione

$$\cos: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \cos(x)$$

e' periodica di periodo 2π . Infatti si ha $P_t=P_{t+2\pi}$ per ogni $t\in\mathbb{R}$ e dunque si ha pure

$$cos(x + 2\pi) = cos(x), \quad \forall x \in \mathbb{R}.$$

Inoltre 2π e' il piu' piccolo numero reale positivo con questa proprieta': se q e' un qualsiasi numero reale con $0 < q < 2\pi$ si ha che esiste un $x \in \mathbb{R}$ tale che $\cos(x+q) \neq \cos(x)$; precisamente, per x=0 si ha $\cos(0+q)=\cos(q)<1=\cos(0)$.

La funzione

$$\sin: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \sin(x)$$

e' periodica di periodo 2π . Infatti si ha $P_t=P_{t+2\pi}$ per ogni $t\in\mathbb{R}$ e dunque si ha pure

$$\sin(x+2\pi) = \sin(x), \quad \forall x \in \mathbb{R}.$$

Inoltre 2π e' il piu' piccolo numero reale positivo con questa proprieta': se q e' un qualsiasi numero reale con $0 < q < 2\pi$ si ha che esiste un $x \in \mathbb{R}$ tale che $\sin(x+q) \neq \sin(x)$; precisamente, per $x = \pi/2$ si ha $\sin(\pi/2+q) < 1 = \sin(\pi/2)$.

Tangente. Consideriamo una retta r che ruota uniformemente in senso antiorario attorno ad un suo punto vincolato O in modo che una sua semiretta con origine O descriva un angolo di un radiante ogni unita' di tempo, e sia r_t la retta r al tempo t. Supponiamo che questo movimento avvenga da sempre e per sempre, cosicche' t vari in tutto \mathbb{R} . Si avra' che

$$r_{t+\pi} = r_t$$
 per ogni $t \in \mathbb{R}$.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale che abbia origine in O, asse x coincidente con r_0 , e asse y coincidente con $r_{\frac{\pi}{2}}$ (orientati in modo coerente con la rotazione di r).

La retta r_t , tranne nei casi in cui sia perpendicolare all'asse x, ha una sua ben definta pendenza; definiamo la tangente $\tan(t)$ di t come la pendenza della retta r_t ; in altri termini, considerato il punto unita' U sull'asse x e la retta u passante per U e perpendicolare all'asse x, la retta r_t interseca u in un punto R_t e definiamo la tangente $\tan(t)$ di t ponendo

$$\tan(t) = \frac{UR_t}{OU} = UR_t$$

(qui UR_t indica la misura con segno del segmento orientato di estremi U e R_t , analogamente per OU che dunque vale 1).

Possiamo pensare che la retta r_t sia la retta per il punto O ed il punto P_t che si muove di moto uniforme sulla circonferenza di centro O e raggio 1, percorrendo in senso antiorario un arco di lunghezza 1 ogni unita' di tempo; il sistema di riferimento associato alla rotazione della retta coincide con quello associato alla rotazione del punto. Osserviamo che i triangoli OUR_t e OA_tP_t sono simili e dunque si ha

$$\tan(t) = \frac{UR_t}{OU} = \frac{A_t P_t}{OA_t} = \frac{\sin(t)}{\cos(t)}$$

cosi′

$$\tan(t) = \frac{\sin(t)}{\cos(t)}, \quad \forall t \neq \dots, -\frac{\pi}{2}, \frac{\pi}{2}, \dots$$

Per ogni t_1, t_2 con $-\pi/2 < t_1 < t_2 < \pi/2$ la pendenza della retta r_{t_1} e' minore della pendenza della retta r_{t_2} dunque la funzione tangente e' strettamente crescente sull'intervallo $]-\pi/2,\pi/2[$.

Funzione tangente. La funzione tangente

$$tan : A \to \mathbb{R}, \quad x \mapsto tan(x),$$

dove $A = \{x \in \mathbb{R} : x \neq \pi/2 + k\pi, \forall k \in \mathbb{Z}\}$, e' periodica di periodo π .