Autovettori e autovalori

Soluzione di alcuni esercizi

- 1. Per ciascuna delle seguenti matrici si determini se possibile:
 - una base di \mathbb{R}^2 costituita da autovettori;
 - una base ortogonale di \mathbb{R}^2 costituita da autovettori;
 - una base ortonormale di \mathbb{R}^2 costituita da autovettori.

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$ $S = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$

Svolgimento (parziale).

Consideriamo la matrice

$$A = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right].$$

Cerchiamo gli autovalori di A. Il polinomio caratteristico di A è il polinomio nella indeterminata λ

$$|A-\lambda I_2|=\left|\begin{array}{cc} 1-\lambda & 1 \\ -1 & 1-\lambda \end{array}\right|=(1-\lambda)^2+1;$$

questo polinomio non ha alcuna radice in \mathbb{R} , dunque la matrice A non ha alcun autovalore in \mathbb{R} e non ha alcun autovettore in \mathbb{R}^2 .

Consideriamo la matrice

$$B = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right].$$

Cerchiamo gli autovalori di B. Il polinomio caratteristico di B è il polinomio nella indeterminata λ

$$|B-\lambda I_2|=\left|\begin{array}{cc} 1-\lambda & 2\\ 0 & 1-\lambda \end{array}\right|=(1-\lambda)^2;$$

questo polinomio ha solo la radice $\lambda=1$, dunque la matrice A non ha solo l'autovalore $\lambda=1$.

Consideriamo l'autospazio V_1 associato all'autovalore $\lambda=1$, cioè l'insieme degli $x\in\mathbb{R}^2$ tali che Bx=x, o che è lo stesso, $(B-I_2)x=0_2$, esplicitamente

$$\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{cioè} \quad 2x_2 = 0.$$

Le soluzioni sono le coppie (t,0) ottenute al variare di $t \in \mathbb{R}$. Tutti gli autovettori di B stanno sul primo asse coordinato, dunque non esistono due

autovettori di B linearmente indipendenti, e non esiste alcuna base di \mathbb{R}^2 di autovettori di B.

Consideriamo la matrice

$$P = \left[\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array} \right].$$

Cerchiamo gli autovalori di P. Il polinomio caratteristico di P è il polinomio nella indeterminata λ

$$|P-\lambda I_2|=\left|\begin{array}{cc} 1-\lambda & 1\\ 4 & 1-\lambda\end{array}\right|=(1-\lambda)^2-4;$$

questo polinomio ha le radici $\lambda=-1$ e $\lambda=3$, dunque la matrice P ha gli autovalori $\lambda=-1$ e $\lambda=3$. Possiamo dunque prendere un autovettore per ciascun autovalore, ed un teorema visto ci assicura che tali autovettori saranno linearmente indipendenti, e dunque una base di \mathbb{R}^2 .

Consideriamo l'autospazio V_{-1} associato all'autovalore $\lambda=-1$, cioè l'insieme degli $x\in\mathbb{R}^2$ tali che Px=-x, o che è lo stesso, $(P+I_2)x=0_2$, esplicitamente

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{cioè} \quad \begin{cases} 2x_1 + x_2 = 0 \\ 4x_1 + 2x_2 = 0 \end{cases}, \quad \text{cioè} \quad 2x_1 + x_2 = 0.$$

Le soluzioni sono le coppie (t, -2t) ottenute al variare di $t \in \mathbb{R}$. Un autovettore è (-2, 1).

Consideriamo l'autospazio V_3 associato all'autovalore $\lambda=3$, cioè l'insieme degli $x\in\mathbb{R}^2$ tali che Px=3x, o che è lo stesso, $(P-3I_2)x=0_2$, esplicitamente

$$\begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{cioè} \quad \begin{cases} -2x_1 + x_2 = 0 \\ 4x_1 - 2x_2 = 0 \end{cases}, \quad \text{cioè} \quad -2x_1 + x_2 = 0.$$

Le soluzioni sono le coppie (2t,t) ottenute al variare di $t \in \mathbb{R}$. Un autovettore è (2,1).

Dunque esiste una base di \mathbb{R}^2 costituita da autovettori di P, ed è (-2,1), (2,1) Non esiste alcuna base ortogonale (e a maggior ragione nessuna base ortonormale) di \mathbb{R}^2 costituita da autovettori di P.

La considerazione della matrice

$$P = \left[\begin{array}{cc} 6 & 2 \\ 2 & 3 \end{array} \right]$$

viene lasciata al lettore.

- 2. Per ciascuna delle seguenti matrici si determini se possibile:
 - una base di \mathbb{R}^3 costituita da autovettori;
 - una base ortonormale di \mathbb{R}^3 costituita da autovettori.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}, \quad T = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Consideriamo solo la matrice

$$T = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right];$$

questa matrice è simmetrica, dunque per il teorema spettrale esiste una base ortonormale di \mathbb{R}^3 di autovettori di T. Cerchiamo gli autovalori di T. Il polinomio caratteristico di T è il polinomio nella indeterminata λ

$$|T - \lambda I_3| = \begin{vmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)(-1 + \lambda^2) = -(1 - \lambda)^2(1 + \lambda);$$

questo polinomio ha le radici $\lambda=1$ e $\lambda=-1$, dunque la matrice T ha gli autovalori $\lambda=1$ e $\lambda=-1$.

Consideriamo l'autospazio V_1 associato all'autovalore $\lambda=1$, cioè l'insieme degli $x \in \mathbb{R}^3$ tali che Tx=x, o che è lo stesso, $(T-I_3)x=0_3$, esplicitamente

$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{cioè} \quad \left\{ x_1 - x_2 = 0 \right.$$

Le soluzioni sono date da $x_1 = x_2 \cos x_2$ libera e x_3 libera; in altri termini, sono le terne

$$(t,t,s), (s,t \in \mathbb{R}).$$

Consideriamo l'autospazio V_{-1} associato all'autovalore $\lambda=-1$, cioè l'insieme degli $x\in\mathbb{R}^3$ tali che Tx=-x, o che è lo stesso, $(T+I_3)x=0_3$, esplicitamente

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{cioè} \quad \begin{cases} x_1 + x_2 = 0 \\ 2x_3 = 0 \end{cases}.$$

Le soluzioni sono date da $x_1 = -x_2$ con x_2 libera e $x_3 = 0$; in altri termini, sono le terne

$$(-r,r,0), \qquad (r \in \mathbb{R}).$$

Osserviamo che ciascun vettore (t,t,s) in V_1 è ortogonale a ciascun vettore (-r,r,0) in V_{-1} (come previsto dal teorema spettrale). In V_1 prendiamo i vettori fra loro ortogonali (1,1,0) e (0,0,1) e in V_{-1} prendiamo il vettore (1,-1,0); i tre vettori (1,1,0), (0,0,1), (1,-1,0) formano una base ortogonale di \mathbb{R}^3 . Normalizzando ciascuno di questi vettori, si ottiene la base ortonormale di \mathbb{R}^3

$$(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (0, 0, 1), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0).$$