

Decay pattern of matrices: application to matrix functions (and matrix equations)

V. Simoncini

Dipartimento di Matematica, Università di Bologna (Italy) valeria.simoncini@unibo.it

Joint work with Michele Benzi, Emory University (USA)

The inverse of the 2D Laplace matrix on the unit square

$$\mathcal{A} := M \otimes I_n + I_n \otimes M, \qquad M = \operatorname{tridiag}(-1, 2, -1)$$

Sparsity pattern:

 $\mathsf{Matrix}\ \mathcal{A}$

 $\mathbf{2}$

The inverse of the 2D Laplace matrix on the unit square

$$\mathcal{A} := M \otimes I_n + I_n \otimes M, \qquad M = \operatorname{tridiag}(-1, 2, -1)$$

Sparsity pattern:

The exponential decay

The classical bound (Demko, Moss & Smith):

If M spd is banded with bandwidth $\beta,$ then

$$|(M^{-1})_{ij}| \le \gamma q^{\frac{|i-j|}{\beta}}$$

where
$$q := \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} < 1$$
 ($\kappa = \operatorname{cond}(M)$) $\gamma := \max\left\{\frac{1}{\lambda_{\min}(M)}, \frac{(1 + \sqrt{\kappa})^2}{2\lambda_{\max}(M)}\right\}$

The exponential decay

The classical bound (Demko, Moss & Smith):

If M spd is banded with bandwidth $\beta,$ then

$$|(M^{-1})_{ij}| \le \gamma q^{\frac{|i-j|}{\beta}}$$

where $q := \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} < 1$ ($\kappa = \text{cond}(M)$) $\gamma := \max\left\{\frac{1}{\lambda_{\min}(M)}, \frac{(1+\sqrt{\kappa})^2}{2\lambda_{\max}(M)}\right\}$ If f analytic in region containing $\operatorname{spec}(M)$: $|f(M)_{ij}| \le Cq^{\frac{i-j}{\beta}}$

with C, q depending on $\operatorname{spec}(M)$ and f ($Benzi \ \ Golub, 1999$) Many contributions: Bebendorf, Hackbusch, Benzi, Boito, Razouk, Golub, Tuma, Concus, Meurant, Mastronardi, Ng, Tyrtyshnikov, Nabben, ... Decay bounds for Cauchy-Stieltjes (or Markov-type) functions

$$f(M) = \int_{-\infty}^{0} (M - \omega I)^{-1} d\gamma(\omega), \quad \operatorname{spec}(M) \subset \mathbb{C} \setminus (-\infty, 0]$$
$$f(x) = x^{-\frac{1}{2}}, f(x) = \frac{e^{-t\sqrt{x}} - 1}{x}, f(x) = \frac{\log(1+x)}{x}, \dots$$

* Demko etal bound useful to estimate $|f(M)|_{kt}$ for M spd and β -banded:

$$|(M^{-\frac{1}{2}})_{kt}| \le C \left(\frac{\sqrt{\lambda_{\max}} - \sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}}\right)^{\frac{|k-t|}{\beta}}$$

(C depends on spec(M))

Typical decay plot for $f(\mathcal{A})$

 \mathcal{A} : Laplace operator as before

Much richer structure

In general, $\mathcal{A} = M_1 \oplus M_2 := M_1 \otimes I + I \otimes M_2$, M_1, M_2 banded spd

A pause to fix the index notation "on the grid"

$$t \qquad = \qquad (t_1, t_2)$$

Decay bounds for the exponential function

Let M be spsd, β -banded; spec $(M) \subset [0, 4\rho]$,

i) For
$$\rho \tau \ge 1$$
 and $\sqrt{4\rho \tau} \le \lceil \frac{|k_j - t_j|}{\beta} \rceil \le 2\rho \tau$,
 $|\exp(-\tau M)_{kt}| \le 10 \exp\left(-\frac{1}{5\rho \tau} \lceil \frac{|k - t|}{\beta} \rceil\right)^2$;

ii) For
$$\lceil \frac{|k_j - t_j|}{\beta} \rceil \geq 2\rho \tau$$
,

$$|\exp(-\tau M)_{kt}| \le 10 \frac{\exp(-\rho\tau)}{\rho\tau} \left(\frac{\mathrm{e}\rho\tau}{\lceil\frac{|k-t|}{\beta}\rceil}\right)^{\lceil\frac{|k-t|}{\beta}\rceil}$$

Decay bounds for the exponential function

Let M be spsd, β -banded; spec $(M) \subset [0, 4\rho]$,

i) For
$$\rho \tau \ge 1$$
 and $\sqrt{4\rho \tau} \le \lceil \frac{|k_j - t_j|}{\beta} \rceil \le 2\rho \tau$,
 $|\exp(-\tau M)_{kt}| \le 10 \exp\left(-\frac{1}{5\rho \tau} \lceil \frac{|k - t|}{\beta} \rceil\right)^2$;

ii) For
$$\lceil \frac{|k_j - t_j|}{\beta} \rceil \ge 2\rho \tau$$
,

$$|\exp(-\tau M)_{kt}| \le 10 \frac{\exp(-\rho\tau)}{\rho\tau} \left(\frac{\mathrm{e}\rho\tau}{\lceil\frac{|k-t|}{\beta}\rceil}\right)^{\lceil\frac{|k-t|}{\beta}\rceil}$$

Keynote formula : $\exp(M_1 \oplus M_2) = \exp(M_1) \otimes \exp(M_2)$ $\mathcal{A} = I \otimes M + M \otimes I$. Then

 $(\exp(-\tau A))_{kt} = (\exp(-\tau M))_{k_1 t_1} (\exp(-\tau M))_{k_2 t_2}$

for all $t = (t_1, t_2)$ and $k = (k_1, k_2)$ with $\min\{|t_1 - k_1|, |t_2 - k_2|\} \ge \sqrt{4\rho\tau}\beta$

Decay bounds for the exponential function

Left: whole pattern of $\exp(-\mathcal{A})$ Right: Row 56 of $\exp(-\mathcal{A})$ $|\exp(-\mathcal{A})_{kt}|$ with $k = 56 \Rightarrow k = (k_1, k_2) = (6, 5)$ For $t = 50 \Rightarrow t = (t_1, t_2) = (10, 4)$ so that $|k_1 - t_1| \gg 0$ For $t = 45 \Rightarrow t = (t_1, t_2) = (5, 4)$ so that $|k_1 - t_1| \gg 0$ Decay bounds for Laplace-Stieltjes function

$$f(M) = \int_0^\infty e^{-\tau M} \mathrm{d}\alpha(\tau)$$

e.g., $f(x) = x^{-\sigma}$ ($\sigma > 0$), $f(x) = e^{-x}$, $f(x) = e^{1/x}$, $f(x) = (1 - e^{-x})/x$, $f(x) = \log(1 + 1/x)$, ...

• For M spd and $\beta\text{-banded},\ \widehat{M}=M-\lambda_{\min}I$

$$|f(M)_{k,t}| \le \int_0^\infty \exp(-\lambda_{\min}\tau) |(\exp(-\tau\widehat{M}))_{k,t}| \mathrm{d}\alpha(\tau)$$

Decay bounds for Laplace-Stieltjes function

$$f(M) = \int_0^\infty e^{-\tau M} \mathrm{d}\alpha(\tau)$$

e.g., $f(x) = x^{-\sigma}$ ($\sigma > 0$), $f(x) = e^{-x}$, $f(x) = e^{1/x}$, $f(x) = (1 - e^{-x})/x$, $f(x) = \log(1 + 1/x)$, ...

• For M spd and β -banded, $\widehat{M} = M - \lambda_{\min} I$

$$|f(M)_{k,t}| \le \int_0^\infty \exp(-\lambda_{\min}\tau) |(\exp(-\tau\widehat{M}))_{k,t}| \mathrm{d}\alpha(\tau)$$

• For $\mathcal{A} = M \otimes I + I \otimes M$

$$(f(\mathcal{A}))_{kt} = \int_0^\infty (\exp(-\tau M))_{k_1 t_1} (\exp(-\tau M))_{t_2 k_2} \mathrm{d}\alpha(\tau)$$

then, more precise bounds for specific choices of $d\alpha(\tau)$

An example:
$$f(x) = \frac{1 - e^{-x}}{x}$$

M = tridiag(-1, 4, -1), n = 200

Cauchy-Stieltjes functions of Kronecker sum: $f(\mathcal{A}) = \int_{\Gamma} (\mathcal{A} - \omega I)^{-1} d\gamma(\omega)$

$$e_k^T f(\mathcal{A}) e_t = \int_{\Gamma} e_k^T (\mathcal{A} - \omega I)^{-1} e_t \mathrm{d}\gamma(\omega),$$

where we can write $\mathcal{A}-\omega I=M\otimes I+I\otimes (M-\omega I)$

Cauchy-Stieltjes functions of Kronecker sum: $f(\mathcal{A}) = \int_{\Gamma} (\mathcal{A} - \omega I)^{-1} d\gamma(\omega)$

$$e_k^T f(\mathcal{A}) e_t = \int_{\Gamma} e_k^T (\mathcal{A} - \omega I)^{-1} e_t \mathrm{d}\gamma(\omega),$$

where we can write $\mathcal{A}-\omega I=M\otimes I+I\otimes (M-\omega I)$

• For each t, $x_t := (\mathcal{A} - \omega I)^{-1} e_t$, so that $X_t = X_t(\omega) \in \mathbb{C}^{n \times n}$ solution to

 $MX_t + X_t(M - \omega I) = E_t, \qquad x_t = \operatorname{vec}(X_t), \quad e_t = \operatorname{vec}(E_t)$

Then (e.g., Lancaster 1970)

$$X_t = -\int_0^\infty \exp(-\tau M) E_t \exp(-\tau (M - \omega I)) d\tau$$

so that (with $k = (k_1, k_2), t = (t, t_2)$)

 $e_k^T (\omega I - \mathcal{A})^{-1} e_t = e_{k_1}^T X_t e_{k_2} = -\int_0^\infty |\exp(-\tau M)_{k_1, t_1}| |\exp(-\tau (M - \omega I))_{t_2, k_2}| d\tau$

then, more precise bounds for specific choices of f...

More applications. Using sparsity in solution strategies

 $MX + XM = BB^T$ $M = \text{tridiag}(-1, 4, -1) \in \mathbb{R}^{n \times n}$, n = 100 and $B = [e_{50}, \dots, e_{60}]$ -5 - 10 -10, -15, - 20 -20, - 30 -25, -30, 40 -35, - 50 -40 - 60 -45 -50, 100 - 70 80 - 80 60 - 90 40 20 100 0 0 10 20 30 40 50 60 100 70 80 90 50 40 30 10 20 0 nz = 219

Left: pattern of X with log scale, nnz(X) = 9724

Right: Sparsity pattern of truncated ver. of X: all entries below 10^{-5} are omitted

More applications. Images

M: image $A^{\frac{1}{2}}$ with $A = M^T M$

A "more than a man" structure

More applications. Images

M: image $A^{\frac{1}{2}}$ with $A = M^T M$

A "more than a man" structure

Conclusions and outlook

- Exploring/Exploiting structure is beneficial
- Generalization to *d*-Kronecker sum is possible, e.g.,

$$\mathcal{A} = M_1 \otimes I \otimes I + I \otimes M_2 \otimes I + I \otimes I \otimes M_3$$

• Possibility of using quasi-sparsity (decay) information in applications ? (already done for $f(x) = x^{-1}$)

Conclusions and outlook

- Exploring/Exploiting structure is beneficial
- Generalization to *d*-Kronecker sum is possible, e.g.,

 $\mathcal{A} = M_1 \otimes I \otimes I + I \otimes M_2 \otimes I + I \otimes I \otimes M_3$

• Possibility of using quasi-sparsity information in applications ? (already done for $f(x) = x^{-1}$)

REFERENCES

1. V. Simoncini

The Lyapunov matrix equation. Matrix analysis from a computational perspective pp. 1-14, Dip. Matematica, UniBo, Jan. 2015. arXiv:1501.07564

- Michele Benzi and V. Simoncini Decay bounds for functions of matrices with banded or Kronecker structure pp.1-20, Dip. Matematica, UniBo, Jan. 2015. arXiv:1501.07376
- 3. Michele Benzi and V. Simoncini Approximation of functions of large matrices with Kronecker structure pp.1-21, Dip. Matematica, UniBo, March 2015. arXiv:1503.02615