Preconditioning Newton methods for Optimal Control Problems with Sparsity Constraints

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna

Joint work with Margherita Porcelli - Università di Firenze Martin Stoll - Max Planck Inst. for Dynamics of Complex Techn. Systems, Magdeburg Preconditioning the Newton's equations

Numerical experiments 0000000

The Constrained Optimal Control Problem

$$\begin{array}{ll} \min & J(y,u) = \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 + \beta \|u\|_{L^1(\Omega)} \leftarrow \text{ sparsity constr.} \\ & \text{over } (y,u) \in H_0^1(\Omega) \times L^2(\Omega) \\ \\ \text{s.t.} & \mathcal{L}y = u \quad \text{in } \Omega \qquad \leftarrow \text{ state equation} \\ \text{and} & a \leq u \leq b \text{ a.e. in } \Omega \qquad \leftarrow \text{ box constraints} \end{array}$$

- u and y are the control and state variables
- ▶ $y_d \in L^2(\Omega)$ is the desired state, $\Omega \subseteq \mathbb{R}^d$ with d = 2, 3
- \blacktriangleright ${\cal L}$ is a second-order linear elliptic differential operator
- Control box constraints: $a, b \in L^2(\Omega)$ and a < 0 < b
- ▶ Parameters: L²-norm term $\alpha > 0$ and L¹-norm term $\beta > 0$.

Sparsity constraints in optimal control problems

Motivation

Optimal control applications: provide information about the optimal location of control device and actuators [Stadler, COAP 2009] [Costa et al. Comput. Struct. 2007].

Main references:

- ▶ L¹-norm: Casas, Clacson, Kunish, Herzog, Stadler, Wachsmuth, 2009-2012
- ▶ Directional Sparsity $\|\cdot\|_{1,2}$ Herzog, Stadler and Wachsmuth SICON 2012.

based on semismooth Newton's approach [Hintermüller, Ito, Kunish SIOPT 2002].

None of these works takes into account discretization/implementation issues for the linear algebra phase (e.g. preconditioning).

Sparsity constraints in optimal control problems

Motivation

Optimal control applications: provide information about the optimal location of control device and actuators [Stadler, COAP 2009] [Costa et al. Comput. Struct. 2007].

Main references:

- ▶ L¹-norm: Casas, Clacson, Kunish, Herzog, Stadler, Wachsmuth, 2009-2012
- ▶ Directional Sparsity $\|\cdot\|_{1,2}$ Herzog, Stadler and Wachsmuth SICON 2012.

based on semismooth Newton's approach [Hintermüller, Ito, Kunish SIOPT 2002].

None of these works takes into account discretization/implementation issues for the linear algebra phase (e.g. preconditioning).

Constrained Optimal Control Pbs ••••••• KKT conditions Preconditioning the Newton's equations

Numerical experiments 0000000

Active-set interpretation

Complementarity conditions for box constraints:

$$\Pi_{\mathcal{A}_a}(x-a) - c\Pi_{\mathcal{I}}\mu = 0$$

with

$$\mathcal{A}_{a} = \{i \mid (x_{i} - a_{i}) + c\mu_{i} < 0\}$$
 and $\mathcal{I} = \{1, \dots, n\} \setminus \mathcal{A}_{a}$

 $x_i = a$ for $i \in \mathcal{A}_a$ and $\mu_i = 0$ for $i \in \mathcal{I}$

Complementarity conditions for L¹-norm sparsity constraints:

$$\Pi_{\mathcal{A}_0} x - c(\Pi_{\mathcal{I}_+}(\mu - \beta) + \Pi_{\mathcal{I}_-}(\mu + \beta)) = 0.$$

with

$$\mathcal{A}_{0} = \{i \mid x_{i} + c(\mu_{i} + \beta) \ge 0\} \cup \{i \mid x_{i} + c(\mu_{i} - \beta) \le 0\}$$

= $\{i \mid x + c(\mu_{i} - \beta) \ge 0\}$ and $\mathcal{T}_{i} = \{i \mid x_{i} + c(\mu_{i} + \beta) < 0\}$

 $x_i = 0$ for $i \in A_0$ and $\mu_i = -\beta$ for $i \in I_-$ and $\mu_i = \beta$ for $i \in I_+$. • \prod_C is an $n \times n$ diagonal 0-1 matrix with 1s corresponding to C. Constrained Optimal Control Pbs ••••••• KKT conditions Preconditioning the Newton's equations

Numerical experiments 0000000

Active-set interpretation

Complementarity conditions for box constraints:

$$\Pi_{\mathcal{A}_a}(x-a)-c\Pi_{\mathcal{I}}\mu=0$$

with

$$\mathcal{A}_{a} = \{i \mid (x_{i} - a_{i}) + c\mu_{i} < 0\}$$
 and $\mathcal{I} = \{1, \dots, n\} \setminus \mathcal{A}_{a}$

 $x_i = a$ for $i \in \mathcal{A}_a$ and $\mu_i = 0$ for $i \in \mathcal{I}$

Complementarity conditions for L¹-norm sparsity constraints:

$$\Pi_{\mathcal{A}_0} x - c(\Pi_{\mathcal{I}_+}(\mu - \beta) + \Pi_{\mathcal{I}_-}(\mu + \beta)) = 0.$$

with

$$\mathcal{A}_{0} = \{i \mid x_{i} + c(\mu_{i} + \beta) \geq 0\} \cup \{i \mid x_{i} + c(\mu_{i} - \beta) \leq 0\}$$
$$\mathcal{I}_{+} = \{i \mid x + c(\mu_{i} - \beta) > 0\} \quad \text{and} \quad \mathcal{I}_{-} = \{i \mid x_{i} + c(\mu_{i} + \beta) < 0\}$$
$$x_{i} = 0 \text{ for } i \in \mathcal{A}_{0} \text{ and } \mu_{i} = -\beta \text{ for } i \in \mathcal{I}_{-} \text{ and } \mu_{i} = \beta \text{ for } i \in \mathcal{I}_{+}.$$
$$\bullet \prod_{\mathcal{C}} \text{ is an } n \times n \text{ diagonal } 0\text{-}1 \text{ matrix with } 1\text{ s corresponding to } \mathcal{C}.$$

Constrained Optimal Control Pbs OOOOO KKT conditions Preconditioning the Newton's equations

Numerical experiments 0000000

Optimality conditions for the optimal control problem with bound and sparsity constraints

The KKT system [Stadler COAP 2009]

The solution $(\bar{y}, \bar{u}) \in H_0^1(\Omega) \times L^2(\Omega)$ of the optimal control problem is characterized by the existence of $(\bar{p}, \bar{\mu}) \in H_0^1(\Omega) \times L^2(\Omega)$ such that

$$\mathcal{L}\bar{y} - \bar{u} = 0 \mathcal{L}^*\bar{p} + \bar{y} - y_d = 0 -\bar{p} + \alpha \bar{u} + \bar{\mu} = 0$$

 $F(u, \mu; c, \beta) := \bar{u} - \max(0, \bar{u} + c(\bar{\mu} - \beta)) - \min(0, \bar{u} + c(\bar{\mu} + \beta))$ $+ \max(0, (\bar{u} - b) + c(\bar{\mu} - \beta)) + \min(0, (\bar{u} - a) + c(\bar{\mu} + \beta)) = 0$

a.e. in Ω , with c > 0.

► The complementarity function F is nonlinear and semismooth ⇒ Semismooth Newton's method for the KKT system, i.e. a Newton's method where the Jacobian of the system is obtained using generalized derivatives.

Constrained Optimal Control Pbs 00000 The semismooth Newton's method Preconditioning the Newton's equations

Numerical experiments 0000000

The semismooth Newton's method as active-set strategy

• Let us define the disjoint sets (defined a.e. in Ω)

Then

$$\mathcal{A} = \mathcal{A}_b \cup \mathcal{A}_a \cup \mathcal{A}_0$$

is the set of active constraints and the set of inactive constraints is

$$\mathcal{I}=\mathcal{I}_+\cup\mathcal{I}_-.$$

The complementarity equation becomes

$$\chi_{\mathcal{A}_0} u + \chi_{\mathcal{A}_b} (u - b) + \chi_{\mathcal{A}_a} (u - a) - c(\chi_{\mathcal{I}_+} (\mu - \beta) + \chi_{\mathcal{I}_-} (\mu + \beta)) = 0$$

where $\chi_{\mathcal{C}}$ denotes the characteristic function of a generic \mathcal{C} .

Preconditioning the Newton's equations

Illustration of the active set approach

The semismooth Newton's method

Preconditioning the Newton's equations

Numerical experiments 0000000

Illustration of the active set approach

V. Simoncini - Preconditioning Newton methods for Optimal Control Problems with Sparsity Constraints

(1)

kth iteration of the semismooth Newton's method for the KKT

- Assume that the initial point is "feasible" and that the Newton's equation is solved "exactly".
- ▶ Given the current iterate (y_k, u_k, p_k, µ_k), a step of the semismooth Newton's method applied to KKT system is

$$\begin{pmatrix} I & \cdot & \mathcal{L}^{\mathsf{T}} & \cdot \\ \cdot & \alpha I & -I & I \\ \mathcal{L} & -I & \cdot & \cdot \\ \cdot & \chi_{\mathcal{A}_{k}} & \cdot & -\boldsymbol{c}\chi_{\mathcal{I}_{k}} \end{pmatrix} \begin{pmatrix} \Delta y \\ \Delta u \\ \Delta \rho \\ \Delta \mu \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -F(u_{k}, \mu_{k}; \boldsymbol{c}, \beta) \end{pmatrix}$$

and its symmetrization

$$\underbrace{\begin{bmatrix} I & \cdot & \mathcal{L}^{T} & \cdot \\ \cdot & \alpha I & -I & P_{\mathcal{A}_{k}}^{T} \\ \mathcal{L} & -I & \cdot & \cdot \\ \cdot & P_{\mathcal{A}_{k}} & \cdot & \cdot \\ \end{bmatrix}}_{J_{k}} \underbrace{\begin{bmatrix} \Delta y \\ \Delta u \\ \Delta p \\ (\Delta \mu)_{\mathcal{A}_{k}} \end{bmatrix}}_{\Delta x} = \underbrace{\begin{bmatrix} 0 \\ -\chi_{\mathcal{I}_{k}}(\mu_{k+1} - \mu_{k}) \\ 0 \\ -P_{\mathcal{A}_{k}}F(u_{k}, \mu_{k}; c, \beta) \end{bmatrix}}_{f_{k}}$$

where ${\it P}_{{\cal A}}$ is the projection on the subspace defined by the active set ${\cal A}.$

Fast local convergence [Stadler09] \rightarrow globalization strategy is needed.

kth iteration of the semismooth Newton's method for the KKT

- Assume that the initial point is "feasible" and that the Newton's equation is solved "exactly".
- ▶ Given the current iterate (y_k, u_k, p_k, µ_k), a step of the semismooth Newton's method applied to KKT system is

$$\begin{pmatrix} I & \cdot & \mathcal{L}^{\mathsf{T}} & \cdot \\ \cdot & \alpha I & -I & I \\ \mathcal{L} & -I & \cdot & \cdot \\ \cdot & \chi_{\mathcal{A}_{k}} & \cdot & -\boldsymbol{c}\chi_{\mathcal{I}_{k}} \end{pmatrix} \begin{pmatrix} \Delta y \\ \Delta u \\ \Delta p \\ \Delta \mu \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -F(u_{k}, \mu_{k}; \boldsymbol{c}, \beta) \end{pmatrix}$$

and its symmetrization

$$\underbrace{\begin{bmatrix} I & \cdot & \mathcal{L}^{T} & \cdot \\ \cdot & \alpha I & -I & P_{\mathcal{A}_{k}}^{T} \\ \mathcal{L} & -I & \cdot & \cdot \\ \cdot & P_{\mathcal{A}_{k}} & \cdot & \end{bmatrix}}_{J_{k}} \underbrace{\begin{bmatrix} \Delta y \\ \Delta u \\ \Delta p \\ (\Delta \mu)_{\mathcal{A}_{k}} \end{bmatrix}}_{\Delta x} = \underbrace{\begin{bmatrix} 0 \\ -\chi_{\mathcal{I}_{k}}(\mu_{k+1} - \mu_{k}) \\ 0 \\ -P_{\mathcal{A}_{k}}F(u_{k},\mu_{k};c,\beta) \end{bmatrix}}_{f_{k}}$$

where $P_{\mathcal{A}}$ is the projection on the subspace defined by the active set \mathcal{A} .

 \blacktriangleright Fast local convergence [Stadler09] \rightarrow globalization strategy is needed.

Discretize-then-optimize: discretization by FE

$$\begin{bmatrix} M & 0 & K^{T} & 0 \\ 0 & \alpha M & -\overline{M}^{T} & MP_{\mathcal{A}_{k}}^{T} \\ K & -\overline{M} & 0 & 0 \\ 0 & P_{\mathcal{A}_{k}}M & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta u \\ \Delta p \\ (\Delta \mu)_{\mathcal{A}_{k}} \end{bmatrix} = \begin{bmatrix} 0 \\ -M\Pi_{\mathcal{I}_{k}}(\mu_{k+1} - \mu_{k}) \\ 0 \\ -P_{\mathcal{A}_{k}}MF(u_{k}, \mu_{k}; c, \beta) \end{bmatrix}$$

$$\star$$
 Poisson equation $\mathcal{L}=-\Delta$

 $\Rightarrow M(=\overline{M})$ and K are the lumped mass (diagonal) and stiffness matrices.

* Convection-Diffusion equation $\mathcal{L} = -\epsilon \Delta + w \cdot \nabla$ $\Rightarrow \overline{M}$ and K are the SUPG mass and stiffness matrices (unsym) and M is the lumped mass matrix (diag).

Since, M is diagonal, componentwise complementarity conditions still hold!

Preconditioning the sequence of Newton equations

$$J_k \Delta x = f_k \qquad (*)$$

where J_k is a 4x4 blocks saddle point matrix of dimension $3n_h + n_{\mathcal{A}_k}$

► Assume that Krylov subspace methods are used to solve the large and sparse Newton equations ⇒ preconditioning is mandatory.

Objective

Solving the Newton's equations using effective optimal and robust preconditioners such that the number of iterations required to solve (*) is low and (roughly) independent of the problem parameters α, β, h .

Preconditioning the Newton's equations

Numerical experiments

Active-set preconditioners

$$J_k = \begin{bmatrix} M & 0 & K^T & 0\\ 0 & \alpha M & -\overline{M} & MP_{\mathcal{A}_k}^T \\ \hline K & -\overline{M} & 0 & 0\\ 0 & P_{\mathcal{A}_k}M & 0 & 0 \end{bmatrix} = \begin{bmatrix} A & B_k^T \\ B_k & 0 \end{bmatrix}$$

▶ A block diagonal preconditioner \mathcal{P}_k^{BDF}

$$\mathcal{P}_{k}^{BDF} = \begin{bmatrix} A & 0 \\ 0 & \widehat{S}_{k} \end{bmatrix}$$

• An indefinite preconditioner \mathcal{P}_k^{IPF}

$$\mathcal{P}_{k}^{IPF} = \begin{bmatrix} I & 0 \\ B_{k}A^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & -\widehat{\mathbf{S}}_{k} \end{bmatrix} \begin{bmatrix} I & A^{-1}B_{k}^{T} \\ 0 & I \end{bmatrix}$$

where $\widehat{S}_k \approx S_k = B_k A^{-1} B_k^T$ (active-set Schur complement)

▶ Proposed for bound-constrained optimal control problems and $\overline{M} = M$ in [Porcelli, Simoncini, Tani, SISC 2015].

The active-set Schur complement

$$\boldsymbol{S} = \frac{1}{\alpha} \begin{bmatrix} \boldsymbol{I} & -\bar{\boldsymbol{M}} \Pi_{\mathcal{A}} \boldsymbol{M}^{-1} \boldsymbol{P}_{\mathcal{A}}^{T} \\ \boldsymbol{0} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{S} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{P}_{\mathcal{A}} \boldsymbol{M} \boldsymbol{P}_{\mathcal{A}}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ -\boldsymbol{P}_{\mathcal{A}} \boldsymbol{M}^{-1} \Pi_{\mathcal{A}} \bar{\boldsymbol{M}}^{T} & \boldsymbol{I} \end{bmatrix},$$

where S is the Schur complement of S,

$$\mathbf{S} = \alpha \mathbf{K} \mathbf{M}^{-1} \mathbf{K}^{\mathsf{T}} + \bar{\mathbf{M}} (\mathbf{I} - \mathbf{\Pi}_{\mathcal{A}}) \mathbf{M}^{-1} \bar{\mathbf{M}}^{\mathsf{T}}$$

The active-set Schur complement approximation

$$\widehat{\mathbb{S}} := (\sqrt{\alpha} K + \bar{M}(I - \Pi_{\mathcal{A}})) M^{-1} (\sqrt{\alpha} K + \bar{M}(I - \Pi_{\mathcal{A}}))^{T} \quad \approx \quad \mathbb{S}$$

$$\Rightarrow \hat{S} \approx S$$

From now on the index k is omitted.

$$\widehat{\mathbb{S}} = \mathbb{S} + \sqrt{\alpha} (K(I - \Pi_{\mathcal{A}}) + (I - \Pi_{\mathcal{A}})K^{T})$$

$$\mathsf{If} \ \mathcal{A} = \{1, \dots, n\} \Rightarrow \widehat{\mathbb{S}} = \mathbb{S} \Rightarrow S = \widehat{S} \text{ (exact } \mathcal{P}_{k}^{IPF}!)$$

Spectral properties of the approximation $\widehat{\mathbb{S}}$ $(ar{M}=M)$

►
$$\lambda \in \lambda(\widehat{\mathbb{S}}^{-1}\mathbb{S})$$
 satisfies

$$\frac{1}{2} \leq \lambda \leq \zeta^{2} + (1+\zeta)^{2}$$
with $\zeta = \|M^{\frac{1}{2}}(\sqrt{\alpha}K + M(I - \Pi_{\mathcal{A}}))^{-1}\sqrt{\alpha}KM^{-\frac{1}{2}}\|.$
Moreover, if $K + K^{T} \succ 0$, then for $\alpha \to 0$, ζ is bounded by a constant independent of α ;

[Porcelli, Simoncini, Tani, SISC 2015]

Constrained Optimal Control Pbs 000000 Active-set preconditioners Preconditioning the Newton's equations

Numerical experiments 0000000

Spectral analysis of the preconditioners ($\overline{M} = M$)

Assume that $\widehat{\mathbb{S}}_k$ is nonsingular. Then

$$\lambda(J_k, \mathcal{P}_k^{IPF}) \in \{1\} \cup \Lambda\left(\widehat{\mathbb{S}}_k^{-1} \mathbb{S}_k\right),$$

and

$$\lambda\left(J_{k}, \ \mathcal{P}_{k}^{\mathcal{BDF}}\right) \in \left\{1, \frac{1 \pm \sqrt{5}}{2}\right\} \cup \left\{\frac{1}{2}\left(1 \pm \sqrt{1 + 4\sigma^{2}}\right) \mid \sigma^{2} \in \Lambda\left(\widehat{\mathbb{S}}_{k}^{-1}\mathbb{S}_{k}\right)\right\}$$

using [Fischer et al. BIT 1988]

Preconditioning the Newton's equations

Numerical experiments 0000000

Active-set preconditioners

Reduced KKT system formulations

3×3 formulation and preconditioner

$$\begin{bmatrix} M & K^{T} & 0 \\ K & -\frac{1}{\alpha}\bar{M}M^{-1}\bar{M}^{T} & \frac{1}{\alpha}\bar{M}P_{\mathcal{A}}^{T} \\ 0 & \frac{1}{\alpha}P_{\mathcal{A}}\bar{M}^{T} & -\frac{1}{\alpha}P_{\mathcal{A}}MP_{\mathcal{A}}^{T} \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta p \\ (\Delta \mu)_{\mathcal{A}} \end{bmatrix} = \begin{bmatrix} f_{1} \\ f_{2} \\ f_{3} \end{bmatrix}$$

$$\mathcal{P}^{BDF} = \begin{bmatrix} M & 0 \\ 0 & \widehat{S} \end{bmatrix} \qquad \mathcal{P}^{IPF} = \begin{bmatrix} I & 0 \\ [K;0] M^{-1} & I \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & -\widehat{S} \end{bmatrix} \begin{bmatrix} I & M^{-1} \begin{bmatrix} K^T 0 \end{bmatrix} \\ 0 & I \end{bmatrix}$$

2×2 formulation and preconditioner

$$\begin{bmatrix} M & K^{T} \\ K & -\frac{1}{\alpha} \bar{M} M^{-1} (I - \Pi_{\mathcal{A}}) \bar{M}^{T} \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta p \end{bmatrix} = \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix}$$

$$\mathcal{P}^{BDF} = \begin{bmatrix} M & 0 \\ 0 & \frac{1}{\alpha} \widehat{\mathbb{S}} \end{bmatrix} \qquad \mathcal{P}^{IPF} = \begin{bmatrix} I & 0 \\ KM^{-1} & I \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & -\frac{1}{\alpha} \widehat{\mathbb{S}} \end{bmatrix} \begin{bmatrix} I & M^{-1}K^T \\ 0 & I \end{bmatrix}$$

(1)

Constrained Optimal Control Pbs 000000 Active-set preconditioners

Sparsity constraint

Numerical experiments 0000000

Figure : From left to right: 4×4 , 3×3 and 2×2 .

Experiments: implementation issues

Compared Matlab implementations:

- AS-GMRES-IPF Active-set method with linear solver GMRES + \mathcal{P}_{k}^{IPF} AS-MINRES-BDF Active-set method with linear solver MINRES + \mathcal{P}_{k}^{BDF}
- Preconditioners via AMG (HSL-MI20)
 - \mathcal{P}_k^{IPF} and \mathcal{P}_k^{BDF} : solving with $L_k = (\sqrt{\alpha}K + \overline{M}(I \Pi_{\mathcal{A}_k}))$ (and L_k^T) for $\widehat{\mathbb{S}}_k$
- ▶ FEM matrices from the open source FE library deal.II
- Relative residual for inner stopping criterion, $tol_{inner} = 10^{-10}$
- ▶ Stopping test for the outer iteration: $||F(u_k, \mu_k; c, \beta)|| \le 10^{-8}$
- Semismooth monotone line-search strategy employed [Kanzow, OMS 2014].

Preconditioning the Newton's equations

Numerical experiments

Poisson state equation

Poisson state equation with FDs $(M = \overline{M} = I)$

Figure : Left: Desired State $y_d = \sin(2\pi x) \sin(2\pi y) \exp(2x)/6$ Right: nonlinear lower/upper bounds $b = \begin{cases} 0.5(0.25)^2 & \text{if } x \le 0.25 \\ 0.5x^2 & \text{else} \end{cases}$, a = -b.

▶ 2D:
$$N = 2^{p}$$
 with $p = 7, 8, 9 \Rightarrow n = 16384, 65536, 262144;$

Preconditioning the Newton's equations

Numerical experiments

Poisson state equation

Poisson state equation with FDs (2D case)

			AS CMDES IDE		AC MINDI		
			AS-GMR	ES-IPF	AS-MINRE	S-BDF	
β	р	α	LI (NLI)	TCPU	LI (NLI)	TCPU	% u =0
10^{-3}	7	10^{-2}	8.5(2)	5.9	17.5(2)	5.8	47.9
		10^{-4}	8.7(3)	7.0	18.0(3)	6.0	47.9
		10^{-6}	7.3(3)	4.9	15.3(3)	5.0	47.9
	8	10^{-2}	9.0(2)	10.0	19.0(2)	13.2	48.6
		10^{-4}	10.0(2)	12.7	21.5(2)	15.3	48.6
		10^{-6}	6.7(3)	11.6	13.7(3)	17.0	48.6
	9	10^{-2}	9.5(2)	33.7	17.5(2)	45.9	48.7
		10^{-4}	9.6(3)	56.0	19.7(3)	82.0	48.7
		10^{-6}	9.3(3)	48.0	19.0(3)	73.3	48.7
$2 \cdot 10^{-3}$	7	10^{-2}	10.0(2)	6.1	21.0(2)	6.8	71.0
		10^{-4}	11.0(2)	5.6	23.0(2)	5.8	71.0
		10^{-6}	5.0(3)	4.7	8.0(3)	3.7	71.0
	8	10^{-2}	11.0(2)	14.1	23.0(2)	18.5	71.4
		10^{-4}	11.0(2)	14.6	25.0(2)	18.9	71.4
		10^{-6}	8.0(3)	15.8	18.0(3)	20.7	71.4
	9	10^{-2}	11.0(2)	40.2	23.0(2)	60.2	71.5
		10^{-4}	12.0(4)	98.5	25.0(3)	99.8	71.5
		10^{-6}	10.3(4)	74.9	21.5(4)	113.8	71.5

LI: average number of Linear Iters; NLI is the total number of NonLinear Iters
 TCPU: Total elapsed CPU time (sec.)

Preconditioning the Newton's equations

Numerical experiments

Poisson state equation

Poisson state equation with FDs (2D case)

Preconditioning the Newton's equations

Numerical experiments

Experimental study of parameters

2D problem (GMRES w/indef precond): $\alpha = 10^{-4}$, $\beta = 10^{-4}$, p = 7

C _{fact}	LI (NLI)	CPU	TCPU
0.001	15.8(*)	4.9	487.8
0.1	15.9(*)	4.7	465.0
0.2	15.9(*)	4.9	486.3
0.5	16.2(5)	4.1	20.9
1	16.0(5)	4.1	20.8
2	16.2(7)	4.1	29.2
5	16.6(13)	4.5	59.1
10	16.8(18)	4.3	79.0
100	17.1(74)	4.5	337.0

$$c = c_{fact}/\alpha$$

Convection-Diffusion state equation

Convection-Diffusion state equation with FE (1)

$$-\epsilon\Delta y + w \cdot \nabla y = u$$

with $w = (2y(1-x^2), -2x(1-y^2))$

▶ SUPG discretization for $\overline{M}, K \in \mathbb{R}^{n \times n}$

$$n = 4225, \qquad \beta = 10^{-4}$$

AS-GMRES-IPF

	$\epsilon = 1$		$\epsilon = 0.5$	5	$\epsilon = 0.1$	
α	li (nli)	BT	li (nli)	BT	li (nli)	ΒT
10^{-1}	14.0(1)	0	15.0(1)	0	14.7(3)	2
10^{-2}	15.5(2)	1	15.7(3)	2	17.9(8)	15
10^{-3}	15.3(6)	5	16.9(9)	12	21.5(26)	69
10^{-4}	16.9(11)	21	19.3(15)	34	26.7(48)	165
10^{-5}	22.9(20)	50	26.5(24)	80	36.6(98)	463

- LI: average number of Linear Iterations
- NLI: total number of NonLinear Iterations ►
- BT: total number of Back-Tracking steps in the line-search strategy ►

Convection-Diffusion state equation

Convection-Diffusion state equation with FE (2)

AS-GMRES-IPF

$$n = 16641, \beta = 10^{-4}, \epsilon = 1$$

	4 ×	4	3 ×	3	2×2	
α	li (nli)	TCPU	li (nli)	TCPU	li (nli)	TCPU
10^{-1}	17.3(3)	6.5	17.3(3)	6.0	17.3(3)	5.9
10^{-3}	22.3(24)	67.1	21.6(21)	55.2	22.3(24)	61.6
10^{-5}	38.1(69)	371.6	38.7(73)	384.5	37.8(69)	322.5

$n = 66049, \beta = 10^{-4}, \epsilon = 1$

	4 ×	4	3 ×	3	2×2	
α	li (nli)	TCPU	li (nli)	TCPU	li (nli)	TCPU
10^{-1}	19.7(3)	30.5	19.7(3)	28.8	19.7(3)	28.0
10^{-3}	24.4(21)	281.6	24.3(21)	266.6	20.9(21)	250.0
10^{-5}	38.7(58)	1360.3	39.3(52)	1099.1	38.7(58)	1104.9

LS needed for convergence in 80% of the runs.

Conclusions

Preconditioned semismooth Newton's method satisfactorily handles L¹ norm sparsity constraints

Preliminary numerical experiments have showed good performance wrto different parameters

Current work

- Inexact (semi-residual based) semismooth Newton's method for optimal control with L¹ term;
- Spectral properties of the Schur complement approximation for different state equation (CD, Stokes).
- ▶ Different sparsity constraints (see [Herzog et a. SICON 2014])

Conclusions

Preconditioned semismooth Newton's method satisfactorily handles L¹ norm sparsity constraints

Preliminary numerical experiments have showed good performance wrto different parameters

Current work

- Inexact (semi-residual based) semismooth Newton's method for optimal control with L¹ term;
- Spectral properties of the Schur complement approximation for different state equation (CD, Stokes).
- ▶ Different sparsity constraints (see [Herzog et a. SICON 2014])

Illustration of the L¹norm penalty

Pictures from Tianyi Zhou's Research Blog

Iterative vs direct (sparse) solution ("backslash")

here
$$\alpha = 10^{-6}$$
, $\beta = 10^{-4}$

Sparsity constraint

Figure : From left to right: 4×4 , 3×3 and 2×2 .

▶ 3D: $N = 2^{p}$ with $p = 4, 5, 6 \Rightarrow n = 4096, 32768, 262144$.

$\beta = 10^{-4}$	$u=0\approx 20\%$
-------------------	-------------------

		AS-GMRES-IF	$PF 4 \times 4$	AS-GMRES-IPF	3×3	AS-GMRES-IPF	2×2
р	α	li (nli)	TCPU	li (nli)	TCPU	li (nli)	TCPU
4	10^{-2}	10.0(1)	0.5	10.0(1)	0.5	10.0(1)	0.4
	10^{-4}	13.0(2)	1.1	13.0(2)	1.0	13.0(2)	0.9
	10^{-6}	5.0(3)	0.7	5.0(3)	0.7	5.0(3)	0.6
5	10^{-2}	9.0(1)	2.1	9.0(1)	1.9	9.0(1)	1.8
	10^{-4}	14.0(2)	7.2	14.0(2)	6.3	14.0(2)	5.8
	10^{-6}	10.5(2)	5.0	10.5(2)	4.4	10.5(2)	4.1
6	10^{-2}	10.0(1)	18.1	10.0(1)	16.2	10.0(1)	17.1
	10^{-4}	14.0(2)	83.6	14.0(2)	75.7	14.0(2)	76.1
	10^{-6}	14.7(3)	83.0	14.7(3)	73.6	14.7(3)	68.2