Structured Matrix Computations from Structured Tensors

Lecture 6. The Higher-Order Generalized

Singular Value Decomposition

Charles F. Van Loan

Cornell University

CIME-EMS Summer School
June 22-26, 2015
Cetraro, Italy

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD



A Proof that 3 > 2

It is possible to reduce a pair of matrices to canonical form.

Generalized Schur Decomposition

Simultaneous upper triangularization:

Q"AZ =T Q'AZ =T,

The Generalized Singular Value Decomposition

Simultaneous diagonalization:

UTAV =31 UjAV =13,
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A Proof that 3 > 2

It is possible to reduce a pair of matrices to canonical form.

Generalized Schur Decomposition

Simultaneous upper triangularization:

QTAZ =T QTAZ =T,

The Generalized Singular Value Decomposition

Simultaneous diagonalization:
UTAV =37 UJAV =3,

But you can forget about this kind of simultaneous reduction
when there are more than two matrices. Q.E.D.
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Three is a Crowd

For example, there are no methods for the quadratic eigenvalue
problem

(AL + Mo + X2A3)x = 0

that work by simultaneously reducing all three matrices to a canonical
form

QTAIZ=A Q AZ=34 Q AZ=A4
that “reveals” the solution

(/2\1 + )\/2\2 T )\2/'43))? =0
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Challenge

Given a collection of data matrices
{Al, ey AN}

that each have the same number of columns, how can you
discover features that they share in common?
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Idea 1: Use a Tensor Decomposition

If each matrix in the collection {A;,..., Ay} has the same number of rows,

then “stack them up” into a tensor

A(:, k) = A k=1N

and compute (say) a CP decomposition

A = NF(p) 0 G(:, p) o H(:, p)

p=1

Since

Ai,j, k) ZAFIPG(JP) (k,p)

this says

A(y k) = A = Y (WH(k,p)F(.p)G(p)T k=1:N
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Idea 2. Approximate SVDs

Given A € R™*" for k = 1:N and an integer r < n, determine
g

Uk € RMe*r k = 1:N, Each with orthonormal columns
Sk € R k = 1:N, Each diagonal
V e ]I:{HXI’
so that
N 2
DI A— UkSeVT Ik
k=1

is minimized. (We do not force V to have orthonormal columns.)
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Idea 2. Approximate SVDs Using Alternating Least Squares

Improving the Uy (Orthonormal)
Fix the Sx and V and determine Uy, ..., Uy so that

N
I A = USVT IIE
k=1

is minimized.

Hint: The problem of minimizing || Y — UZ || where U has orthonormal
columns is solved by computing the SVD of YZT and building U from the
left singular vectors.

Do this for k = 1:N with Y = Ax and Z = S, V7.
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Idea 2. Approximate SVDs Using Alternating Least Squares

Improving the Sy (Diagonal)
Fix the Uy and V and determine the Sy,..., Sy so that

N
ST A - UeSVT 7
k=1

is minimized.

Hint: The problem of minimizing || Y — WSZT || with respect to
S = diag(s;) is equivalent to minimizing

| vec(Y) = (2o W)s |

Do this for k = 1:N with Y = Ay, W = Uy and ZT = V7.
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Idea 2. Approximate SVDs Using Alternating Least Squares

Improving V

Fix the Uy and the S, and determine V so that

N
ST A= U VT 7
k=1

is minimized.

Hint: This is a least squares problem since

Sl A — USVT ([ =

N Al U1 51
k=1 AN

UnSw
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Idea 2. Approximate SVDs Using Alternating Least Squares

This is the PARAFAC2 Framework

Repeat Until Happy

Improve Uy, ..., Uy
Improve Si,...,Sy
Improve V

But we are going to do something different...
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Idea 3. Use the Higher-Order GSVD Framework
Assume that Ay, ..., Ay each have full column rank.

1. Compute V1S,V = diag();) where

Sy = _1 Z 2 (AT A)(AT A + (AT A)(AT A) ).

i=1 j=i+1

2. For k = 1:N compute
AVTT = Uy

where the Uy have unit 2-norm columns and the 2, are diagonal.

Upon completion we have Ay = Uy VT, k=1.N
The U-matrices in these expansions turns out to be connected in a very
special way if Sy has an eigenvalue equal to one.
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Idea 3. Use the Higher-Order GSVD Framework

The Common HO-GSVD Subspace: Definition

The eigenvectors associated with the unit eigenvalues of Sy define the
common HO-GSVD subspace:

HO-GSVD(A1,...,Ay) = {v:Sw=v}
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Idea 3. Use the Higher-Order GSVD Framework
The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

!

n
A = U VT = Zafk)ufk)vf k=1:N
i=1

where V = [vy,..., v,].

But if (say) the HO-GSVD(Aq, ..., Ay) = span{vi, v»}, then

Ac = 01u§k)v1T + Uguék)va aF Zogk)ufk)vﬂ— k=1N
i=3

and {ugk), ugk)} is an orthonormal basis for span{uék)7 ceey u,(,k)}L. Moreover,

u§k) and uék) are left singular vectors for Ay.

This expansion identifies features that are common across the
datasets A;, ..., Ap.
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Idea 3. Use the Higher-Order GSVD Framework
The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

1

A = UX, VT = Zafk)ufk)vT k=1:N
i=1

where V = [vq,..., v,].

But if (say) the HO-GSVD(Ay, ..., Ay) = span{vy, v»}, then

Ax = 01U§k)V1T + O'zugk)VQT + Zafk)ufk)v,-T k=1N
i=3

and {ugk), ugk)} is an orthonormal basis for span{uék), e u,(,k)}l-. Moreover,

u%k) and uék) are left singular vectors for Ag.

Much to Explain!
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The CS Decomposition
(The Two-Matrix Case)
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The CS Decomposition

If

has orthonormal columns, then there exist orthogonal Ui, U>, Z; and Z, so that

X XX X X X

X

X X|X X X X

X

X XX X X X

X

X X|X X X X

X

X XX X X X

X

C1 0 0 —S1 0
0 o O 0 —%
0 0 « 0 0
0 0 O 0 0

ss 0 O a 0
0 S 0 0 (o))
0 0 s3 0 0
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The SVDs of the blocks are related.
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The CS Decomposition

Definition (Structured Special Case: Q )

If Q € R*"*?" is orthogonal and

T -1 0]/
S, Qlon = Q Jon =
—1,| 0

[ Q| —Q ]
Q =
(@) Q1

then

Q> nonsingular = QR t=U- diag(ci/si) - UT, a symmetric Schur Decomp.
2
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The CS Decomposition

Definition (Thin Version)
If

Q2

o
X X|[X X x x
X X|[X X x x
X X|[X X x x

X X X

has orthonormal columns, then there exist orthogonal Ui, U>, and Z so that

cil 0 0
0 C2 0
Gilo [ & 0 0 o C
= 0 0 O = ||=—
0 ‘ U> Q> s 0 0 S
0 s 0
0 0 S3
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The CS Decomposition

Computation

Stable efficient methods exist.
Not straight forward.

You can't just compute the SVDs
UiQuiVi =21 U Qo Vo =3

and expect Ui Q12V5 and U> @ V4 to be diagonal to within machine
precision.
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Rethinking the 2-Matrix Generalized
Singular Value Decomposition
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The 2-Matrix GSVD

Definition

If

A]_: A2:

X X X X X
X X X X X
X X X X X
X X X X
X X X X
X X X X

then there exist orthogonal U;, orthogonal U, and nonsingular X so that

s o s oo
T g T 0 0
o 0 ¢

0 0 O
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The 2-Matrix GSVD

The Rank-1 Expansion Version

The GSVD basically says that there exist orthogonal U, orthogonal U, and
nonsingular X so that

UTAIX = T, = diag(a)  UJ A X = X, = diag(sk)
are diagonal. Thus, if U; = [uﬁl), ey uf,l)], U, = [ugz), ce uf,z)], and
X T=V=|v,...,vi

are column partitionings, then

Ar = UTVT = Y qudv] A= BIVT = Y swdy]
k=1 k=1

Moving X to the other side would be simpler if it was orthogonal for then
V=XxT=X.
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The 2-Matrix GSVD

Applications

Many 2-matrix problems can be diagonalized via the GSVD. For
example, in quadratically Constrained Least Squares we solve

min|| Aix — b ||, such that [ Aox —d |, <«

By substituting the GSVD of A; and Ay into this we get an easily
solved equivalent problem with diagonal matrices:

min|| 1% — b, suchthat [Ex—d|,<a
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The 2-Matrix GSVD

Computation

1. Compute the QR factorization:

al=1a]s

2. Compute the CS decomposition:

Q = Urdiag(c)-ZT @ = Up-diag(s)-Z7  (SVD's)
3.Set VI =ZTR. Note: X =V T =R"1Z

Al = QiR = U -diag(c))-(Z'R) = Ui, V7
Ay = QR = U -diag(s))-(Z"R) = U,x, V7
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The 2-Matrix GSVD

Relevance to the Problem Al Ajx = 72A] Ayx

Since U A1X = %1 and U] AX = I, it follows that

XT(A[ AL — TPATA)X = XX — 722 ¥, = diag(c? — 72s?)

and so
c2
Al Aixp = <5’2> AJ Aoxi

i

where X =[x | -+ | xp ]

The ¢;j/s; and x; are the generalized singular values and vectors of
{A1, A2}
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The 2-Matrix GSVD

Characterizing the V-Matrix

Since
AL =US VT Ay = UL VT
implies
AlA = V(ED)VT  AlA =Vv(EIS)VvT
we see that
(A A)(A{ A1) = V(Z]%)(T{Z) 7'V = Vdiag((s?/cF)V
(ATA) (AT Ax) ™t = V(B[ E)(5) %) 'V = Vdiag((cf/s7)V ™!

4

The columns of V are eigenvectors for both

(A7 A2) (AT A1)t and (A] A1)(AL A)) 2.
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The 2-Matrix GSVD

Characterizing the V-Matrix

If
5= (ATA)ATA)™ + (AT A)(AT 42) )
then since
(A A)AT A = V(Z]%)(5{ %)tV = Vdiag((s7/c?)V T
(A{AN(A] A) ™1 = V(ETE)(5) %) 'V = Vdiag((c?/s7)V ™!
we have 1/2 @
S = V-diag (5 (?+5—2>) v-1

The columns of V are eigenvectors for S and the eigenvalues are never smaller
than 1 because the function f(x) = (x + 1/x)/2 is never smaller than 1.

Structured Matrix Computations from Structured Tensors
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The 2-Matrix GSVD
The Common Invariant Subspace Problem

Compute a matrix whose columns are an orthonormal basis for

CHOGSVD{AlaAZ} = { v:Sv = V}
where S = ((A{ AL)(A] A2) ™t + (Al A2)(A] A1) 1) /2.

| A

Algorithm @ = Common(A;, A7)

1. Compute the GSVD: A; = Usdiag(c;)VT, Ay = Uxdiag(s;)V'".

2. Let V consist of those columns of V associated with generalized
singular values that equal 1 to within some tolerance, i.e., include
V(i) if |¢ —si| < tol.

3. Orthonormalize: V = QR.
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The Higher Order CS Decomposition
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Higher-Order CSD: Motivation

If
1 N N
= — TANAT AN Ta(aT a.)-1
S = N(N — 1) §j§1 ((A/ AI)(AJ AJ) =4 (Aj AJ)(A, Ai) ) .
and
Ay Q1
N C | R
An Qn

is a thin QR factorization, then since A, = QxR we have

N N
RTSR = N(Nl_l) > ((@Fex@r Q)™ + (@7 Q)eTe) ™).

i=1 j=i+1
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Higher-Order CSD: Motivation

It follows that
RTTSRT = ——

where T is the symmetric matrix
1 _
T =5 (@fe)™+-+(@Qraw™)

N N

R™TSRT = Z Z ( Q Q)(Q; Qj)71+(QjTQj)(Q,'TQ,-)71>
- m (@ @u++QiQu)((QF Q) "+ --+(QiQw) ™) - M)
1

~ N(N-1) <(Q1TQI)71+' 4+ (Qu Qn) T - /\//)
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The Higher-Order CS Decomposition (HO-CSD)

If
@1
Q= :
Qn
has orthonormal columns and each @y has full column rank, then its
HO-CSD is given by
Qk: UkaZT k=1:N

where Z is orthogonal such that
. 1 _ _
7TT7Z =diag(u) T = N (Q Q) +--+(QJ Qv

and for k = 1: N we have

QxZ = UXk = (Matrix with unit 2-norm columns)-(Diagonal Matrix)
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The Higher-Order CS Decomposition (HO-CSD)

Properties of T

The Cauchy inequality tells us that

1
"Ity > ——F—— k=1N
Q@)Y = yT(Q Qu)yx

with equality iff y is an eigenvector for Q] Qx. Using this fact, it can be
shown that if || y ||, = 1, then

yTTy = yT (/i/ ((Q;[Ter1 dreeedF (Q,\-/I—QN)l)> y >N

with equality iff

Ql Quy = k=1:N

N}/

VERY BIG FACT: Ty = N-y < vy is a right singular vector for each Q
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The Higher-Order CS Decomposition (HO-CSD)

The Common HO-CSD Subspace

If the columns of

@1
Q=|:
Qu

are orthonormal and if each block has full column rank, then the
Common HO-CSD Subspace is defined by

CHOCSD{QI, sy QN} = {X| Tyx = Nx }
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The Higher-Order CS Decomposition (HO-CSD)

Canonical Form

Suppose the columns of

(@]

Q

are orthonormal and each block has full column rank. Assume that
Z'T Z = diag(p)) Z=la,...,z)

is the Schur decomposition with

span{zi,...,zp} = Cuocso{Q1,- .-, Qu}

Then...
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The Higher-Order CS Decomposition (HO-CSD)

Canonical Form

Qk = UkszT k=1:N

where
e = U1 0] Z=[20]z0]
p n—p p n—p
and
5 Ib/VN 0
k = u
o xW

is diagonal. Moreover, the columns of each U,EC) are orthonormal and

WU =o.
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The Higher-Order CS Decomposition (HO-CSD)

Want to compute an Orthonormal Basis for Cyocsp{ @1, - .-, Qn}

A Useful Characterization:

CHOCSD{QL sy QN} — m1§i<j§N CHOGSVD{QI" Q_]}
— mﬁlzz CHOGSVD{Qk*lv Qk}

Algorithm (A Sequence of Ever-Thinner GSVD Problems)

Z. = Common(Q1, Q)

for k = 3:N
Z = Common(Qx—_1Zc, QxZc)
Z.= 2.7,

The columns of Z. span Cyocsp{ Q1,- -, Qu}-
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The Higher-Order GSVD
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The Higher-Order GSVD Framework

Given: A; € R™*" = 1:N each with full column rank.

1. Assume V1S,V = diag()\;) where

1 N N

V=T 2 2 ((ATAYATAYT + (AT AYAT4) ).

i=1 j=i+1

SN:

2. For k =1:N set
AVTT = U,

where the Uy have unit 2-norm columns and the 2 are diagonal.

What we have: A = U VT, k=1:N
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Properties of S,

Use the Connection to Ty

N N
1 - —
Sv = w2 2 (ATANAT4) ™ + (AT A)(AT4) )
i=1 j=i+1
v = ﬁ((QlTQl)‘1+~--+(QJQN)—1>
“-Tg RT — _1 (1. _

R SNR — N_]_(TN I) J
Al Q1

Here, - R is the thin QR factorization
A Qn
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Properties of S,

Use the Connection to Ty

N N
= N(l\}—l) Z > <(AiTAi)(AjTAj)_1+(AJTAJ)(A,-TA:')_1>

i=1 j=i+1
T = L(@e) ™+ +(Qfan?)

RTSy,RT = ﬁ(TN —1)

1. S, is similar to T,, a symmetric matrix.
2. S, where is diagonalizable with real eigenvalues.

3. If ZT T, Z = diag(u;), then V1S,V = diag(\;) where V = RTZ and
A= (i — 1)/(N 1)
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Properties of S,

Use the Connection to Ty

N N
Sv = w0 O ((ATANAT )™ + (AT A)(ATA) )

i=1 j=i+1

T = L(@e) ™+ +(Qfan?)
R™TSyRT

_1 _
N—l(TN /)

3. If ZT T, Z = diag(y;), then V=15,V = diag()\;) where V = RTZ and
Ai = (pi = 1)/(N —1).

4. Since the eigenvalues {u;} of T, satisfy p; > N, the eigenvalues {\;} of
Sy satisfy \; > 1.

5. Syx = x if and only if y = R™1x is a right singular vector for each Q.
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Properties of S,
The Common HO-GSVD Subspace: Definition

The eigenvectors associated with the unit eigenvalues of Sy define the
common HO-GSVD subspace:

CHO—GSVD{A17 .. '7AN} = { v:Syv = V}

| A

An Important Connection

Since

RTS,RT = ﬁ(TN —1)

it follows that

Ciocsvo{ArL, ..., Ay} = {RTZ 12 € Chocsp{Q1, .., Qu})

A\
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Properties of S,

To Compute an Orthonormal Basis for Co.csvo{A1,---,An}

1. Compute the Thin QR factorization:
Ay @]
=1 |R
AN QN
2. Compute a matrix Z. with orthonormal columns that span
CHOfCSD{Qly ©0o0 g QN}
3. Compute the thin QR factorization V.R. = (R Z.).

The columns of V. span Cuocsvo{A1,-..,An}
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Properties of S,

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

!

A = U VT = Zafk)ufk)vf k=1:N
i=1

where V = [vy,..., v,].

But if (say) the HO-GSVD(Aq, ..., Ay) = span{vi, v»}, then

n
A = 01u§k)v1T + Uzuék)va + Zagk)ufk)v,-T k=1N
i=3

and {ugk), uék)} is an orthonormal basis for span{u‘%k)7 ey uf,k)}i. Moreover,

ugk) and uék) are left singular vectors for Ay.

Identifies features that are common across the datasets A;, ..., An.
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A Partial GSVD

Ax = ng) ugk)vl 4 ng) ugk) vy 4+ (r,(,k) u,(,k) v, k=12

and {ugk), ey u,(,k)} an orthonormal basis for IR".

Ak = agk)u:(lk)vlT + o Qk) ]+ Za PV k=1:N

(k)}J__

and {ugk), uék)} is an orthonormal basis for span{us, ..., up

Not a simultaneous diagonalization, but good enough.
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Open Problems
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A Variational Approach

If v € Chocsvo{A1,...,Ay} then v is a stationary vector for

N—-1 N 2 2
2 1(]Av] | Ajv ||

O — : v > 1
W =yw 2 22\ favE TP

i=1 j=i+

[y

Does this open the door for sparse matrix friendly algorithm?
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Rank-Deficient A

Everything revolves around

) N N B .
0= =z o 3o, (ATANATAY™ + AT ANAT A7),

Is there a way to proceed in the event that one or more of the Ay is
rank deficient? After all, the 2-matrix GSVD does not require the full
rank assumption.
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Tensor computations are prompting the development
of new, structured matrix factorizations.

Tensor computations teach us to be relaxed about
simultaneous diagonalization.
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