
Structured Matrix Computations from Structured Tensors

Lecture 6. The Higher-Order Generalized
Singular Value Decomposition

Charles F. Van Loan

Cornell University

CIME-EMS Summer School
June 22-26, 2015

Cetraro, Italy

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD 1 / 51



A Proof that 3 � 2

It is possible to reduce a pair of matrices to canonical form.

Generalized Schur Decomposition

Simultaneous upper triangularization:

QTA1Z = T1 QTA2Z = T2

The Generalized Singular Value Decomposition

Simultaneous diagonalization:

UT
1 A1V = Σ1 UT

2 A2V = Σ2
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A Proof that 3 � 2

It is possible to reduce a pair of matrices to canonical form.

Generalized Schur Decomposition

Simultaneous upper triangularization:

QTA1Z = T1 QTA2Z = T2

The Generalized Singular Value Decomposition

Simultaneous diagonalization:

UT
1 A1V = Σ1 UT

2 A2V = Σ2

But you can forget about this kind of simultaneous reduction
when there are more than two matrices. Q.E.D.
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Three is a Crowd

For example, there are no methods for the quadratic eigenvalue
problem

(A1 + λA2 + λ2A3)x = 0

that work by simultaneously reducing all three matrices to a canonical
form

QTA1Z = Ã1 QTA2Z = Ã2 QTA3Z = Ã3

that “reveals” the solution

(Ã1 + λÃ2 + λ2Ã3)x̃ = 0
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Challenge

Given a collection of data matrices

{A1, . . . , AN}

that each have the same number of columns, how can you
discover features that they share in common?
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Idea 1: Use a Tensor Decomposition

If each matrix in the collection {A1, . . . ,AN} has the same number of rows,
then “stack them up” into a tensor

A(:, :, k) = Ak k = 1:N

and compute (say) a CP decomposition

A =
r∑

p=1

λpF (:, p) ◦ G (:, p) ◦ H(:, p)

Since

A(i , j , k) =
r∑

p=1

λpF (i , p)G (j , p)H(k, p)

this says

A(:, :, k) = Ak =
r∑

p=1

(λpH(k, p))F (:, p)G (:, p)T k = 1:N

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD 6 / 51



Idea 2. Approximate SVDs

Given Ak ∈ IRmk×n for k = 1:N and an integer r ≤ n, determine

Uk ∈ IRmk×r k = 1:N,Each with orthonormal columns

Sk ∈ IRr×r k = 1:N,Each diagonal

V ∈ IRn×r

so that
N∑

k=1

‖ Ak − UkSkV T ‖2
F

is minimized. (We do not force V to have orthonormal columns.)
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Idea 2. Approximate SVDs Using Alternating Least Squares

Improving the Uk (Orthonormal)

Fix the Sk and V and determine U1, . . . ,UN so that

N∑
k=1

‖ Ak − UkSkV T ‖2
F

is minimized.

Hint: The problem of minimizing ‖ Y − UZ ‖F where U has orthonormal
columns is solved by computing the SVD of YZT and building U from the
left singular vectors.

Do this for k = 1:N with Y = Ak and Z = SkV
T .
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Idea 2. Approximate SVDs Using Alternating Least Squares

Improving the Sk (Diagonal)

Fix the Uk and V and determine the S1, . . . ,SN so that

N∑
k=1

‖ Ak − UkSkV T ‖2
F

is minimized.

Hint: The problem of minimizing ‖ Y −WSZT ‖F with respect to
S = diag(si ) is equivalent to minimizing

‖ vec(Y )− (Z �W ) s ‖

Do this for k = 1:N with Y = Ak , W = Uk and ZT = V T .
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Idea 2. Approximate SVDs Using Alternating Least Squares

Improving V

Fix the Uk and the Sk and determine V so that

N∑
k=1

‖ Ak − UkSkV T ‖2
F

is minimized.

Hint: This is a least squares problem since

N∑
k=1

‖ Ak − UkSkV
T ‖2

F =

∥∥∥∥∥∥∥
 A1

...
AN

 −

 U1S1

...
UNSN

V T

∥∥∥∥∥∥∥
2

F
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Idea 2. Approximate SVDs Using Alternating Least Squares

This is the PARAFAC2 Framework

Repeat Until Happy

Improve U1, . . . ,UN

Improve S1, . . . ,SN

Improve V

But we are going to do something different...
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Idea 3. Use the Higher-Order GSVD Framework

Assume that A1, . . . ,AN each have full column rank.

1. Compute V−1SNV = diag(λi ) where

SN =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

.

2. For k = 1:N compute

AkV−T = UkΣk

where the Uk have unit 2-norm columns and the Σk are diagonal.

Upon completion we have Ak = UkΣkV
T , k = 1:N

The U-matrices in these expansions turns out to be connected in a very
special way if SN has an eigenvalue equal to one.
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Idea 3. Use the Higher-Order GSVD Framework

The Common HO-GSVD Subspace: Definition

The eigenvectors associated with the unit eigenvalues of SN define the
common HO-GSVD subspace:

HO-GSVD(A1, . . . ,AN) = { v : SNv = v }
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Idea 3. Use the Higher-Order GSVD Framework

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

Ak = UkΣkV
T =

n∑
i=1

σ
(k)
i u

(k)
i vT

i k = 1:N

where V = [v1, . . . , vn].

But if (say) the HO-GSVD(A1, . . . ,AN) = span{v1, v2}, then

Ak = σ1u
(k)
1 vT

1 + σ2u
(k)
2 vT

2 +
n∑

i=3

σ
(k)
i u

(k)
i vT

i k = 1:N

and {u(k)
1 , u

(k)
2 } is an orthonormal basis for span{u(k)

3 , . . . , u
(k)
n }⊥. Moreover,

u
(k)
1 and u

(k)
2 are left singular vectors for Ak .

This expansion identifies features that are common across the
datasets A1, . . . ,AN .
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Idea 3. Use the Higher-Order GSVD Framework

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

Ak = UkΣkV
T =

n∑
i=1

σ
(k)
i u

(k)
i vT

i k = 1:N

where V = [v1, . . . , vn].

But if (say) the HO-GSVD(A1, . . . ,AN) = span{v1, v2}, then

Ak = σ1u
(k)
1 vT

1 + σ2u
(k)
2 vT

2 +
n∑

i=3

σ
(k)
i u

(k)
i vT

i k = 1:N

and {u(k)
1 , u

(k)
2 } is an orthonormal basis for span{u(k)

3 , . . . , u
(k)
n }⊥. Moreover,

u
(k)
1 and u

(k)
2 are left singular vectors for Ak .

Much to Explain!
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The CS Decomposition
(The Two-Matrix Case)
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The CS Decomposition

Definition

If

Q =

2666666664

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

3777777775
has orthonormal columns, then there exist orthogonal U1, U2, Z1 and Z2 so that

"
U1 0

0 U2

#T

Q

"
Z1 0

0 Z2

#
=

2666666664

c1 0 0 −s1 0
0 c2 0 0 −s2

0 0 c3 0 0
0 0 0 0 0

s1 0 0 c1 0
0 s2 0 0 c2

0 0 s3 0 0

3777777775
The SVDs of the blocks are related.
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The CS Decomposition

Definition (Structured Special Case: Q )

If Q ∈ IR2n×2n is orthogonal and

JT
2nQJ2n = Q−1 J2n =

"
0 In

−In 0

#

then

Q =

"
Q1 −Q2

Q2 Q1

#
and there exist orthogonal U and Z so that

"
U 0

0 U

#T

Q

"
Z 0

0 Z

#
=

26666664

c1 0 0 −s1 0 0
0 c2 0 0 −s2 0
0 0 c3 0 0 −s3

s1 0 0 c1 0 0
0 s2 0 0 c2 0
0 0 s3 0 0 c3

37777775 =

"
C −S

S C

#

Q2 nonsingular ⇒ Q1Q
−1
2 = U · diag(ci/si ) · UT , a symmetric Schur Decomp.
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The CS Decomposition

Definition (Thin Version)

If

24 Q1

Q2

35 =

2666666664

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

3777777775
has orthonormal columns, then there exist orthogonal U1, U2, and Z so that

"
U1 0

0 U2

#T "
Q1

Q2

#
Z =

2666666664

c1 0 0
0 c2 0
0 0 c3

0 0 0

s1 0 0
0 s2 0
0 0 s3

3777777775
=

"
C

S

#
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The CS Decomposition

Computation

Stable efficient methods exist.

Not straight forward.

You can’t just compute the SVDs

U1Q11V1 = Σ1 U2Q22V2 = Σ2

and expect U1Q12V2 and U2Q2V1 to be diagonal to within machine
precision.
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Rethinking the 2-Matrix Generalized
Singular Value Decomposition
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The 2-Matrix GSVD

Definition

If

A1 =


× × ×
× × ×
× × ×
× × ×
× × ×

 A2 =


× × ×
× × ×
× × ×
× × ×


then there exist orthogonal U1, orthogonal U2 and nonsingular X so that

UT
1 A1X = Σ1 =


c1 0 0
0 c2 0
0 0 c3

0 0 0
0 0 0

 UT
2 A2X = Σ2 =


s1 0 0
0 s2 0
0 0 s3
0 0 0
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The 2-Matrix GSVD

The Rank-1 Expansion Version

The GSVD basically says that there exist orthogonal U1, orthogonal U2 and
nonsingular X so that

UT
1 A1X = Σ1 = diag(ck) UT

2 A2X = Σ2 = diag(sk)

are diagonal. Thus, if U1 = [u
(1)
1 , . . . , u

(1)
n ], U2 = [u

(2)
1 , . . . , u

(2)
n ], and

X−T = V = [v1, . . . , vn]

are column partitionings, then

A1 = U1ΣV T =
n∑

k=1

cku
(1)
k vT

k A2 = U2ΣV T =
n∑

k=1

sku
(2)
k vT

k

Moving X to the other side would be simpler if it was orthogonal for then
V = X−T = X .
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The 2-Matrix GSVD

Applications

Many 2-matrix problems can be diagonalized via the GSVD. For
example, in quadratically Constrained Least Squares we solve

min‖ A1x − b ‖2 such that ‖ A2x − d ‖2 ≤ α

By substituting the GSVD of A1 and A2 into this we get an easily
solved equivalent problem with diagonal matrices:

min‖ Σ1x̃ − b̃ ‖2 such that ‖ Σ2x̃ − d̃ ‖2 ≤ α
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The 2-Matrix GSVD

Computation

1. Compute the QR factorization:[
A1

A2

]
=

[
Q1

Q2

]
R

2. Compute the CS decomposition:

Q1 = U1 ·diag(ci )·ZT Q2 = U2 ·diag(si )·ZT (SVD’s)

3. Set V T = ZTR. Note: X = V−T = R−1Z

A1 = Q1R = U1 ·diag(ci )·(ZTR) = U1Σ1V
T

A2 = Q2R = U2 ·diag(si )·(ZTR) = U2Σ2V
T
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The 2-Matrix GSVD

Relevance to the Problem AT
1 A1x = τ2AT

2 A2x

Since UT
1 A1X = Σ1 and UT

2 AX = Σ2, it follows that

XT (AT
1 A1 − τ2AT

2 A2)X = ΣT
1 Σ1 − τ2ΣT

2 Σ2 = diag(c2
i − τ2s2

i )

and so

AT
1 A1xi =

(
c2
i

s2
i

)
AT

2 A2xi

where X = [x1 | · · · | xn ].

The ci/si and xi are the generalized singular values and vectors of
{A1,A2}.
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The 2-Matrix GSVD

Characterizing the V-Matrix

Since
A1 = U1Σ1V

T A2 = U2Σ2V
T

implies

AT
1 A1 = V (ΣT

1 Σ1)V
T AT

2 A2 = V (ΣT
2 Σ2)V

T

we see that

(AT
2 A2)(A

T
1 A1)

−1 = V (ΣT
2 Σ2)(Σ

T
1 Σ1)

−1V−1 = V diag((s2
i /c2

i )V−1

(AT
1 A1)(A

T
2 A2)

−1 = V (ΣT
1 Σ1)(Σ

T
2 Σ2)

−1V−1 = V diag((c2
i /s2

i )V−1

The columns of V are eigenvectors for both

(AT
2 A2)(A

T
1 A1)

−1 and (AT
1 A1)(A

T
2 A2)

−1.
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The 2-Matrix GSVD

Characterizing the V-Matrix

If

S =
1

2

(
(AT

2 A2)(A
T
1 A1)

−1 + (AT
1 A1)(A

T
2 A2)

−1
)

then since

(AT
2 A2)(A

T
1 A1)

−1 = V (ΣT
2 Σ2)(Σ

T
1 Σ1)

−1V−1 = V diag((s2
i /c2

i )V−1

(AT
1 A1)(A

T
2 A2)

−1 = V (ΣT
1 Σ1)(Σ

T
2 Σ2)

−1V−1 = V diag((c2
i /s2

i )V−1

we have

S = V · diag

(
1

2

(
s2
i

c2
i

+
c2
i

s2
i

))
V−1

The columns of V are eigenvectors for S and the eigenvalues are never smaller
than 1 because the function f (x) = (x + 1/x)/2 is never smaller than 1.
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The 2-Matrix GSVD

The Common Invariant Subspace Problem

Compute a matrix whose columns are an orthonormal basis for

CHOGSVD{A1,A2} = { v : Sv = v}

where S =
(
(AT

1 A1)(A
T
2 A2)

−1 + (AT
2 A2)(A

T
1 A1)

−1
)
/2.

Algorithm Q̃ = Common(A1,A2)

1. Compute the GSVD: A1 = U1diag(ci )V
T , A2 = U2diag(si )V

T .

2. Let Ṽ consist of those columns of V associated with generalized
singular values that equal 1 to within some tolerance, i.e., include
V (:, i) if |ci − si | ≤ tol .

3. Orthonormalize: Ṽ = Q̃R̃.

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD 29 / 51



The Higher Order CS Decomposition
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Higher-Order CSD: Motivation

If

S =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

.

and  A1
...

AN

 =

 Q1
...

QN

R

is a thin QR factorization, then since Ak = QkR we have

R−TSR =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(
(QT

i Qi )(Q
T
j Qj)

−1 + (QT
j Qj)(Q

T
i Qi )

−1
)

.
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Higher-Order CSD: Motivation

It follows that

R−TSRT =
1

N − 1
(T − I )

where T is the symmetric matrix

T =
1

N

(
(QT

1 Q1)
−1 + · · ·+ (QT

N QN)−1
)

R−TSRT =
1

N(N − 1)

NX
i=1

NX
j=i+1

“
(QT

i Qi )(Q
T
j Qj)

−1 + (QT
j Qj)(Q

T
i Qi )

−1
”

=
1

N(N − 1)

““
QT

1 Q1+· · ·+QT
N QN

”“
(QT

1 Q1)
−1+· · ·+(QT

N QN)−1
”
− NI

”
=

1

N(N − 1)

“
(QT

1 Q1)
−1+· · ·+(QT

N QN)−1 − NI
”
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The Higher-Order CS Decomposition (HO-CSD)

Definition

If

Q =

 Q1

...
QN


has orthonormal columns and each Qk has full column rank, then its
HO-CSD is given by

Qk = UkΣkZ
T k = 1:N

where Z is orthogonal such that

ZTTZ = diag(µk) T =
1

N

(
(QT

1 Q1)
−1 + · · ·+ (QT

N QN)−1
)

and for k = 1:N we have

QkZ = UkΣk = (Matrix with unit 2-norm columns)·(Diagonal Matrix)
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The Higher-Order CS Decomposition (HO-CSD)

Properties of T

The Cauchy inequality tells us that

yT (QT
k Qk)

−1y ≥ 1

yT (QT
k Qk)yk

k = 1:N

with equality iff y is an eigenvector for QT
k Qk . Using this fact, it can be

shown that if ‖ y ‖2 = 1, then

yTTy = yT

(
1

N

(
(QT

1 Q1)
−1 + · · ·+ (QT

N QN)−1
))

y ≥ N

with equality iff

QT
k Qky =

1

N
y k = 1:N

VERY BIG FACT: Ty = N ·y ⇔ y is a right singular vector for each Qk
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The Higher-Order CS Decomposition (HO-CSD)

The Common HO-CSD Subspace

If the columns of

Q =

 Q1
...

QN


are orthonormal and if each block has full column rank, then the
Common HO-CSD Subspace is defined by

CHOCSD{Q1, . . . ,QN} = { x | TNx = Nx }.
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The Higher-Order CS Decomposition (HO-CSD)

Canonical Form

Suppose the columns of

Q =

 Q1
...

QN


are orthonormal and each block has full column rank. Assume that

ZTTNZ = diag(µi ) Z = [z1, . . . , zn]

is the Schur decomposition with

span{z1, . . . , zp} = CHOCSD{Q1, . . . ,QN}

Then...
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The Higher-Order CS Decomposition (HO-CSD)

Canonical Form

Qk = UkΣkZ
T k = 1:N

where

Uk =
[

U
(c)
k | U(u)

k

]
p n−p

Z =
[
Z (c) | Z (u)

]
p n−p

and

Σk =

[
Ip/
√

N 0

0 Σ
(u)
k

]

is diagonal. Moreover, the columns of each U
(c)
k are orthonormal and

[U
(c)
k ]TU

(u)
k = 0.

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD 37 / 51



The Higher-Order CS Decomposition (HO-CSD)

Want to compute an Orthonormal Basis for CHOCSD{Q1, . . . ,QN}
A Useful Characterization:

CHOCSD{Q1, . . . ,QN} = ∩1≤i<j≤N CHOGSVD{Qi ,Qj}

= ∩N
k=2 CHOGSVD{Qk−1,Qk}

Algorithm (A Sequence of Ever-Thinner GSVD Problems)

Zc = Common(Q1,Q2)

for k = 3:N

Zk = Common(Qk−1Zc ,QkZc)

Zc = ZcZk

The columns of Zc span CHOCSD{Q1, . . . ,QN}.
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The Higher-Order GSVD
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The Higher-Order GSVD Framework

Given: Ai ∈ IRmi×n, i = 1:N each with full column rank.

1. Assume V−1SNV = diag(λi ) where

SN =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

.

2. For k = 1:N set
AkV−T = UkΣk

where the Uk have unit 2-norm columns and the Σk are diagonal.

What we have: Ak = UkΣkV T , k = 1:N
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Properties of SN

Use the Connection to TN

SN = 1

N(N−1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

TN = 1

N

(
(QT

1 Q1)
−1 + · · ·+ (QT

N QN)−1
)

R−TSNRT = 1

N−1
(TN − I )

Here,

264 A1

...
AN

375 =

264 Q1

...
QN

375 R is the thin QR factorization
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Properties of SN

Use the Connection to TN

SN = 1

N(N−1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

TN = 1

N

(
(QT

1 Q1)
−1 + · · ·+ (QT

N QN)−1
)

R−TSNRT = 1

N−1
(TN − I )

1. SN is similar to TN , a symmetric matrix.

2. SN where is diagonalizable with real eigenvalues.

3. If ZTTNZ = diag(µi ), then V−1SNV = diag(λi ) where V = RTZ and
λi = (µi − 1)/(N − 1).
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Properties of SN

Use the Connection to TN

SN = 1

N(N−1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

TN = 1

N

(
(QT

1 Q1)
−1 + · · ·+ (QT

N QN)−1
)

R−TSNRT = 1

N−1
(TN − I )

3. If ZTTNZ = diag(µi ), then V−1SNV = diag(λi ) where V = RTZ and
λi = (µi − 1)/(N − 1).

4. Since the eigenvalues {µi} of TN satisfy µi ≥ N, the eigenvalues {λi} of
SN satisfy λi ≥ 1.

5. SNx = x if and only if y = R−1x is a right singular vector for each Qk .
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Properties of SN

The Common HO-GSVD Subspace: Definition

The eigenvectors associated with the unit eigenvalues of SN define the
common HO-GSVD subspace:

CHO-GSVD{A1, . . . ,AN} = { v : SNv = v }

An Important Connection

Since
R−TSNRT = 1

N−1
(TN − I )

it follows that

CHO-GSVD{A1, . . . ,AN} = {RT z : z ∈ CHO-CSD{Q1, . . . ,QN})
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Properties of SN

To Compute an Orthonormal Basis for CHO-GSVD{A1, . . . ,AN}

1. Compute the Thin QR factorization: A1
...

AN

 =

 Q1
...

QN

R

2. Compute a matrix Zc with orthonormal columns that span
CHO-CSD{Q1, . . . ,QN}.

3. Compute the thin QR factorization VcRc = (RTZc).

The columns of Vc span CHO-GSVD{A1, . . . ,AN}
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Properties of SN

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

Ak = UkΣkV
T =

n∑
i=1

σ
(k)
i u

(k)
i vT

i k = 1:N

where V = [v1, . . . , vn].

But if (say) the HO-GSVD(A1, . . . ,AN) = span{v1, v2}, then

Ak = σ1u
(k)
1 vT

1 + σ2u
(k)
2 vT

2 +
n∑

i=3

σ
(k)
i u

(k)
i vT

i k = 1:N

and {u(k)
1 , u

(k)
2 } is an orthonormal basis for span{u(k)

3 , . . . , u
(k)
n }⊥. Moreover,

u
(k)
1 and u

(k)
2 are left singular vectors for Ak .

Identifies features that are common across the datasets A1, . . . ,AN .
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A Partial GSVD

N = 2

Ak = σ
(k)
1 u

(k)
1 vT

1 + σ
(k)
2 u

(k)
2 vT

2 + · · ·+ σ
(k)
n u

(k)
n vT

n k = 1, 2

and {u(k)
1 , . . . , u

(k)
n } an orthonormal basis for IRn.

General N

Ak = σ
(k)
1 u

(k)
1 vT

1 + σ
(k)
2 u

(k)
2 vT

2 +
n∑

i=3

σ
(k)
i u

(k)
i vT

i k = 1:N

and {u(k)
1 , u

(k)
2 } is an orthonormal basis for span{u3, . . . , u

(k)
n }⊥.

Not a simultaneous diagonalization, but good enough.
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Open Problems

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD 48 / 51



A Variational Approach

If v ∈ CHO-GSVD{A1, . . . ,AN} then v is a stationary vector for

φ(v) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

1

2

(
‖ Aiv ‖2

‖ Ajv ‖2
+
‖ Ajv ‖2

‖ Aiv ‖2

)
≥ 1

Does this open the door for sparse matrix friendly algorithm?
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Rank-Deficient Ak

Everything revolves around

SN =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(
(AT

i Ai )(A
T
j Aj)

−1 + (AT
j Aj)(A

T
i Ai )

−1
)

.

Is there a way to proceed in the event that one or more of the Ak is
rank deficient? After all, the 2-matrix GSVD does not require the full
rank assumption.
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Summary

Tensor computations are prompting the development
of new, structured matrix factorizations.

Tensor computations teach us to be relaxed about
simultaneous diagonalization.
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