Structured Matrix Computations from Structured Tensors

Lecture 6. The Higher-Order Generalized Singular Value Decomposition

Charles F. Van Loan

Cornell University

CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy It is possible to reduce a pair of matrices to canonical form.

Generalized Schur Decomposition

Simultaneous upper triangularization:

$$Q^{\mathsf{T}} A_1 Z = T_1 \qquad Q^{\mathsf{T}} A_2 Z = T_2$$

The Generalized Singular Value Decomposition

Simultaneous diagonalization:

$$U_1^T A_1 V = \Sigma_1 \qquad U_2^T A_2 V = \Sigma_2$$

A Proof that $3 \gg 2$

It is possible to reduce a pair of matrices to canonical form.

Generalized Schur Decomposition

Simultaneous upper triangularization:

$$Q^T A_1 Z = T_1 \qquad Q^T A_2 Z = T_2$$

The Generalized Singular Value Decomposition

Simultaneous diagonalization:

$$U_1^T A_1 V = \Sigma_1 \qquad U_2^T A_2 V = \Sigma_2$$

But you can forget about this kind of simultaneous reduction when there are more than two matrices. Q.E.D.

For example, there are **no** methods for the quadratic eigenvalue problem

$$(A_1 + \lambda A_2 + \lambda^2 A_3)x = 0$$

that work by simultaneously reducing all three matrices to a canonical form

$$Q^{\mathsf{T}}A_1Z = \tilde{A}_1$$
 $Q^{\mathsf{T}}A_2Z = \tilde{A}_2$ $Q^{\mathsf{T}}A_3Z = \tilde{A}_3$

that "reveals" the solution

$$(\tilde{A}_1 + \lambda \tilde{A}_2 + \lambda^2 \tilde{A}_3)\tilde{x} = 0$$

Given a collection of data matrices

 $\{A_1,\ldots,A_N\}$

that each have the same number of columns, how can you discover features that they share in common?

Idea 1: Use a Tensor Decomposition

If each matrix in the collection $\{A_1, \ldots, A_N\}$ has the same number of rows, then "stack them up" into a tensor

$$\mathcal{A}(:,:,k) = A_k \qquad k = 1:N$$

and compute (say) a CP decomposition

$$\mathcal{A} = \sum_{p=1}^{r} \lambda_{p} F(:,p) \circ G(:,p) \circ H(:,p)$$

Since

$$A(i,j,k) = \sum_{p=1}^{r} \lambda_{p} F(i,p) G(j,p) H(k,p)$$

this says

$$\mathcal{A}(:,:,k) = A_k = \sum_{p=1}^{r} (\lambda_p H(k,p)) F(:,p) G(:,p)^{T} \qquad k = 1:N$$

Idea 2. Approximate SVDs

Given $A_k \in {\rm I\!R}^{m_k imes n}$ for k = 1:N and an integer $r \le n$, determine

 $egin{aligned} U_k \in {\rm I\!R}^{m_k imes r} & k = 1{:}N, \mbox{Each with orthonormal columns} \ S_k \in {\rm I\!R}^{r imes r} & k = 1{:}N, \mbox{Each diagonal} \ V \in {\rm I\!R}^{n imes r} \end{aligned}$

so that

$$\sum_{k=1}^{N} \left\| A_k - U_k S_k V^{T} \right\|_F^2$$

is minimized. (We do not force V to have orthonormal columns.)

Improving the U_k (Orthonormal)

Fix the S_k and V and determine U_1, \ldots, U_N so that

$$\sum_{k=1}^{N} \left\| A_{k} - U_{k} S_{k} V^{T} \right\|_{F}^{2}$$

is minimized.

Hint: The problem of minimizing $|| Y - UZ ||_F$ where U has orthonormal columns is solved by computing the SVD of YZ^T and building U from the left singular vectors.

Do this for k = 1:N with $Y = A_k$ and $Z = S_k V^T$.

Improving the S_k (Diagonal)

Fix the U_k and V and determine the S_1, \ldots, S_N so that

$$\sum_{k=1}^{N} \left\| A_{k} - U_{k} S_{k} V^{T} \right\|_{F}^{2}$$

is minimized.

Hint: The problem of minimizing $|| Y - WSZ^T ||_F$ with respect to $S = \text{diag}(s_i)$ is equivalent to minimizing

$$\parallel$$
 vec $(Y) - (Z \odot W) s \parallel$

Do this for k = 1:N with $Y = A_k$, $W = U_k$ and $Z^T = V^T$.

Improving V

Fix the U_k and the S_k and determine V so that

$$\sum_{k=1}^{N} \left\| A_{k} - U_{k} S_{k} V^{T} \right\|_{F}^{2}$$

is minimized.

Hint: This is a least squares problem since

$$\sum_{k=1}^{N} \left\| A_{k} - U_{k}S_{k}V^{T} \right\|_{F}^{2} = \left\| \begin{bmatrix} A_{1} \\ \vdots \\ A_{N} \end{bmatrix} - \begin{bmatrix} U_{1}S_{1} \\ \vdots \\ U_{N}S_{N} \end{bmatrix} V^{T} \right\|_{F}^{2}$$

This is the PARAFAC2 Framework

Repeat Until Happy Improve U_1, \ldots, U_N Improve S_1, \ldots, S_N Improve V

But we are going to do something different...

Idea 3. Use the Higher-Order GSVD Framework

Assume that A_1, \ldots, A_N each have full column rank.

1. Compute $V^{-1}S_N V = \text{diag}(\lambda_i)$ where

$$S_{N} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_{i}^{T}A_{i})(A_{j}^{T}A_{j})^{-1} + (A_{j}^{T}A_{j})(A_{i}^{T}A_{i})^{-1} \right).$$

2. For k = 1:N compute

$$A_k V^{-T} = U_k \Sigma_k$$

where the U_k have unit 2-norm columns and the Σ_k are diagonal.

Upon completion we have $A_k = U_k \Sigma_k V^T$, k = 1:NThe *U*-matrices in these expansions turns out to be connected in a very special way if S_N has an eigenvalue equal to one.

Structured Matrix Computations from Structured Tensors

Lecture 6. Higher-Order GSVD

The Common HO-GSVD Subspace: Definition

The eigenvectors associated with the unit eigenvalues of S_N define the common HO-GSVD subspace:

$$HO-GSVD(A_1,\ldots,A_N) = \{ v : S_N v = v \}$$

Idea 3. Use the Higher-Order GSVD Framework

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

$$A_k = U_k \Sigma_k V^T = \sum_{i=1}^n \sigma_i^{(k)} u_i^{(k)} v_i^T \qquad k = 1:N$$

where $V = [v_1, \ldots, v_n]$. But if (say) the HO-GSVD $(A_1, \ldots, A_N) = \text{span}\{v_1, v_2\}$, then

 $A_{k} = \sigma_{1}u_{1}^{(k)}v_{1}^{T} + \sigma_{2}u_{2}^{(k)}v_{2}^{T} + \sum_{i=3}^{n}\sigma_{i}^{(k)}u_{i}^{(k)}v_{i}^{T} \qquad k = 1:N$

and $\{u_1^{(k)}, u_2^{(k)}\}$ is an orthonormal basis for span $\{u_3^{(k)}, \ldots, u_n^{(k)}\}^{\perp}$. Moreover, $u_1^{(k)}$ and $u_2^{(k)}$ are left singular vectors for A_k .

This expansion identifies features that are common across the datasets A_1, \ldots, A_N .

Structured Matrix Computations from Structured Tensors

Lecture 6. Higher-Order GSVD

Idea 3. Use the Higher-Order GSVD Framework

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

$$A_k = U_k \Sigma_k V^T = \sum_{i=1}^n \sigma_i^{(k)} u_i^{(k)} v_i^T \qquad k = 1:N$$

where $V = [v_1, \ldots, v_n]$. But if (say) the HO-GSVD $(A_1, \ldots, A_N) = \operatorname{span}\{v_1, v_2\}$, then

$$A_{k} = \sigma_{1} u_{1}^{(k)} v_{1}^{T} + \sigma_{2} u_{2}^{(k)} v_{2}^{T} + \sum_{i=3}^{n} \sigma_{i}^{(k)} u_{i}^{(k)} v_{i}^{T} \qquad k = 1:N$$

and $\{u_1^{(k)}, u_2^{(k)}\}$ is an orthonormal basis for span $\{u_3^{(k)}, \ldots, u_n^{(k)}\}^{\perp}$. Moreover, $u_1^{(k)}$ and $u_2^{(k)}$ are left singular vectors for A_k .

Much to Explain!

(The Two-Matrix Case)

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD

Definition

lf

has orthonormal columns, then there exist orthogonal U_1 , U_2 , Z_1 and Z_2 so that

$$\begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix}^T Q \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} = \begin{bmatrix} c_1 & 0 & 0 & -s_1 & 0 \\ 0 & c_2 & 0 & 0 & -s_2 \\ 0 & 0 & c_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline s_1 & 0 & 0 & c_1 & 0 \\ 0 & s_2 & 0 & 0 & c_2 \\ 0 & 0 & s_3 & 0 & 0 \end{bmatrix}$$

The SVDs of the blocks are related.

Structured Matrix Computations from Structured Tensors

Lecture 6. Higher-Order GSVD

Definition (Structured Special Case: Q)

If $Q \in {\rm I\!R}^{2n imes 2n}$ is orthogonal and

$$J_{2n}^{T}QJ_{2n} = Q^{-1}$$
 $J_{2n} = \begin{bmatrix} 0 & I_{n} \\ \hline & -I_{n} & 0 \end{bmatrix}$

then

$$Q = \begin{bmatrix} Q_1 & -Q_2 \\ \hline Q_2 & Q_1 \end{bmatrix}$$

and there exist orthogonal U and Z so that

$$\begin{bmatrix} U & 0 \\ \hline 0 & U \end{bmatrix}^{T} Q \begin{bmatrix} Z & 0 \\ \hline 0 & Z \end{bmatrix} = \begin{bmatrix} c_{1} & 0 & 0 & -s_{1} & 0 & 0 \\ 0 & c_{2} & 0 & 0 & -s_{2} & 0 \\ 0 & 0 & c_{3} & 0 & 0 & -s_{3} \\ \hline s_{1} & 0 & 0 & c_{1} & 0 & 0 \\ 0 & s_{2} & 0 & 0 & c_{2} & 0 \\ 0 & 0 & s_{3} & 0 & 0 & c_{3} \end{bmatrix} = \begin{bmatrix} C & -S \\ \hline S & C \end{bmatrix}$$

 Q_2 nonsingular $\Rightarrow Q_1 Q_2^{-1} = U \cdot \operatorname{diag}(c_i/s_i) \cdot U^T$, a symmetric Schur Decomp.

Definition (Thin Version)

lf

has orthonormal columns, then there exist orthogonal U_1 , U_2 , and Z so that

$$\begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix}^T \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} Z = \begin{bmatrix} c_1 & 0 & 0 \\ 0 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & 0 & 0 \\ \hline s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{bmatrix} = \begin{bmatrix} C \\ \hline S \end{bmatrix}$$

Computation

Stable efficient methods exist.

Not straight forward.

You can't just compute the SVDs

$$U_1 Q_{11} V_1 = \Sigma_1 \qquad U_2 Q_{22} V_2 = \Sigma_2$$

and expect $U_1Q_{12}V_2$ and $U_2Q_2V_1$ to be diagonal to within machine precision.

Rethinking the 2-Matrix Generalized Singular Value Decomposition

Definition

lf

then there exist orthogonal U_1 , orthogonal U_2 and **nonsingular** X so that

$$U_1^T A_1 X = \Sigma_1 = \begin{bmatrix} c_1 & 0 & 0 \\ 0 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad U_2^T A_2 X = \Sigma_2 = \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \\ 0 & 0 & 0 \end{bmatrix}$$

The Rank-1 Expansion Version

The GSVD basically says that there exist orthogonal U_1 , orthogonal U_2 and **nonsingular** X so that

 $U_1^T A_1 X = \Sigma_1 = \operatorname{diag}(c_k) \qquad U_2^T A_2 X = \Sigma_2 = \operatorname{diag}(s_k)$

are diagonal. Thus, if $U_1 = [u_1^{(1)}, \dots, u_n^{(1)}]$, $U_2 = [u_1^{(2)}, \dots, u_n^{(2)}]$, and

$$X^{-T} = V = [v_1, \ldots, v_n]$$

are column partitionings, then

$$A_{1} = U_{1}\Sigma V^{T} = \sum_{k=1}^{n} c_{k} u_{k}^{(1)} v_{k}^{T} \qquad A_{2} = U_{2}\Sigma V^{T} = \sum_{k=1}^{n} s_{k} u_{k}^{(2)} v_{k}^{T}$$

Moving X to the other side would be simpler if it was orthogonal for then $V = X^{-T} = X.$

Applications

Many 2-matrix problems can be diagonalized via the GSVD. For example, in quadratically Constrained Least Squares we solve

 $\min \|A_1x - b\|_2 \quad \text{ such that } \|A_2x - d\|_2 \le \alpha$

By substituting the GSVD of A_1 and A_2 into this we get an easily solved equivalent problem with diagonal matrices:

 $\min \| \Sigma_1 \tilde{x} - \tilde{b} \|_2 \quad \text{ such that } \quad \| \Sigma_2 \tilde{x} - \tilde{d} \|_2 \le \alpha$

Computation

1. Compute the QR factorization:

$$\left[\begin{array}{c}A_1\\A_2\end{array}\right] = \left[\begin{array}{c}Q_1\\Q_2\end{array}\right]R$$

2. Compute the CS decomposition:

$$Q_1 = U_1 \cdot \operatorname{diag}(c_i) \cdot Z^T$$
 $Q_2 = U_2 \cdot \operatorname{diag}(s_i) \cdot Z^T$ (SVD's)

3. Set $V^{T} = Z^{T}R$. Note: $X = V^{-T} = R^{-1}Z$

$$A_1 = Q_1 R = U_1 \cdot \operatorname{diag}(c_i) \cdot (Z^T R) = U_1 \Sigma_1 V^T$$

$$A_2 = Q_2 R = U_2 \cdot \operatorname{diag}(s_i) \cdot (Z^T R) = U_2 \Sigma_2 V^T$$

Relevance to the Problem $A_1^T A_1 x = \tau^2 A_2^T A_2 x$

Since $U_1^T A_1 X = \Sigma_1$ and $U_2^T A X = \Sigma_2$, it follows that

$$X^{\mathsf{T}}(A_1^{\mathsf{T}}A_1 - \tau^2 A_2^{\mathsf{T}}A_2)X = \Sigma_1^{\mathsf{T}}\Sigma_1 - \tau^2 \Sigma_2^{\mathsf{T}}\Sigma_2 = \mathsf{diag}(c_i^2 - \tau^2 s_i^2)$$

and so

$$A_1^T A_1 x_i = \left(\frac{c_i^2}{s_i^2}\right) A_2^T A_2 x_i$$

where $X = [x_1 | \cdots | x_n]$.

The c_i/s_i and x_i are the generalized singular values and vectors of $\{A_1, A_2\}$.

Characterizing the V-Matrix

Since

$$A_1 = U_1 \Sigma_1 V^T \qquad A_2 = U_2 \Sigma_2 V^T$$

implies

$$A_1^T A_1 = V(\Sigma_1^T \Sigma_1) V^T \qquad A_2^T A_2 = V(\Sigma_2^T \Sigma_2) V^T$$

we see that

 $(A_2^T A_2)(A_1^T A_1)^{-1} = V(\Sigma_2^T \Sigma_2)(\Sigma_1^T \Sigma_1)^{-1}V^{-1} = V \operatorname{diag}((s_i^2/c_i^2)V^{-1})$ $(A_1^T A_1)(A_2^T A_2)^{-1} = V(\Sigma_1^T \Sigma_1)(\Sigma_2^T \Sigma_2)^{-1}V^{-1} = V \operatorname{diag}((c_i^2/s_i^2)V^{-1})$

The columns of V are eigenvectors for both $(A_2^T A_2)(A_1^T A_1)^{-1}$ and $(A_1^T A_1)(A_2^T A_2)^{-1}$.

Characterizing the V-Matrix

$$S = \frac{1}{2} \left((A_2^T A_2) (A_1^T A_1)^{-1} + (A_1^T A_1) (A_2^T A_2)^{-1} \right)$$

then since

lf

$$(A_2^T A_2)(A_1^T A_1)^{-1} = V(\Sigma_2^T \Sigma_2)(\Sigma_1^T \Sigma_1)^{-1} V^{-1} = V \operatorname{diag}((s_i^2/c_i^2) V^{-1} (A_1^T A_1)(A_2^T A_2)^{-1} = V(\Sigma_1^T \Sigma_1)(\Sigma_2^T \Sigma_2)^{-1} V^{-1} = V \operatorname{diag}((c_i^2/s_i^2) V^{-1}$$

we have

$$S = V \cdot \operatorname{diag}\left(\frac{1}{2}\left(\frac{s_i^2}{c_i^2} + \frac{c_i^2}{s_i^2}\right)\right) V^{-1}$$

The columns of V are eigenvectors for S and the eigenvalues are never smaller than 1 because the function f(x) = (x + 1/x)/2 is never smaller than 1.

The Common Invariant Subspace Problem

Compute a matrix whose columns are an orthonormal basis for

$$\mathbf{C}_{\text{HOGSVD}}\{A_1, A_2\} = \{ v : Sv = v \}$$

where $S = \left((A_1^T A_1) (A_2^T A_2)^{-1} + (A_2^T A_2) (A_1^T A_1)^{-1} \right) / 2.$

Algorithm $\tilde{Q} = \text{Common}(A_1, A_2)$

1. Compute the GSVD: $A_1 = U_1 \operatorname{diag}(c_i) V^T$, $A_2 = U_2 \operatorname{diag}(s_i) V^T$.

2. Let \tilde{V} consist of those columns of V associated with generalized singular values that equal 1 to within some tolerance, i.e., include V(:, i) if $|c_i - s_i| \le tol$.

3. Orthonormalize: $\tilde{V} = \tilde{Q}\tilde{R}$.

The Higher Order CS Decomposition

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD

Higher-Order CSD: Motivation

lf

$$S = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_i^T A_i) (A_j^T A_j)^{-1} + (A_j^T A_j) (A_i^T A_i)^{-1} \right).$$

and

$$\left[\begin{array}{c}A_1\\\vdots\\A_N\end{array}\right] = \left[\begin{array}{c}Q_1\\\vdots\\Q_N\end{array}\right]R$$

is a thin QR factorization, then since $A_k = Q_k R$ we have

$$R^{-T}SR = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((Q_i^T Q_i) (Q_j^T Q_j)^{-1} + (Q_j^T Q_j) (Q_i^T Q_i)^{-1} \right)$$

It follows that

$$R^{-T}SR^{T} = \frac{1}{N-1}(T-I)$$

where \mathcal{T} is the symmetric matrix

$$T = \frac{1}{N} \left((Q_1^T Q_1)^{-1} + \dots + (Q_N^T Q_N)^{-1} \right)$$

$$R^{-T}SR^{T} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((Q_{i}^{T}Q_{i})(Q_{j}^{T}Q_{j})^{-1} + (Q_{j}^{T}Q_{j})(Q_{i}^{T}Q_{i})^{-1} \right)$$

$$= \frac{1}{N(N-1)} \left(\left(Q_{1}^{T}Q_{1} + \dots + Q_{N}^{T}Q_{N} \right) \left((Q_{1}^{T}Q_{1})^{-1} + \dots + (Q_{N}^{T}Q_{N})^{-1} \right) - NI \right)$$

$$= \frac{1}{N(N-1)} \left((Q_{1}^{T}Q_{1})^{-1} + \dots + (Q_{N}^{T}Q_{N})^{-1} - NI \right)$$

Definition

lf

$$Q = \begin{bmatrix} Q_1 \\ \vdots \\ Q_N \end{bmatrix}$$

has orthonormal columns and each Q_k has full column rank, then its HO-CSD is given by

$$Q_k = U_k \Sigma_k Z^T \qquad k = 1:N$$

where Z is orthogonal such that

$$Z^T T Z = \operatorname{diag}(\mu_k) \qquad T = \frac{1}{N} \left((Q_1^T Q_1)^{-1} + \dots + (Q_N^T Q_N)^{-1} \right)$$

and for k = 1:N we have

 $Q_k Z = U_k \Sigma_k = (Matrix with unit 2-norm columns) \cdot (Diagonal Matrix)$

Properties of T

The Cauchy inequality tells us that

$$y^{T}(Q_{k}^{T}Q_{k})^{-1}y \geq \frac{1}{y^{T}(Q_{k}^{T}Q_{k})y_{k}} \qquad k=1:N$$

with equality iff y is an eigenvector for $Q_k^T Q_k$. Using this fact, it can be shown that if $||y||_2 = 1$, then

$$y^T T y = y^T \left(\frac{1}{N} \left((Q_1^T Q_1)^{-1} + \dots + (Q_N^T Q_N)^{-1} \right) \right) y \ge N$$

with equality iff

$$Q_k^T Q_k y = \frac{1}{N} y \qquad k = 1:N$$

VERY BIG FACT: $Ty = N \cdot y \Leftrightarrow y$ is a right singular vector for each Q_k

The Common HO-CSD Subspace

If the columns of

$$Q = \begin{bmatrix} Q_1 \\ \vdots \\ Q_N \end{bmatrix}$$

are orthonormal and if each block has full column rank, then the Common HO-CSD Subspace is defined by

$$\mathbf{C}_{\text{HOCSD}}\{Q_1,\ldots,Q_N\} = \{ x \mid T_N x = N x \}.$$

Canonical Form

Suppose the columns of

$$\mathcal{O} = \left[\begin{array}{c} Q_1 \\ \vdots \\ Q_N \end{array} \right]$$

are orthonormal and each block has full column rank. Assume that

$$Z^T T_N Z = \operatorname{diag}(\mu_i)$$
 $Z = [z_1, \ldots, z_n]$

is the Schur decomposition with

$$\mathsf{span}\{z_1,\ldots,z_p\}=\boldsymbol{\mathsf{C}}_{\scriptscriptstyle\mathsf{HOCSD}}\{Q_1,\ldots,Q_{\scriptscriptstyle\mathsf{N}}\}$$

Then...

Canonical Form

$$Q_k = U_k \Sigma_k Z^T \qquad k = 1:N$$

where

and

$$\Sigma_k = \left[egin{array}{cc} I_p / \sqrt{N} & 0 \ 0 & \Sigma_k^{(u)} \end{array}
ight]$$

is diagonal. Moreover, the columns of each $U_k^{(c)}$ are orthonormal and

$$[U_k^{(c)}]^T U_k^{(u)} = 0.$$

Want to compute an Orthonormal Basis for $C_{HOCSD}{Q_1, \ldots, Q_N}$

A Useful Characterization:

$$\begin{aligned} \mathbf{C}_{\text{HOCSD}} \{ Q_1, \dots, Q_N \} &= \bigcap_{1 \le i < j \le N} \mathbf{C}_{\text{HOGSVD}} \{ Q_i, Q_j \} \\ &= \bigcap_{k=2}^N \mathbf{C}_{\text{HOGSVD}} \{ Q_{k-1}, Q_k \} \end{aligned}$$

Algorithm (A Sequence of Ever-Thinner GSVD Problems)

$$egin{aligned} Z_c &= ext{Common}(Q_1, Q_2) \ & ext{for } k &= 3 : N \ & extsf{Z}_k &= ext{Common}(Q_{k-1}Z_c, Q_kZ_c) \ & extsf{Z}_c &= extsf{Z}_c Z_k \end{aligned}$$

The columns of Z_c span $\mathbf{C}_{HOCSD}\{Q_1, \ldots, Q_N\}$.

The Higher-Order GSVD

The Higher-Order GSVD Framework

Given: $A_i \in \mathbb{R}^{m_i \times n}$, i = 1:N each with full column rank.

1. Assume $V^{-1}S_N V = \text{diag}(\lambda_i)$ where

$$S_{N} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_{i}^{T}A_{i})(A_{j}^{T}A_{j})^{-1} + (A_{j}^{T}A_{j})(A_{i}^{T}A_{i})^{-1} \right).$$

2. For k = 1:N set

$$A_k V^{-T} = U_k \Sigma_k$$

where the U_k have unit 2-norm columns and the Σ_k are diagonal.

What we have:
$$A_k = U_k \Sigma_k V^T$$
, $k = 1:N$

Use the Connection to T_N

$$S_{N} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_{i}^{T}A_{i})(A_{j}^{T}A_{j})^{-1} + (A_{j}^{T}A_{j})(A_{i}^{T}A_{i})^{-1} \right)$$
$$T_{N} = \frac{1}{N} \left((Q_{1}^{T}Q_{1})^{-1} + \dots + (Q_{N}^{T}Q_{N})^{-1} \right)$$
$$R^{-T}S_{N}R^{T} = \frac{1}{N-1} (T_{N} - I)$$

Here,
$$\begin{bmatrix} A_1 \\ \vdots \\ A_N \end{bmatrix} = \begin{bmatrix} Q_1 \\ \vdots \\ Q_N \end{bmatrix} R$$

is the thin QR factorization

Use the Connection to T_N

$$S_{N} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_{i}^{T}A_{i})(A_{j}^{T}A_{j})^{-1} + (A_{j}^{T}A_{j})(A_{i}^{T}A_{i})^{-1} \right)$$
$$T_{N} = \frac{1}{N} \left((Q_{1}^{T}Q_{1})^{-1} + \dots + (Q_{N}^{T}Q_{N})^{-1} \right)$$
$$R^{-T}S_{N}R^{T} = \frac{1}{N-1}(T_{N}-I)$$

1. S_N is similar to T_N , a symmetric matrix.

- 2. S_N where is diagonalizable with real eigenvalues.
- 3. If $Z^T T_N Z = \text{diag}(\mu_i)$, then $V^{-1} S_N V = \text{diag}(\lambda_i)$ where $V = R^T Z$ and $\lambda_i = (\mu_i 1)/(N 1)$.

Use the Connection to T_N

$$S_{N} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_{i}^{T}A_{i})(A_{j}^{T}A_{j})^{-1} + (A_{j}^{T}A_{j})(A_{i}^{T}A_{i})^{-1} \right)$$
$$T_{N} = \frac{1}{N} \left((Q_{1}^{T}Q_{1})^{-1} + \dots + (Q_{N}^{T}Q_{N})^{-1} \right)$$
$$R^{-T}S_{N}R^{T} = \frac{1}{N-1}(T_{N}-I)$$

- 3. If $Z^T T_N Z = \text{diag}(\mu_i)$, then $V^{-1} S_N V = \text{diag}(\lambda_i)$ where $V = R^T Z$ and $\lambda_i = (\mu_i 1)/(N 1)$.
- 4. Since the eigenvalues $\{\mu_i\}$ of T_N satisfy $\mu_i \ge N$, the eigenvalues $\{\lambda_i\}$ of S_N satisfy $\lambda_i \ge 1$.

5. $S_N x = x$ if and only if $y = R^{-1}x$ is a right singular vector for each Q_k .

The Common HO-GSVD Subspace: Definition

The eigenvectors associated with the unit eigenvalues of S_N define the common HO-GSVD subspace:

$$\mathbf{C}_{\text{HO-GSVD}}\{A_1,\ldots,A_N\} = \{ v: S_N v = v \}$$

An Important Connection

Since

$$R^{-T}S_{N}R^{T} = \frac{1}{N-1}(T_{N}-I)$$

it follows that

$$\mathbf{C}_{\text{HO-GSVD}}\{A_1,\ldots,A_N\} = \{R^{\mathsf{T}}z : z \in \mathbf{C}_{\text{HO-CSD}}\{Q_1,\ldots,Q_N\}\}$$

To Compute an Orthonormal Basis for $C_{HO-GSVD}\{A_1, \ldots, A_N\}$

1. Compute the Thin QR factorization:

$$\left[\begin{array}{c}A_1\\\vdots\\A_N\end{array}\right] = \left[\begin{array}{c}Q_1\\\vdots\\Q_N\end{array}\right]R$$

2. Compute a matrix Z_c with orthonormal columns that span $C_{HO-CSD}{Q_1, \ldots, Q_N}$.

3. Compute the thin QR factorization $V_c R_c = (R^T Z_c)$.

The columns of
$$V_c$$
 span $C_{HO-GSVD}$ $\{A_1, \ldots, A_N\}$

The Common HO-GSVD Subspace: Importance

In general, we have these rank-1 expansions

$$A_k = U_k \Sigma_k V^T = \sum_{i=1}^n \sigma_i^{(k)} u_i^{(k)} v_i^T \qquad k = 1:N$$

where $V = [v_1, \dots, v_n]$. But if (say) the HO-GSVD $(A_1, \dots, A_N) = \text{span}\{v_1, v_2\}$, then

$$A_{k} = \sigma_{1} u_{1}^{(k)} v_{1}^{T} + \sigma_{2} u_{2}^{(k)} v_{2}^{T} + \sum_{i=3}^{n} \sigma_{i}^{(k)} u_{i}^{(k)} v_{i}^{T} \qquad k = 1:N$$

and $\{u_1^{(k)}, u_2^{(k)}\}$ is an orthonormal basis for span $\{u_3^{(k)}, \ldots, u_n^{(k)}\}^{\perp}$. Moreover, $u_1^{(k)}$ and $u_2^{(k)}$ are left singular vectors for A_k .

Identifies features that are common across the datasets A_1, \ldots, A_N .

A Partial GSVD

N = 2

$$A_{k} = \sigma_{1}^{(k)} u_{1}^{(k)} v_{1}^{T} + \sigma_{2}^{(k)} u_{2}^{(k)} v_{2}^{T} + \dots + \sigma_{n}^{(k)} u_{n}^{(k)} v_{n}^{T} \qquad k = 1, 2$$

and $\{u_1^{(k)}, \ldots, u_n^{(k)}\}$ an orthonormal basis for \mathbb{R}^n .

General N

$$A_{k} = \sigma_{1}^{(k)} u_{1}^{(k)} v_{1}^{T} + \sigma_{2}^{(k)} u_{2}^{(k)} v_{2}^{T} + \sum_{i=3}^{n} \sigma_{i}^{(k)} u_{i}^{(k)} v_{i}^{T} \qquad k = 1:N$$

and $\{u_1^{(k)}, u_2^{(k)}\}$ is an orthonormal basis for span $\{u_3, \ldots, u_n^{(k)}\}^{\perp}$.

Not a simultaneous diagonalization, but good enough.

Structured Matrix Computations from Structured Tensors

Lecture 6. Higher-Order GSVD

Open Problems

Structured Matrix Computations from Structured Tensors Lecture 6. Higher-Order GSVD

If $v \in \mathbf{C}_{\text{HO-GSVD}}\{A_1,\ldots,A_N\}$ then v is a stationary vector for

$$\phi(\mathbf{v}) = \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{2} \left(\frac{\|A_i \mathbf{v}\|^2}{\|A_j \mathbf{v}\|^2} + \frac{\|A_j \mathbf{v}\|^2}{\|A_i \mathbf{v}\|^2} \right) \ge 1$$

Does this open the door for sparse matrix friendly algorithm?

Everything revolves around

$$S_{N} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left((A_{i}^{T}A_{i})(A_{j}^{T}A_{j})^{-1} + (A_{j}^{T}A_{j})(A_{i}^{T}A_{i})^{-1} \right).$$

Is there a way to proceed in the event that one or more of the A_k is rank deficient? After all, the 2-matrix GSVD does not require the full rank assumption.

Tensor computations are prompting the development of new, structured matrix factorizations.

Tensor computations teach us to be relaxed about simultaneous diagonalization.