Matrix oriented methods for dynamical systems

V. Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Linear (vector) systems and linear matrix equations
Problem: solve the linear problem

$$
A \mathbf{x}=b \quad \text { or } \quad T_{1} \mathbf{X}+\mathbf{X} T_{2}=B
$$

Linear (vector) systems and linear matrix equations
Problem: solve the linear problem

$$
A \mathbf{x}=b \quad \text { or } \quad T_{1} \mathbf{X}+\mathbf{X} T_{2}=B
$$

Remark: In discretizing PDEs with tensor bases, the two problems may be mathematically equivalent!

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2}
$$

+ Dirichlet b.c. (zero b.c. for simplicity)

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-1}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
T_{1} \mathbf{U}+\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
\end{gathered}
$$

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-1}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
T_{1} \mathbf{U}+\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
\end{gathered}
$$

Lexicographic ordering: $\quad \mathbf{U} \rightarrow \mathbf{u}=\left[\mathbf{U}_{11}, \mathbf{U}_{n, 1}, \mathbf{U}_{1,2}, \ldots, \mathbf{U}_{n, 2}, \ldots\right]^{\top}$

$$
A \mathbf{u}=f \quad A=I \otimes T_{1}+T_{1} \otimes I, f=\operatorname{vec}(F)
$$

$\left((M \otimes N)\right.$ Kronecker product, $\left.(M \otimes N)=\left(M_{i, j} N\right)\right)$

Numerical considerations

$$
T_{1} \mathbf{U}+\mathbf{U} T_{2}=F, \quad T_{i} \in \mathbb{R}^{n_{i} \times n_{i}}
$$

$$
A \mathbf{u}=f \quad A=I \otimes T_{1}+T_{2} \otimes I \in \mathbb{R}^{n_{1} n_{2} \times n_{1} n_{2}}
$$

T_{1}

A

Discretization of more complex domains (with Y. Hao)

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega
$$

$$
(x, y) \in \Omega, \quad x=r \cos \theta, y=r \sin \theta
$$

$$
(r, \theta) \in\left[r_{0}, r_{1}\right] \times\left[0, \frac{\pi}{4}\right]
$$

on Transformed equation in polar coordinates:

$$
-r^{2} \tilde{u}_{r r}-r \tilde{u}_{r}-\tilde{u}_{\theta \theta}=\tilde{f}, \quad(r, \theta) \in\left[r_{0}, r_{1}\right] \times\left[0, \frac{\pi}{4}\right]
$$

Matrix equation after mapping to the rectangle:

$$
\Phi^{2} T \widetilde{\boldsymbol{U}}+\widetilde{\boldsymbol{U}} T-\Phi B \widetilde{\boldsymbol{U}}=\widetilde{F} \quad \Leftrightarrow \quad\left(\Phi^{2} T-\Phi B\right) \widetilde{\boldsymbol{U}}+\widetilde{\boldsymbol{U}} T=\widetilde{F}
$$

\& Transformed equation in log-polar coordinates $\left(r=e^{\rho}\right)$:

$$
-\hat{u}_{\rho \rho}-\hat{u}_{\theta \theta}=\hat{f}, \quad(r, \theta) \in\left[r_{0}, r_{1}\right] \times\left[0, \frac{\pi}{4}\right]
$$

Matrix equation after mapping to the rectangle:

$$
T \widehat{\boldsymbol{U}}++\widehat{\boldsymbol{U}} T=\widehat{F}
$$

Poisson equation in a polygon with more than 4 edges (with Y. Hao)
Schwarz-Christoffel conformal mappings between polygon and rectangle

$$
-u_{x x}-u_{y y}=f, \quad(x, y) \in \Omega
$$

$$
-\widetilde{u}_{\xi \xi}-\widetilde{u}_{\eta \eta}=\mathscr{J} \widetilde{f}, \quad(\xi, \eta) \in \Pi
$$

With finite diff. discretization:

$$
T_{1} U+U T_{2}=F, \quad \widetilde{F}+b . c ., \quad \text { and } \quad \widetilde{F}_{i, j}=(\mathscr{J} \widetilde{f})\left(\xi_{i}, \eta_{j}\right), 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}
$$

(\mathscr{J} Jacobian determinant of SC mapping)
Poisson equation is the ideal setting for SC mappings!

Convection-diffusion eqns in a rectangle (with D. Palitta)

$$
-\varepsilon \Delta u+\phi_{1}(x) \psi_{1}(y) u_{x}+\phi_{2}(x) \psi_{2}(y) u_{y}+\gamma_{1}(x) \gamma_{2}(y) u=f
$$

$(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad \phi_{i}, \psi_{i}, \gamma_{i}, i=1,2$ sufficiently regular func's + b.c.

> Problem discretization by means of a tensor basis

Multiterm linear matrix equation:

$$
-\varepsilon T_{1} \mathbf{U}-\varepsilon \mathbf{U} T_{2}+\Phi_{1} B_{1} \mathbf{U} \Psi_{1}+\Phi_{2} \mathbf{U} B_{2}^{\top} \Psi_{2}+\Gamma_{1} \mathbf{U} \Gamma_{2}=F
$$

Finite Diff.: $\mathbf{U}_{i, j}=\mathbf{U}\left(x_{i}, y_{j}\right)$ approximate solution at the nodes
but also Isogeometric Analysis (IGA), certain spectral methods, etc.
... A classical approach, Bickley \& McNamee, 1960, Wachspress, 1963
(Early literature on difference equations)

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$A^{*}=U R U^{*}, B=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \boldsymbol{Y}+\boldsymbol{Y} S=U^{*} G V$ for \boldsymbol{Y};
3. Compute $\boldsymbol{U}=U \boldsymbol{Y} V^{*}$.

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$A^{*}=U R U^{*}, B=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \boldsymbol{Y}+\boldsymbol{Y} S=U^{*} G V$ for \boldsymbol{Y};
3. Compute $\boldsymbol{U}=U \boldsymbol{Y} V^{*}$.

- Large A and small B : Column decoupling

1. Compute the decomposition $B=W S W^{-1}, S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$
2. Set $\widehat{G}=G W$
3. For $i=1, \ldots, m$ solve $\left(A+s_{i} I\right)(\widehat{\boldsymbol{U}})_{i}=(\widehat{G})_{i}$
4. Compute $\boldsymbol{U}=\widehat{\boldsymbol{U}} W^{-1}$

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$A^{*}=U R U^{*}, B=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \boldsymbol{Y}+\boldsymbol{Y} S=U^{*} G V$ for \boldsymbol{Y};
3. Compute $\boldsymbol{U}=U \boldsymbol{Y} V^{*}$.

- Large A and small B : Column decoupling

1. Compute the decomposition $B=W S W^{-1}, S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$
2. Set $\widehat{G}=G W$
3. For $i=1, \ldots, m$ solve $\left(A+s_{i} I\right)(\widehat{\boldsymbol{U}})_{i}=(\widehat{G})_{i}$
4. Compute $\boldsymbol{U}=\widehat{\boldsymbol{U}} W^{-1}$

- Large A and large B : Iterative solution (G low rank)

Numerical solution of large scale Sylvester equations

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

with G low rank

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Projection methods

Seek $\boldsymbol{U}_{k} \approx \boldsymbol{U}$ of low rank:

$$
\boldsymbol{U}_{k}=\left[\boldsymbol{U}_{k}^{(1)}\right]\left[\left(\boldsymbol{U}_{k}^{(2)}\right)^{*}\right]
$$

with $\boldsymbol{U}_{k}^{(1)}, \boldsymbol{U}_{k}^{(2)}$ tall

Index k "related" to the approximation rank

Two applications

- Time stepping systems of Reaction-diffusion PDEs:

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, \boldsymbol{\tau}\right]
\end{array}\right.
$$

ℓ_{i} : diffusion operator linear in $u \quad f_{i}$: nonlinear reaction terms

Two applications

- Time stepping systems of Reaction-diffusion PDEs:

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, \boldsymbol{\tau}\right]
\end{array}\right.
$$

ℓ_{i} : diffusion operator linear in $u \quad f_{i}$: nonlinear reaction terms

- All-at-once Heat equation:

$$
u_{t}+\Delta u=f, \quad u=u(x, y, z, t) \in \Omega \times \mathcal{I}
$$

with $\Omega \subset \mathbb{R}^{3}, \mathcal{I}=(0, \boldsymbol{\tau})$ and zero Dirichlet b.c.

Systems of Reaction-diffusion PDEs

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

with $u(x, y, 0)=u_{0}(x, y), v(x, y, 0)=v_{0}(x, y)$, and appropriate b.c. on Ω
ℓ_{i} : diffusion operator linear in $u \quad f_{i}$: nonlinear reaction terms

Applications:

chemistry, biology, ecology, and more recently in metal growth by electrodeposition, tumor growth, biomedicine and cell motility
\Rightarrow spatial patterns such as labyrinths, spots, stripes

Long term spatial patterns

Labyrinths, spots, stripes, etc.

Numerical modelling issues

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

- Problem is stiff
- Use appropriate time discretizations
- Time stepping constraints
- Pattern visible only after long time period (transient unstable phase)
- Pattern visible only if domain is well represented

Space discretization of the reaction-diffusion PDE ℓ_{i} : elliptic operator $\Rightarrow \ell_{i}(u) \approx A_{i} \mathbf{u}$, so that

$$
\begin{cases}\dot{\mathbf{u}}=A_{1} \mathbf{u}+f_{1}(\mathbf{u}, \mathbf{v}), & \mathbf{u}(0)=\mathbf{u}_{0} \\ \dot{\mathbf{v}}=A_{2} \mathbf{v}+f_{2}(\mathbf{u}, \mathbf{v}), & \mathbf{v}(0)=\mathbf{v}_{0}\end{cases}
$$

Key fact: Ω simple domain, e.g., $\Omega=\left[0, \ell_{x}\right] \times\left[0, \ell_{y}\right]$. Therefore

$$
\begin{aligned}
& A_{i}=I_{y} \otimes T_{1 i}+T_{2 i}^{\top} \otimes I_{x} \in \mathbb{R}^{N_{x} N_{y} \times N_{x} N_{y}}, i=1,2 \\
& \Rightarrow A \mathbf{u}=\operatorname{vec}\left(T_{1} U+U T_{2}\right)
\end{aligned}
$$

Matrix-oriented formulation of reaction-diffusion PDEs

$$
\begin{cases}\dot{U}=T_{11} U+U T_{12}+F_{1}(U, V), & U(0)=U_{0} \\ \dot{V}=T_{21} V+V T_{22}+F_{2}(U, V), & V(0)=V_{0}\end{cases}
$$

$F_{i}(U, V)$ nonlinear vector function $f(\mathbf{u}, \mathbf{v})$ evaluated componentwise $\operatorname{vec}\left(U_{0}\right)=\mathbf{u}_{0}, \operatorname{vec}\left(V_{0}\right)=\mathbf{v}_{0}$, initial conditions
Remark: Computational strategies for time stepping can exploit this setting

For simplicity of exposition, we consider $\quad \dot{\mathbf{u}}=A \mathbf{u}+f(\mathbf{u})$, that is

$$
\left.\left.\dot{U}=T_{1} U+U T_{2}+F(U), \quad(x, y) \in \Omega, t \in\right] 0, T\right]
$$

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\mathbf{u}_{n+1}-\mathbf{u}_{n}=h_{t}\left(A \mathbf{u}_{n+1}+f\left(\mathbf{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} A\right) \mathbf{u}_{n+1}=\mathbf{u}_{n}+h_{t} f\left(\mathbf{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(T_{1} U_{n+1}+U_{n+1} T_{2}\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} T_{1}\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} T_{2}\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1 .
$$

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\mathbf{u}_{n+1}-\mathbf{u}_{n}=h_{t}\left(A \mathbf{u}_{n+1}+f\left(\mathbf{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} A\right) \mathbf{u}_{n+1}=\mathbf{u}_{n}+h_{t} f\left(\mathbf{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(T_{1} U_{n+1}+U_{n+1} T_{2}\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} T_{1}\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} T_{2}\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

2. Second order $S B D F$, known as IMEX 2-SBDF method $3 \mathbf{u}_{n+2}-4 \mathbf{u}_{n+1}+\mathbf{u}_{n}=2 h_{t} A \mathbf{u}_{n+2}+2 h_{t}\left(2 f\left(\mathbf{u}_{n+1}\right)-f\left(\mathbf{u}_{n}\right)\right), \quad n=0,1, \ldots, N_{t}$ Matrix-oriented form: for $n=0, \ldots, N_{t}-2$, $\left(3 I-2 h_{t} T_{1}\right) \mathbf{U}_{n+2}+\mathbf{U}_{n+2}\left(-2 h_{t} T_{2}\right)=4 U_{n+1}-U_{n}+2 h_{t}\left(2 F\left(U_{n+1}\right)-F\left(U_{n}\right)\right)$

Time stepping Matrix-oriented methods
Exponential integrator
Exponential first order Euler method:

$$
\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \varphi_{1}\left(h_{t} A\right) f\left(\mathbf{u}_{n}\right)
$$

$e^{h_{t} A}$: matrix exponential, $\varphi_{1}(z)=\left(e^{z}-1\right) / z$ first "phi" function
That is,
$\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \mathbf{v}_{n}, \quad$ where $A \mathbf{v}_{n}=e^{h_{t} A} f\left(\mathbf{u}_{n}\right)-f\left(\mathbf{u}_{n}\right) \quad n=0, \ldots, N_{t}-1$.

Time stepping Matrix-oriented methods
Exponential integrator
Exponential first order Euler method:

$$
\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \varphi_{1}\left(h_{t} A\right) f\left(\mathbf{u}_{n}\right)
$$

$e^{h_{t} A}$: matrix exponential, $\varphi_{1}(z)=\left(e^{z}-1\right) / z$ first "phi" function
That is,
$\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \mathbf{v}_{n}, \quad$ where $A \mathbf{v}_{n}=e^{h_{t} A} f\left(\mathbf{u}_{n}\right)-f\left(\mathbf{u}_{n}\right) \quad n=0, \ldots, N_{t}-1$.

Matrix-oriented form: since $e^{h_{t} A} \mathbf{u}=\left(e^{h_{t} T_{2}^{T}} \otimes e^{h_{t} T_{1}}\right) \mathbf{u}=\operatorname{vec}\left(e^{h_{t} T_{1}} U e^{h_{t} T_{2}}\right)$

1. Compute $E_{1}=e^{h_{t} T_{1}}, E_{2}=e^{h_{t} T_{2}^{T}}$
2. For each n

$$
\begin{array}{rc}
\text { Solve } & T_{1} \mathbf{V}_{n}+\mathbf{V}_{n} T_{2}=E_{1} F\left(U_{n}\right) E_{2}^{T}-F\left(U_{n}\right) \tag{2}\\
\text { Compute } & U_{n+1}=E_{1} U_{n} E_{2}^{T}+h_{t} V_{n}
\end{array}
$$

Time stepping Matrix-oriented methods

Computational issues:

- Dimensions of T_{1}, T_{2} very modest
- T_{1}, T_{2} quasi-symmetric (non-symmetry due to b.c.)
- T_{1}, T_{2} do not depend on time step
\& Matrix-oriented form all in spectral space (after eigenvector transformation)

A numerical example of system of RD-PDEs

Model describing an electrodeposition process for metal growth

$$
\begin{aligned}
& f_{1}(u, v)=\rho\left(\alpha_{1}(1-v) u-\alpha_{2} u^{3}-\beta(v-\alpha)\right) \\
& \left.f_{2}(u, v)=\rho\left(\gamma_{1}\left(1+k_{2} u\right)(1-v)[1-\gamma(1-v)]-\delta_{1} v\left(1+k_{3} u\right)(1+\gamma v)\right)\right)
\end{aligned}
$$

Turing pattern

A numerical example of system of RD-PDEs

Model describing an electrodeposition process for metal growth

$$
\begin{aligned}
& f_{1}(u, v)=\rho\left(\alpha_{1}(1-v) u-\alpha_{2} u^{3}-\beta(v-\alpha)\right) \\
& \left.f_{2}(u, v)=\rho\left(\gamma_{1}\left(1+k_{2} u\right)(1-v)[1-\gamma(1-v)]-\delta_{1} v\left(1+k_{3} u\right)(1+\gamma v)\right)\right)
\end{aligned}
$$

Turing pattern

Schnackenberg model

$$
f_{1}(u, v)=\gamma\left(a-u+u^{2} v\right), \quad f_{2}(u, v)=\gamma\left(b-u^{2} v\right)
$$

Left plot: Turing pattern solution for $\gamma=1000$ ($N_{x}=400$)
Center plot: CPU times (sec), $N_{x}=100$ variation of h_{t}
Right plot: CPU times (sec), $h_{t}=10^{-4}$, increasing values of $N_{x}=50,100,200,300,400$

All-at-once heat equation

$$
u_{t}+\ell(u)=f \quad u(0)=0 \quad(\text { for convenience })
$$

Variational formulation

$$
\text { find } u \in U: \quad b(u, v)=\langle f, v\rangle \quad \text { for all } v \in V
$$

where

$$
\begin{aligned}
& U:=H_{(0)}^{1}\left(\mathcal{I} ; X^{\prime}\right) \cap L_{2}(\mathcal{I}, X), X:=H_{0}^{1}(\Omega), V:=L_{2}(\mathcal{I} ; X) \\
& b(u, v):=\int_{0}^{\boldsymbol{\tau}} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{\tau} a(u(t), v(t)) d t \\
& \langle f, v\rangle:=\int_{0}^{\boldsymbol{\tau}} \int_{\Omega} f(t, x) v(t, x) d x d t .
\end{aligned}
$$

\& It can be shown that this formulation is well-posed
\& Variational approach in space+time allows for adaptivity and order reduction on both types of variables

Joint work with J. Henning, D. Palitta and K. Urban

All-at-once heat equation. Discretized problem
Choose finite-dimensional trial and test spaces, $U_{\delta} \subset U, V_{\delta} \subset V$.
Then the Petrov-Galerkin method reads

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta}
$$

with $U_{\delta}:=S_{\Delta t} \otimes X_{h}, V_{\delta}=Q_{\Delta t} \otimes X_{h}$ where
$S_{\Delta t}$: piecewise linear FE on \mathcal{I}
$Q_{\Delta t}$: piecewise constant FE on \mathcal{I}
X_{h} : any conformal space, e.g., piecewise linear FE
\& Well-posedness (discrete inf-sup cond) depends on the choice of U_{δ}, V_{δ}

All-at-once heat equation. Discretized problem
Choose finite-dimensional trial and test spaces, $U_{\delta} \subset U, V_{\delta} \subset V$.
Then the Petrov-Galerkin method reads

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta}
$$

with $U_{\delta}:=S_{\Delta t} \otimes X_{h}, V_{\delta}=Q_{\Delta t} \otimes X_{h}$ where
$S_{\Delta t}$: piecewise linear FE on \mathcal{I}
$Q_{\Delta t}$: piecewise constant FE on \mathcal{I}
X_{h} : any conformal space, e.g., piecewise linear FE
\& Well-posedness (discrete inf-sup cond) depends on the choice of U_{δ}, V_{δ}

Remark: This discretization coincides with Crank-Nicolson scheme if trapezoidal approximation of the rhs temporal integration is used

The final linear system

$$
B_{\delta}^{\top} u_{\delta}=f_{\delta}
$$

where

$$
\begin{aligned}
{\left[B_{\delta}\right]_{(k, i),(\ell, j)} } & =\left(\dot{\sigma}^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})}\left(\phi_{i}, \phi_{j}\right)_{L_{2}(\Omega)}+\left(\sigma^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})} a\left(\phi_{i}, \phi_{j}\right), \\
{\left[f_{\delta}\right]_{(\ell, j)} } & =\left(f, \tau^{\ell} \otimes \phi_{j}\right)_{L_{2}(\mathcal{I} ; H)}
\end{aligned}
$$

that is, $B_{\delta}=D_{\Delta t} \otimes M_{h}+C_{\Delta t} \otimes K_{h}$

Remark: We approximate f_{δ} to achieve full tensor-product structure

The final linear system

$$
B_{\delta}^{\top} u_{\delta}=f_{\delta}
$$

where

$$
\begin{aligned}
{\left[B_{\delta}\right]_{(k, i),(\ell, j)} } & =\left(\dot{\sigma}^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})}\left(\phi_{i}, \phi_{j}\right)_{L_{2}(\Omega)}+\left(\sigma^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})} a\left(\phi_{i}, \phi_{j}\right), \\
{\left[f_{\delta}\right]_{(\ell, j)} } & =\left(f, \tau^{\ell} \otimes \phi_{j}\right)_{L_{2}(\mathcal{I} ; H)}
\end{aligned}
$$

that is, $B_{\delta}=D_{\Delta t} \otimes M_{h}+C_{\Delta t} \otimes K_{h}$

Remark: We approximate f_{δ} to achieve full tensor-product structure

This yields the generalized Sylvester equation:
$M_{h} \mathbf{U}_{\delta} D_{\Delta t}+K_{h} \mathbf{U}_{\delta} C_{\Delta t}=F_{\delta}, \quad$ with $\quad F_{\delta}=\left[g_{1}, \ldots, g_{P}\right]\left[h_{1}, \ldots, h_{P}\right]^{\top}$

$$
F_{\delta} \text { matrix of low rank } \Rightarrow \mathbf{U}_{\delta} \text { approx by low rank matrix } \widetilde{\mathbf{U}}_{\delta}
$$

A simple example
$\Omega=(-1,1)^{3}$, with homogeneous Dirichlet boundary conditions
$\mathcal{I}=(0,10)$ and initial conditions $u(0, x, y, z) \equiv 0$
$f(t, x, y, z):=10 \sin (t) t \cos \left(\frac{\pi}{2} x\right) \cos \left(\frac{\pi}{2} y\right) \cos \left(\frac{\pi}{2} z\right) \quad\left(F_{\delta}\right.$ is thus low rank)

		RKSM				CN Time(s)	
N_{h}	N_{t}	Its	$\mu_{\text {mem }}$	$\operatorname{rank}\left(\widetilde{U}_{\delta}\right)$	Time(s)	Direct	Iterative
41300	300	13	14	9	25.96	123.43	59.10
	500	13	14	9	30.46	143.71	78.01
	700	13	14	9	28.17	153.38	93.03
347361	300	14	15	9	820.17	14705.10	792.42
	500	14	15	9	828.34	15215.47	1041.47
	700	14	15	7	826.93	15917.52	1212.57

\& Memory allocations in CN are for full problem
of Sylvester-oriented method: overall Space and Time independence

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
\end{aligned}
$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
\end{aligned}
$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares

Main device: Kronecker formulation

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) x=c
$$

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
\end{aligned}
$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares
- ...

Alternative approaches:

- Projection onto rich approximation space
- Compression to two-term matrix equation
- Splitting strategy towards two-term matrix equation
- ...

PDEs on polygonal grids and separable coeffs

$$
-\varepsilon \Delta u+\phi_{1}(x) \psi_{1}(y) u_{x}+\phi_{2}(x) \psi_{2}(y) u_{y}+\gamma_{1}(x) \gamma_{2}(y) u=f \quad(x, y) \in \Omega
$$

$\phi_{i}, \psi_{i}, \gamma_{i}, i=1,2$ sufficiently regular functions + b.c.
Problem discretization by means of a tensor basis

Multiterm linear equation:

$$
-\varepsilon T_{1} \mathbf{U}-\varepsilon \mathbf{U} T_{2}+\Phi_{1} B_{1} \mathbf{U} \Psi_{1}+\Phi_{2} \mathbf{U} B_{2}^{\top} \Psi_{2}+\Gamma_{1} \mathbf{U} \Gamma_{2}=F
$$

Finite Diff.: $\mathbf{U}_{i, j}=\mathbf{U}\left(x_{i}, y_{j}\right)$ approximate solution at the nodes

PDEs with random inputs
Stochastic steady-state diffusion eqn: Find $u: D \times \Omega \rightarrow \mathbb{R}$ s.t. \mathbb{P}-a.s.,

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\mathbf{x}, \omega) \nabla u(\mathbf{x}, \omega)) & =f(\mathbf{x}) & & \text { in } D \\
u(\mathbf{x}, \omega) & =0 & & \text { on } \partial D
\end{aligned}\right.
$$

$f:$ deterministic;
a : random field, linear function of finite no. of real-valued random variables $\xi_{r}: \Omega \rightarrow \Gamma_{r} \subset \mathbb{R}$
Common choice: truncated Karhunen-Loève (KL) expansion,

$$
a(\mathbf{x}, \omega)=\mu(\mathbf{x})+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} \phi_{r}(\mathbf{x}) \xi_{r}(\omega)
$$

$\mu(\mathbf{x})$: expected value of diffusion coef. σ : std dev.
$\left(\lambda_{r}, \phi_{r}(\mathbf{x})\right)$ eigs of the integral operator \mathcal{V} wrto $V\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{\sigma^{2}} C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
$\left(\lambda_{r} \searrow \quad C: D \times D \rightarrow \mathbb{R}\right.$ covariance fun.)

Discretization by stochastic Galerkin

Approx with space in tensor product form ${ }^{\mathrm{a}} \mathcal{X}_{h} \times S_{p}$

$$
\mathcal{A} \mathbf{x}=\mathbf{b}, \quad \mathcal{A}=G_{0} \otimes K_{0}+\sum_{r=1}^{m} G_{r} \otimes K_{r}, \quad \mathbf{b}=\mathbf{g}_{0} \otimes \mathbf{f}_{0}
$$

x: expansion coef. of approx to u in the tensor product basis $\left\{\varphi_{i} \psi_{k}\right\}$
$K_{r} \in \mathbb{R}^{n_{x} \times n_{x}}, \mathrm{FE}$ matrices (sym)
$G_{r} \in \mathbb{R}^{n_{\xi} \times n_{\xi}, r}, r=0,1, \ldots, m$ Galerkin matrices associated w / S_{p} (sym.)
g_{0} : first column of G_{0}
f_{0} : FE rhs of deterministic PDE

$$
n_{\xi}=\operatorname{dim}\left(S_{p}\right)=\frac{(m+p)!}{m!p!} \quad \Rightarrow n_{x} \cdot n_{\xi} \text { huge }
$$

[^0]The matrix equation formulation

$$
\left(G_{0} \otimes K_{0}+G_{1} \otimes K_{1}+\ldots+G_{m} \otimes K_{m}\right) \mathbf{x}=\mathbf{g}_{0} \otimes \mathbf{f}_{0}
$$

transforms into

$$
\begin{aligned}
& \quad K_{0} \mathbf{X} G_{0}+K_{1} \mathbf{X} G_{1}+\ldots+K_{m} \mathbf{X} G_{m}=F, \quad F=\mathbf{f}_{0} \mathbf{g}_{0}^{\top} \\
& \left(G_{0}=I\right)
\end{aligned}
$$

Solution strategy. Conjecture:

- $\left\{K_{r}\right\}$ from trunc'd Karhunen-Loève (KL) expansion

$$
\mathbf{X} \approx \widetilde{X} \text { low rank, } \widetilde{X}=X_{1} X_{2}^{T}
$$

(Possibly extending results of Grasedyck, 2004)

Matrix Galerkin approximation of the deterministic part. 1

Approximation space \mathcal{K}_{k} and basis matrix $V_{k}: \quad \mathbf{X} \approx X_{k}=V_{k} Y$

$$
V_{k}^{\top} R_{k}=0, \quad R_{k}:=K_{0} X_{k}+K_{1} X_{k} G_{1}+\ldots+K_{m} X_{k} G_{m}-\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

Computational challenges:

- Generation of \mathcal{K}_{k} involved $m+1$ different matrices $\left\{K_{r}\right\}$!
- Matrices K_{r} have different spectral properties
- n_{x}, n_{ξ} so large that X_{k}, R_{k} should not be formed!
(Powell \& Silvester \& Simoncini, SISC 2017)

PDE-Constrained optimization problems

Functional to be minimized:

$$
\begin{equation*}
J(y, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega_{1}}(y-\hat{y})^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \int_{\Omega_{u}} u^{2} \mathrm{~d} x \mathrm{~d} t \tag{3}
\end{equation*}
$$

$\star y$: is the state, \hat{y} is the desired state given on a subset Ω_{1} of Ω,
$\star u$ is the control on a subset Ω_{u} of Ω, (regularized by the control cost parameter β)

PDE constraining the functional $J(y, u)$ (Dirichlet b.c.):

$$
\begin{align*}
\dot{y}-\Delta y=u & \text { in } \quad \Omega_{u} \tag{4}\\
\dot{y}-\Delta y=0 & \text { in } \quad \Omega / \Omega_{u} \tag{5}\\
y=0 & \text { on } \quad \partial \Omega \tag{6}
\end{align*}
$$

$\%$ All-at-once strategy (space and time)
(Alexandra Bünger, V.S., and Martin Stoll, tr. 2020)

Conclusions and Outlook

Large-scale linear matrix equations are a new computational tool

General Considerations:

- Matrix-oriented versions lead to computational and numerical advantages
- Matrix equation challenges rely on strength of linear system solvers

Current activities:

- Large Nonlinear time-dependent problems with POD-DEIM (w/ G. Kirsten)
- Matrix-oriented 3D time-dependent problems require tensors

Webpage: www.dm.unibo.it/~simoncin

References

[0] V.S., Computational methods for linear matrix equations SIAM Rev., 58(2016)
[1] Maria Chiara D'Autilia, Ivonne Sgura and V. S. Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications. Computers and Mathematics with Applications, 2020.
[2] Julian Henning, Davide Palitta, V. S. and Karsten Urban. Matrix oriented reduction of space-time Petrov-Galerkin variational problems.
Proceedings ENUMATH 2019.
[3] Alexandra Bünger, V.S., and Martin Stoll. A low-rank matrix equation method for solving PDE-constrained optimization problems Arxiv preprint n. 2005.14499, 2020.
[4] Davide Palitta and V. S. Matrix-equation-based strategies for convection-diffusion equations. BIT Numerical Math., 56-2, (2016)
[5] Yue Hao and V. S. Matrix equation solving of PDEs in polygonal domains using conformal mappings, To appear in J. Numerical Mathematics, 2021.
[6] Catherine E. Powell, David Silvester, V.S. An efficient reduced basis solver for stochastic Galerkin matrix equations, SIAM J. Scient. Comput., 39, (2017)

[^0]: ${ }^{\mathrm{a}} S_{p}$ set of multivariate polyn of total degree $\leq p$

