On unreduced KKT systems arising from Interior Point methods

Valeria Simoncini
Dipartimento di Matematica, Università di Bologna

Joint work with
Benedetta Morini (UniFI) and Mattia Tani (UniPV)

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Image restoration
- ... Survey: Benzi, Golub and Liesen, Acta Num 2005

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Iterative solution by means of Krylov subspace methods
- Structural properties of interest to our context:
$\star A$ symmetric positive (semi)definite
* B^{T} tall, possibly rank deficient
$\star C$ symmetric positive (semi)definite

Spectral properties

$$
\begin{aligned}
& \mathcal{M}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right] \\
& 0<\lambda_{n} \leq \cdots \leq \lambda_{1} \\
& 0=\sigma_{m} \leq \cdots \leq \sigma_{1} \\
& \text { eigs of } A \\
& \text { sing. vals of } B \\
& \lambda_{\max }(C)>0, \quad B B^{T}+C \quad \text { full rank } \\
& \operatorname{spec}(\mathcal{M}) \subset[-a,-b] \cup[c, d], \quad a, b, c, d>0
\end{aligned}
$$

\Rightarrow A large variety of results on the spectrum of \mathcal{M}, also for indefinite and singular A
\Rightarrow Search for good preconditioning strategies...

General preconditioning strategy

- Find \mathcal{P} such that

$$
\mathcal{M} \mathcal{P}^{-1} \hat{u}=b \quad \hat{u}=\mathcal{P} u
$$

is easier (faster) to solve than $\mathcal{M} u=b$

- A look at efficiency:
- Dealing with \mathcal{P} should be cheap
- Storage requirements for \mathcal{P} should be low
- Properties (algebraic/functional) should be exploited

Mesh/parameter independence

Structure preserving preconditioners

Block diagonal Preconditioner

$\star A$ nonsing., $C=0$:

$$
\begin{gathered}
\mathcal{P}_{0}=\left[\begin{array}{cc}
A & 0 \\
0 & B A^{-1} B^{T}
\end{array}\right] \\
\Rightarrow \quad \mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}=\left[\begin{array}{cc}
I & A^{-\frac{1}{2}} B^{T}\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} \\
\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} B A^{-\frac{1}{2}} & 0
\end{array}\right]
\end{gathered}
$$

MINRES converges in at most 3 iterations.
$\operatorname{spec}\left(\mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}\right)=\left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$
A more practical choice:

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & \widetilde{S}
\end{array}\right] \quad \text { spd. } \quad \widetilde{A} \approx A \quad \widetilde{S} \approx B A^{-1} B^{T}
$$

eigs of $\mathcal{M} \mathcal{P}^{-1}$ in

$$
[-a,-b] \cup[c, d]
$$

$$
a, b, c, d>0
$$

Giving up symmetry

- Change the preconditioner: Mimic the LU factors

$$
\mathcal{M}=\left[\begin{array}{cc}
I & O \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right] \Rightarrow \mathcal{P} \approx\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right]
$$

- Change the preconditioner: Mimic the Structure

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right] \Rightarrow \mathcal{P} \approx \mathcal{M}
$$

- Change the matrix: Eliminate indef.

$$
\mathcal{M}_{-}=\left[\begin{array}{cc}
A & B^{T} \\
-B & C
\end{array}\right]
$$

- Change the matrix: Regularize $(C=0)$

$$
\mathcal{M} \Rightarrow \mathcal{M}_{\gamma}=\left[\begin{array}{cc}
A & B^{T} \\
B & -\gamma W
\end{array}\right] \text { or } \mathcal{M}_{\gamma}=\left[\begin{array}{cc}
A+\frac{1}{\gamma} B^{T} W^{-1} B & B^{T} \\
B & O
\end{array}\right]
$$

Constraint (Indefinite) Preconditioner

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & B^{T} \\
B & -C
\end{array}\right] \quad \mathcal{M P}^{-1}=\left[\begin{array}{cc}
A \widetilde{A}^{-1}(I-\Pi)+\Pi & \star \\
O & I
\end{array}\right]
$$

with $\Pi=B\left(B \widetilde{A}^{-1} B^{T}+C\right)^{-1} B \widetilde{A}^{-1}$

- Constraint equation satisfied at each iteration
- If C nonsing \Rightarrow all eigs real and positive
- If $B^{T} C=0$ and $B B^{T}+C>0 \Rightarrow$ all eigs real and positive
\Rightarrow More general cases, $\widetilde{B} \approx B, \widetilde{C} \approx C$

Block triangular preconditioner

$A \operatorname{spd}, \quad \mathcal{P}=\left[\begin{array}{cc}\widetilde{A} & B^{T} \\ 0 & -\widetilde{C}\end{array}\right] \quad \widetilde{A} \approx A, \quad \widetilde{C} \approx B A^{-1} B^{T}+C$
Ideal case: $\quad \widetilde{A}=A, \widetilde{C}=B A^{-1} B^{T}+C \quad \Rightarrow \quad \mathcal{M P}^{-1}=\left[\begin{array}{cc}I & 0 \\ B A^{-1} & I\end{array}\right]$
Recovering symmetry?

- If $\widetilde{C}=C$ nonsing., then $\sigma\left(\mathcal{M P}^{-1}\right)$ in \mathbb{R}^{+}
- If $\widetilde{A}<A$ then $\sigma\left(\mathcal{M} \mathcal{P}^{-1}\right)$ in \mathbb{R}^{+}with

$$
\lambda \in\left[\chi_{1}, \chi_{2}\right] \ni 1, \quad \chi_{j}=\chi_{j}\left(\left(B^{T} \widetilde{A}^{-1} B+C\right) \widetilde{C}^{-1}, \widetilde{A}^{-1} A\right)
$$

Regularized problem and Augmented preconditioners

Augmented Lagrangian approach:

$$
\mathcal{M}_{\gamma}=\left[\begin{array}{cc}
A+\frac{1}{\gamma} B^{T} W^{-1} B & B^{T} \\
B & O
\end{array}\right]
$$

Particularly interesting for A indefinite or singular \star Any of the above preconditioners may be used.

Somehow related preconditioner for $\mathcal{M}=\left[\begin{array}{cc}A & B^{T} \\ B & O\end{array}\right]$:

$$
\mathcal{P}=\left[\begin{array}{cc}
A+B^{T} W^{-1} B & B^{T} \\
O & W
\end{array}\right]
$$

Application. Convex Quadratic Programming (QP) Pbs

We focus on the linear algebra phase of Interior-Point methods applied to convex QP problems.

Primal-dual pair of convex QP problems in standard form:

$$
\begin{array}{lll}
\min _{x} & c^{T} x+\frac{1}{2} x^{T} H x & \text { subject to } \\
\max _{x, y, z} & b^{T} y-\frac{1}{2} x^{T} H x & \text { subject to } \\
J^{T} y+z-H x=c, z \geq 0
\end{array}
$$

- $H \in \mathbb{R}^{n \times n}$, symmetric and positive semidefinite
- $J \in \mathbb{R}^{m \times n}, m \leq n$ is full-row rank
- $x, z, c \in \mathbb{R}^{n}, y, b \in \mathbb{R}^{m}$

Interior Point (IP) methods

At a generic IP iteration k, the primal-dual Newton direction solves, possibly approximately, the linear system of dimension $2 n+m$ with direction $\left(\Delta x_{k}, \Delta y_{k}, \Delta z_{k}\right)$:

$$
\underbrace{\left[\begin{array}{ccc}
H & J^{T} & -I_{n} \\
J & 0 & 0 \\
-Z_{k} & 0 & -X_{k}
\end{array}\right]}_{K_{3}}\left[\begin{array}{c}
\Delta x_{k} \\
-\Delta y_{k} \\
\Delta z_{k}
\end{array}\right]=\left[\begin{array}{c}
-c-H x_{k}+J^{T} y_{k}+z_{k} \\
b-J x_{k} \\
\tau_{k} e-X_{k} Z_{k} e
\end{array}\right]
$$

where

$$
X_{k}=\operatorname{diag}\left(x_{k}\right), \quad Z_{k}=\operatorname{diag}\left(z_{k}\right) \quad \text { and } \quad\left(x_{k}, z_{k}\right)>0
$$

$e=(1, \ldots, 1)^{T}$,
$\tau_{k}=x_{k}^{T} z_{k} / n$: barrier parameter (controls distance to optimality). Gradually reduced through the IP iterations

Block eliminations approaches

Unreduced matrix: K_{3} of dimension $2 n+m$.

Reduced matrix:

$$
K_{3}=\left[\begin{array}{ccc}
H & J^{T} & -I \\
J & 0 & 0 \\
-Z & 0 & -X
\end{array}\right] \quad \Longrightarrow \quad K_{2}=\left[\begin{array}{cc}
H+X^{-1} Z & J^{T} \\
J & 0
\end{array}\right]
$$

- K_{2} is symmetric and has dimension $n+m$; inexpensive to form since X and Z are diagonal.

Condensed matrix:

$$
K_{2}=\left[\begin{array}{cc}
H+X^{-1} Z & J^{T} \\
J & 0
\end{array}\right] \quad \Longrightarrow \quad K_{1}=J\left(H+X^{-1} Z\right)^{-1} J^{T}
$$

Regularized matrices

Given $\delta \geq 0$ and $\rho \geq 0$, consider the regularized problem
$\min _{x, r} c^{T} x+\frac{1}{2} x^{T} H x+\frac{1}{2} \rho\|x\|^{2}+\frac{1}{2}\|r\|^{2}$ subject to $J x+\delta r=b, x \geq 0$
Then

$$
\begin{aligned}
& K_{3, \mathrm{reg}}=\left[\begin{array}{ccc}
H+\rho I_{n} & J^{T} & -I_{n} \\
J & -\delta I_{m} & 0 \\
-Z & 0 & -X
\end{array}\right] \\
& K_{2, \mathrm{reg}}=\left[\begin{array}{cc}
H+\rho I_{n}+X^{-1} Z & J^{T} \\
J & -\delta I_{m}
\end{array}\right]
\end{aligned}
$$

Eigenvalues of H and singular values of J are shifted away from zero.
[Altman and Gondzio 1999], [Friedlander and Orban 2012], [Gondzio 2012], [Saunders, 1996].

Main features of reduced and unreduced matrices

- For X and Z positive definite, $K_{2 \text {,reg }}$ and $K_{3 \text {,reg }}$ are nonsingular.
- If $(\bar{x}, \bar{y}, \bar{z})$ solves the QP pair then $\bar{x}, \bar{z} \geq 0$ and

$$
\bar{x}_{i} \bar{z}_{i}=0, \quad i=1, \ldots, n
$$

$K_{2, \text { reg }}$ becomes increasingly ill-conditioned as the IP iterates approach the solution due to $X^{-1} Z$.

- $K_{3, \text { reg }}$ can be convenient in terms of eigenvalues and conditioning throughout the IP iterations, [Forsgren, 2002], [Forsgren, Gill and M. Wright, 2002], [M. Wright, 1998].

Nonsingularity of $K_{3, \mathrm{reg}}$

Greif, Moulding and Orban have recently provided spectral bounds for $K_{3, \text { reg }}$ and claimed that in terms of eigenvalues and conditioning, it may be beneficial to use the unreduced formulation.

Theorem (Greif, Moulding and Orban, 2014)

$K_{3 \text {,reg }}$ is nonsingular at $(\bar{x}, \bar{y}, \bar{z})$ if and only if
(1) \bar{x} and \bar{z} are strictly complementary, $\bar{x}_{i}=0 \Longrightarrow \bar{z}_{i}>0 \forall i$
(2) If $\rho=0, \operatorname{ker}(H) \cap \operatorname{ker}(J) \cap \operatorname{ker}(\bar{Z})=\{0\}$ where $\bar{Z}=\operatorname{diag}(\bar{z})$.
(3) If $\delta=0$, the Linear Independence Constraint Qualification (LICQ) is satisfied at \bar{x}, i.e. for $\mathcal{A}=\left\{i \mid \bar{x}_{i}=0\right\}$, the matrix

$$
\left[\begin{array}{ll}
J^{T} & -I_{\mathcal{A}}
\end{array}\right]
$$

has full column rank.

Spectral Properties of the $K_{3, \mathrm{reg}}$

- $K_{3, \text { reg }}$ is symmetrizable and has real eigenvalues, [Forsgren, 2002], [Saunders, 1998]. Let

$$
R=\left[\begin{array}{ccc}
I_{n} & 0 & 0 \\
0 & I_{m} & 0 \\
0 & 0 & Z^{\frac{1}{2}}
\end{array}\right]
$$

By the similarity transformation associated with R we obtain

$$
\begin{aligned}
K_{3, \text { sym }} & =R^{-1} K_{3, \text { reg }} R \\
& =\left[\begin{array}{ccc}
H+\rho I_{n} & J^{T} & -Z^{\frac{1}{2}} \\
J & -\delta I_{m} & 0 \\
-Z^{\frac{1}{2}} & 0 & -X
\end{array}\right]
\end{aligned}
$$

- There are other ways to symmetrize $K_{3, \text { reg }}$.

Here $K_{3, \text { sym }}$ remains nonsingular in the limit but R becomes ill-conditioned.

Spectral bounds for nonsingular $K_{3 \text {,reg }}$

Theorem (Greif, Moulding and Orban, 2014)

The eigenvalues θ of $K_{3}(\delta=\rho=0)$ satisfy

$$
\theta \in\left[\theta_{1}, 0\right) \cup\left[\theta_{3}, \theta_{4}\right]
$$

The eigenvalues θ of $K_{3, \text { reg }}(\delta, \rho>0)$ satisfy

$$
\theta \in\left[\theta_{1},-\delta\right] \cup\left[\theta_{3}, \theta_{4}\right], \quad \theta_{3} \geq \rho
$$

Drawbacks in the unregularized case:

- a meaningful upper bound on negative eigenvalues is not provided;
- if H is positive semidefinite, θ_{3} goes to 0 as $x \rightarrow \bar{x}$ and $z \rightarrow \bar{z}$, even though, in the limit, K_{3} may be nonsingular.

Our focus: Assess the potentials of the use of the unreduced formulation by providing new results on spectral analysis and its solution.

Refined spectral estimates for nonsingular $K_{3, \text { reg }}$

$$
\begin{gathered}
x_{\min }=\min _{i} x_{i} \quad z_{\max }=\max _{i} z_{i} \\
\lambda_{\min }=\lambda_{\min }(H) \quad \lambda_{\max }=\lambda_{\max }(H) \quad \sigma_{\min }=\sigma_{\min }(J) \quad \sigma_{\max }=\sigma_{\max }(J)
\end{gathered}
$$

Theorem

Let θ^{-}be a negative eigenvalue of K_{3}. It holds

- $\theta^{-} \leq \theta_{2}$ where θ_{2} is the greatest negative root of the cubic polynomial

$$
\pi(\theta)=\theta^{3}+\left(x_{\min }-\lambda_{\max }\right) \theta^{2}-\left(x_{\min } \lambda_{\max }+\sigma_{\min }^{2}+z_{\max }\right) \theta-\sigma_{\min }^{2} x_{\min }
$$

and is s.t. $\theta_{2}>-x_{\min }$.

- If (\bar{x}, \bar{z}) is approached, \mathcal{A} and \mathcal{I} are the index sets of active and inactive bounds at $\bar{x}, G^{T}=\left[\begin{array}{cc}J_{\mathcal{A}} & J_{\mathcal{I}} \\ -Z_{\mathcal{A}}^{\frac{1}{2}} & 0\end{array}\right]$, then
$\theta^{-} \leq \mu_{2}=\max \left\{-\left(x_{\mathcal{I}}\right)_{\min }, \frac{1}{2}\left(\lambda_{\max }-\sqrt{\lambda_{\max }^{2}+4 \sigma_{\min }^{2}(G)}\right)\right\}+\sqrt{\left(z_{\mathcal{I}}\right)_{\max }}$

Note: if $\mathcal{A} \neq \emptyset$ then θ_{2} goes to 0 as (\bar{x}, \bar{z}) is approached.

Refined spectral estimates for nonsingular $K_{3 \text {,reg }}$

Theorem

Let θ^{+}be a positive eigenvalue of K_{3}.
If (\bar{x}, \bar{z}) is approached, \mathcal{A} and \mathcal{I} are the index sets of active and
inactive bounds at $\bar{x}, G^{T}=\left[\begin{array}{cc}J_{\mathcal{A}} & J_{\mathcal{I}} \\ -Z_{\mathcal{A}}^{\frac{2}{2}} & 0\end{array}\right]$, then

$$
\theta^{+} \geq \mu_{3}=\tilde{\mu}_{3}-\left(x_{\mathcal{A}}\right)_{\max }
$$

where $\tilde{\mu}_{3}$ is the smallest positive root of the cubic polynomial

$$
q(\mu)=\mu^{3}-\left(\lambda_{\max }+\lambda_{\min }\right) \mu^{2}+\left(\lambda_{\min }^{2}-\sigma_{\min }^{2}(G)\right) \mu+\lambda_{\min } \sigma_{\min }^{2}(G)
$$

Numerical experiments

CONT-050 problem (Maros-Mezaros Collection), $n=2597$, $m=2401$. No regularization.

Figure : Problem cont-050: eigenvalues of K_{3} closest to zero (solid line) and their bounds at every iteration. Left: positive eigenvalues. Right: negative eigenvalues.

On the use of the reduced and unreduced systems

- Direct solvers: the effect of ill-conditioning in $K_{2, \text { reg }}$ is benign [Poncelon, 1991], [S. Wright 1995], [Forsgren, Gill, Shinnerl, 1996], [M. Wright, 1998].
- Iterative solvers: preconditioning is required

$$
\begin{array}{ll}
P_{2}^{-1} K_{2, \text { reg }} \Delta_{2}=P_{2}^{-1} f_{2} & \\
\widehat{P}_{3}^{-1} K_{3, \text { reg }} \Delta_{3}=\widehat{P}_{3}^{-1} \widehat{f}_{3} & 3 \times 3 \text { unsymmetric } \\
P_{3}^{-1} K_{3, \text { sym }} \Delta_{3}=P_{3}^{-1} f_{3} & 3 \times 3 \text { symmetric }
\end{array}
$$

Preconditioners analyzed: constraint, augmented diagonal and triangular preconditioners.

- Our conclusions:
(1) Connections between the spectra of the 2×2 and 3×3 preconditioned matrices hold.
(2) Equivalences between blocks of the 3×3 preconditioned systems and the 2×2 preconditioned systems hold.
(3) As long as IP implementations with reduced and unreduced systems are successful, CPU times are in favor of the former due to their smaller dimensions.

Relations between unreduced and reduced matrices

- Unsymmetric formulation. Let

$$
\widehat{L}_{1}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
X^{-1} & 0 & I
\end{array}\right], \quad \widehat{L}_{2}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
X^{-1} Z & 0 & I
\end{array}\right]
$$

Then

$$
K_{3, \text { reg }}=\widehat{L}_{1}^{T}\left[\begin{array}{cc}
K_{2, \text { reg }} & 0 \\
0 & 0
\end{array}\right] \widehat{L}_{2}
$$

- Symmetric formulation. Let

$$
L=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
X^{-1} Z^{\frac{1}{2}} & 0 & I
\end{array}\right]
$$

then

$$
K_{3, \mathrm{sym}}=L^{T}\left[\begin{array}{cc}
K_{2, \mathrm{reg}} & 0 \\
0 & 0
\end{array}\right] L
$$

(congruence transformation).

Constraint Preconditioners

$$
\begin{aligned}
& P_{2, \mathcal{C}}=\left[\begin{array}{ccc}
\operatorname{diag}\left(H+\rho I_{n}+X^{-1} Z\right) & J^{T} \\
J & -\delta I_{m}
\end{array}\right], \\
& \widehat{P}_{3, \mathcal{C}}=\left[\begin{array}{ccc}
\operatorname{diag}\left(H+\rho I_{n}\right) & J^{T} & -I_{n} \\
J & -\delta I_{m} & 0 \\
-Z & 0 & -X
\end{array}\right]=\widehat{L}_{1}^{T}\left[\begin{array}{cc}
P_{2, \mathcal{C}} & 0 \\
0 & 0 \\
0 & -X
\end{array}\right] \widehat{L}_{2}, \\
& \text { unsymmetric } 3 \times 3 \\
& P_{3, \mathcal{C}}=\left[\begin{array}{ccc}
\operatorname{diag}\left(H+\rho I_{n}\right) & J^{T} & -Z^{\frac{1}{2}} \\
J & -\delta I_{m} & 0 \\
-Z^{\frac{1}{2}} & 0 & -X
\end{array}\right]=L^{T}\left[\begin{array}{cc}
P_{2, \mathcal{C}} & 0 \\
0 & 0 \\
-X
\end{array}\right] L,
\end{aligned}
$$

Theorem

(1) $\widehat{P}_{3, \mathcal{C}}$ and $P_{3, \mathcal{C}}$ remain invertible in the limit (and possibly well-conditioned).
(2) For the unsymmetric 3×3 system:

$$
\theta \in \Lambda\left(\widehat{P}_{3, \mathcal{C}}^{-1} K_{3, \mathrm{reg}}\right) \quad \Longleftrightarrow \quad \theta \in\{1\} \cup \Lambda\left(P_{2, \mathcal{C}}^{-1} K_{2, \mathrm{reg}}\right)
$$

The first two block equations of $\widehat{P}_{3, \mathcal{C}}^{-1} K_{3} \Delta_{3}=\widehat{P}_{3, \mathcal{C}}^{-1} f_{3}$ are equivalent to $P_{2, \mathcal{C}}^{-1} K_{2, \text { reg }} \Delta_{2}=P_{2, \mathcal{C}}^{-1} f_{2}$, the third block equation is equivalent to the third equation in $K_{3} \Delta_{3}=f_{3}$.
(3) The same results hold for the symmetric 3×3 formulation
(4) Similar results hold for certain block triangular preconditioners

Augmented diagonal preconditioners

Let

$$
\begin{aligned}
P_{2, \mathcal{D}} & =\left[\begin{array}{cc}
H+\rho I_{n}+X^{-1} Z+\delta^{-1} J^{T} J & 0 \\
0 & \delta I_{m}
\end{array}\right] \\
P_{3, \mathcal{D}} & =\left[\begin{array}{ccc}
H+\rho I_{n}+X^{-1} Z+\delta^{-1} J^{T} J & 0 & 0 \\
0 & \delta I_{m} & 0 \\
0 & 0 & X
\end{array}\right]=\left[\begin{array}{cc}
P_{2, \mathcal{D}} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$P_{2, \mathcal{D}}, P_{3, \mathcal{D}}$ are positive definite.

Theorem

Upon elimination of Δz, the preconditioned 3×3 system reduces to the 2×2 preconditioned system.

$$
K_{2, \mathrm{reg}}=\left[\begin{array}{c|c}
H+\rho I_{n}+X^{-1} Z & J^{T} \\
\hline J & -\delta I_{m}
\end{array}\right], \quad K_{3, \mathrm{reg}}=\left[\begin{array}{c|cc}
H+\rho I_{n} & J^{T} & -I_{n} \\
\hline J & -\delta I_{m} & 0 \\
-Z & 0 & -X
\end{array}\right]
$$

Ideal preconditioner in terms of spectral distribution [Morini, Simoncini, Tani].

Numerical Results: condition number and direct solvers

QP problems from CUTEr solved with PDCO [Saunders]. $K_{3, \text { reg }}$ nonsingular at the solution.
$\delta=\rho=10^{-6}$, accuracy on feasibility and complementarity: 10^{-6}.

Problem (n,m)	$\kappa_{e}\left(K_{3, \text { reg })}\right.$ min-max	$\kappa_{e}\left(K_{2, \mathrm{reg}}\right)$ min-max	Backslash Time $K_{3, \text { reg }}$	Backslash Time $K_{2, \mathrm{reg}}$
CVXQP1 $(10000,5000)$	$4-5$	$4-9$	25.1	5.7
CVXQP2 $(10000,7500)$	$3-5$	$3-9$	13.0	4.4
CVXQP3 $(10000,7500)$	$4-5$	$4-9$	34.4	6.2
STCQP1 $(16385,8190)$	$6-7$	$7-13$	127.3	4.4
GOULDQP3 $(19999,9999)$	$7-10$	$7-13$	2.9	0.6

$\kappa_{e}(\cdot)$: estimate of the 1-norm condition number (Matlab function condest), expressed in the form $10^{\min -\max }$.

Total execution time (secs) for solving the sequence of linear systems
Analogous results are valid without regularization though $\kappa_{e}\left(K_{2, \text { reg }}\right)$ is higher than above.

Control on inexactness

$$
\left\|K_{3, \text { reg }} \Delta_{3}-f_{3}\right\| \leq \eta \tau, \quad\left\|K_{2, \text { reg }} \Delta_{2}-f_{2}\right\| \leq \eta \tau
$$

$\tau=x^{T} z / n, \eta=10^{-2}$.

	$P_{\mathcal{C}}$-GMRES		$P_{\mathcal{D}}$-MINRES	
Problem	$K_{3, \text { reg }}$ Time	$K_{2, \text { reg }}$ Time	$K_{3, \text { sym }}$ Time	$K_{2, \text { reg }}$ Time
CVXQP1 $(10000,5000)$	1.0	0.7	2.3	1.9
CVXQP2 $(10000,7500)$	0.8	0.5	1.6	1.0
CVXQP3 $(10000,7500)$	2.1	1.7	3.7	3.2
STCQP1 $(16385,8190)$	12.7	23.8	2.5	2.1
GOULDQP3 $(19999,9999)$	1.6	0.9	1.8	1.9

Total execution time (secs) for solving the sequence of linear unreduced and reduced systems

Work in progress and open problems

- The use of unreduced systems may be appealing for stability however the effect of ill-conditioning is benign with direct solvers.
- As for the iterative solvers, the iteration counts of a Krylov method are similar for any considered formulation of the systems but the computational cost is higher in the 3 x 3 formulations.
- We are currently investigating when the effect of ill-conditioning is benign in Inexact IP methods.
Morini and S., Ill-conditioning in Inexact Interior-Point methods for convex quadratic programming, in progress.

References
Spectral estimates for unreduced symmetric KKT systems arising from Interior Point methods,
B. Morini, V.S., M. Tani, Numerical Linear Algebra w/Appl., 2016.

A comparison of reduced and unreduced symmetric KKT systems arising from Interior Point methods,
B. Morini, V.S., M. Tani, submitted.

