Computational methods for large-scale linear matrix equations: recent advances

V. Simoncini

Dipartimento di Matematica, Università di Bologna
valeria.simoncini@unibo.it

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Multiterm matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Control, (Stochastic) PDEs, ...

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Multiterm matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Control, (Stochastic) PDEs, ...
Focus: All or some of the matrices are large (and possibly sparse)

Solving the Lyapunov equation. The problem
Approximate \mathbf{X} in:

$$
A \mathbf{X}+\mathbf{X} A^{\top}+B B^{\top}=0
$$

$A \in \mathbb{R}^{n \times n}$ neg.real $\quad B \in \mathbb{R}^{n \times p}, \quad 1 \leq p \ll n$

Solving the Lyapunov equation. The problem
Approximate \mathbf{X} in:

$$
A \mathbf{X}+\mathbf{X} A^{\top}+B B^{\top}=0
$$

$A \in \mathbb{R}^{n \times n}$ neg.real $\quad B \in \mathbb{R}^{n \times p}, \quad 1 \leq p \ll n$

Time-invariant linear system:

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+B \mathbf{u}(t), \quad \mathbf{x}(0)=x_{0}
$$

Closed form solution:

$$
\mathbf{X}=\int_{0}^{\infty} e^{-t A} B B^{\top} e^{-t A^{\top}} d t
$$

$\Rightarrow \quad \mathbf{X}$ symmetric semidef.
see, e.g., Antoulas '05, Benner '06

Linear systems vs linear matrix equations
Large linear systems:

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$
A P^{-1} \widetilde{x}=b \quad x=P^{-1} \widetilde{x}
$$

is easier and fast to solve

Linear systems vs linear matrix equations
Large linear systems:

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$
A P^{-1} \widetilde{x}=b \quad x=P^{-1} \widetilde{x}
$$

is easier and fast to solve
Large linear matrix equations:

$$
A \mathbf{X}+\mathbf{X} A^{\top}+B B^{\top}=0
$$

- No preconditioning - to preserve symmetry
- \mathbf{X} is a large, dense matrix \Rightarrow low rank approximation

$$
\mathbf{X} \approx \widetilde{X}=Z Z^{\top}, \quad Z \text { tall }
$$

Linear systems vs linear matrix equations
Large linear systems:

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$
A P^{-1} \widetilde{x}=b \quad x=P^{-1} \widetilde{x}
$$

is easier and fast to solve
Large linear matrix equations:

$$
A \mathbf{X}+\mathbf{X} A^{\top}+B B^{\top}=0
$$

Kronecker formulation:

$$
(A \otimes I+I \otimes A) x=b \quad x=\operatorname{vec}(\mathbf{X})
$$

Projection-type methods

Given an approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Projection-type methods

Given an approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Assume $V_{m}^{\top} V_{m}=I_{m}$ and let $X_{m}:=V_{m} Y_{m} V_{m}^{\top}$.
Projected Lyapunov equation:

$$
V_{m}^{\top}\left(A V_{m} Y_{m} V_{m}^{\top}+V_{m} Y_{m} V_{m}^{\top} A^{\top}+B B^{\top}\right) V_{m}=0
$$

Projection-type methods

Given an approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Assume $V_{m}^{\top} V_{m}=I_{m}$ and let $X_{m}:=V_{m} Y_{m} V_{m}^{\top}$.
Projected Lyapunov equation:

$$
\begin{aligned}
V_{m}^{\top}\left(A V_{m} Y_{m} V_{m}^{\top}+V_{m} Y_{m} V_{m}^{\top} A^{\top}+B B^{\top}\right) V_{m} & =0 \\
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} B B^{\top} V_{m} & =0
\end{aligned}
$$

Early contributions: Saad '90, Jaimoukha \& Kasenally '94, for
$\mathcal{K}=\mathcal{K}_{m}(A, B)=\operatorname{Range}\left(\left[B, A B, \ldots, A^{m-1} B\right]\right)$

More recent options as approximation space
Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2} B, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

More recent options as approximation space
Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2} B, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

- Rational Krylov subspace

$$
\mathcal{K}=\mathbb{K}:=\operatorname{Range}\left(\left[B,\left(A-s_{1} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

usually, $\left\{s_{1}, \ldots, s_{m}\right\} \subset \mathbb{C}^{+}$chosen a-priori

More recent options as approximation space
Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2} B, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

- Rational Krylov subspace

$$
\mathcal{K}=\mathbb{K}:=\operatorname{Range}\left(\left[B,\left(A-s_{1} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

usually, $\left\{s_{1}, \ldots, s_{m}\right\} \subset \mathbb{C}^{+}$chosen a-priori
In both cases, for Range $\left(V_{m}\right)=\mathcal{K}$, projected Lyapunov equation:

$$
\begin{aligned}
& \left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} B B^{\top} V_{m}=0 \\
X_{m}= & V_{m} Y_{m} V_{m}^{\top}
\end{aligned}
$$

Multiterm linear matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Applications:

- Matrix least squares
- Control
- (Stochastic) PDEs

Multiterm linear matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Applications:

- Matrix least squares
- Control
- (Stochastic) PDEs
- ...

Main device: Kronecker formulation

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) x=c
$$

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)

Multiterm linear matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Applications:

- Matrix least squares
- Control
- (Stochastic) PDEs

Alternative approaches:
low-rank approx in the problem space. Some examples:

- Control problem
- PDEs on uniform discretizations
- Stochastic PDE

A class of generalized Lyapunov equations

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0
$$

* $A \in \mathbb{R}^{n \times n}$ nonsing
* $N_{j} \in \mathbb{R}^{n \times n}$ low rank
* $B \in \mathbb{R}^{n \times \ell}, \ell \ll n$

Typical applications:

- Model order reduction of bilinear control systems
- Linear parameter-varying systems
- Stability analysis of linear stochastic differential equations

Stationary iterative methods by splitting

$$
\begin{gathered}
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 \\
\mathcal{M}(X)-\mathcal{N}(X)+B B^{T}=0
\end{gathered}
$$

where

$$
\begin{aligned}
\mathcal{M}(X) & =A X+X A^{T}(\text { Lyapunov operator }) \\
-\mathcal{N}(X) & =\sum_{i=1}^{m} N_{j} X N_{j}^{T}
\end{aligned}
$$

Stationary iterative methods by splitting

$$
\begin{gathered}
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 \\
\mathcal{M}(X)-\mathcal{N}(X)+B B^{T}=0
\end{gathered}
$$

where

$$
\begin{aligned}
\mathcal{M}(X) & =A X+X A^{T}(\text { Lyapunov operator }) \\
-\mathcal{N}(X) & =\sum_{i=1}^{m} N_{j} X N_{j}^{T}
\end{aligned}
$$

Assuming that (A, B) is controllable and X sym positive semi-def then

$$
\operatorname{spec}(A) \subset \mathbb{C}^{-}, \quad \rho\left(\mathcal{M}^{-1} \mathcal{N}\right)<1
$$

Stationary iteration:

$$
\mathcal{M}\left(X_{k}\right)=\mathcal{N}\left(X_{k-1}\right)-B B^{T}, \quad k=1,2, \ldots
$$

(Shank \& Simoncini \& Szyld, 2016)

Stationary iterative methods by splitting. Cont'd

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0
$$

Stationary iteration:

$$
\mathcal{M}\left(X_{k}\right)=\mathcal{N}\left(X_{k-1}\right)-B B^{T}, \quad k=1,2, \ldots
$$

In practice:

$$
\begin{aligned}
& \text { Approximately Solve } A X+X A^{T}+B B^{T}=0 \text { for } X_{1}=Z_{1} Z_{1}^{T} \\
& \text { for } k=2,3, \ldots \\
& \text { Set } B_{k}=\left[N_{1} Z_{k-1}, \cdots, N_{m} Z_{k-1}, B\right] \\
& \text { Approximately Solve } A X+X A^{T}+B_{k} B_{k}^{T}=0 \text { for } X_{k}=Z_{k} Z_{k}^{T} \\
& \text { If sufficiently accurate then stop }
\end{aligned}
$$

Stationary iterative methods by splitting. Cont'd

$$
\begin{aligned}
& \text { Approximately Solve } A X+X A^{T}+B B^{T}=0 \text { for } X_{1}=Z_{1} Z_{1}^{T} \\
& \text { for } k=2,3, \ldots \\
& \quad \text { Set } B_{k}=\left[N_{1} Z_{k-1}, \cdots, N_{m} Z_{k-1}, B\right] \\
& \text { Approximately Solve } A X+X A^{T}+B_{k} B_{k}^{T}=0 \text { for } X_{k}=Z_{k} Z_{k}^{T} \\
& \text { If sufficiently accurate then stop }
\end{aligned}
$$

Challenges:

- Inexact solves of Lyapunov equation at each step k
- Increase of B_{k} 's rank
- Computational cost of Lyapunov solves
- Memory effective stopping criterion

Matrix equations in PDEs
The Poisson equation - revisited

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2}
$$

+ Dirichlet b.c. (zero b.c. for simplicity)
Usual discretization $\Rightarrow \quad A u=b \quad($ with $A=T \otimes I+I \otimes T)$

Matrix equations in PDEs
The Poisson equation - revisited

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2}
$$

+ Dirichlet b.c. (zero b.c. for simplicity)
Usual discretization $\Rightarrow \quad A u=b \quad$ (with $A=T \otimes I+I \otimes T$)

Discretization: $U_{i, j} \approx u_{x_{i}, y_{j}}$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that h : meshsize

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-1}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
T \mathbf{U}+\mathbf{U} T=F, \quad b=\operatorname{vec}(F)
\end{gathered}
$$

$$
-\Delta u=1, \quad \Omega=(0,1)^{3} \quad \Rightarrow \quad A=(T \otimes I \otimes I+I \otimes T \otimes I+I \otimes I \otimes T)
$$

$-\Delta u=1, \quad \Omega=(0,1)^{3} \quad \Rightarrow \quad A=(T \otimes I \otimes I+I \otimes T \otimes I+I \otimes I \otimes T)$ CG for $A x=b$ vs Iterative solver for $(I \otimes T+T \otimes I) \mathbf{U}+\mathbf{U} T=F$ $T \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n^{3} \times n^{3}}, \quad n=50$

	CG	PCG	Matrix Eqn solver
Elapsed Time	2.91	0.56	0.08

A 3D convection-diffusion equation

$-\epsilon \Delta u+\mathbf{w} \cdot \nabla u=1$, in $\Omega=(0,1)^{3}$, with convection term

$$
\mathbf{w}=\left(x \sin x, y \cos y, e^{z^{2}-1}\right)
$$

Sylvester equation:

$$
\left[I \otimes\left(T_{1}+\Phi_{1} B_{1}\right)+\left(T_{2}+\Psi_{2} B_{2}\right)^{\top} \otimes I\right] \mathbf{U}+\mathbf{U}\left(T_{3}+B_{3} \Upsilon_{3}\right)=\mathbf{1 1}^{\top}
$$

ϵ	n_{x}	FGMRES+AGMG CPU time (\# its)	GMRES+MI20 CPU time (\# its)	Sylv Solver CPU time (\# its)
0.0050	100	$8.0207(15)$	$9.7207(7)$	$0.5677(22)$
0.0010	100	$7.6815(14)$	$9.4935(7)$	$0.5446(22)$
0.0005	100	$7.3914(14)$	$9.6274(7)$	$0.5927(24)$

- Also for more general, separable coeff., operators on uniform grids
- If not separable coeff., use as preconditioner
(Palitta \& Simoncini 2016)

... A classical approach

Matrix formulation is not new...

- Bickley \& McNamee, 1960: Early literature on difference equations
- Wachspress, 1963: Model problem for ADI algorithm
- Ellner \& Wachspress (1980's): interplay between the matrix and vector formulations (via preconditioning)

Novel solvers for matrix equations allow faster convergence

PDEs with random inputs

Stochastic steady-state diffusion eqn: Find $u: D \times \Omega \rightarrow \mathbb{R}$ s.t. \mathbb{P}-a.s.,

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\mathbf{x}, \omega) \nabla u(\mathbf{x}, \omega)) & =f(\mathbf{x}) & & \text { in } D \\
u(\mathbf{x}, \omega) & =0 & & \text { on } \partial D
\end{aligned}\right.
$$

f : deterministic;
a : random field, linear function of finite no. of real-valued random variables $\xi_{r}: \Omega \rightarrow \Gamma_{r} \subset \mathbb{R}$
Common choice: truncated Karhunen-Loève (KL) expansion,

$$
a(\mathbf{x}, \omega)=\mu(\mathbf{x})+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} \phi_{r}(\mathbf{x}) \xi_{r}(\omega),
$$

$\mu(\mathbf{x})$: expected value of diffusion coef. σ : std dev.
$\left(\lambda_{r}, \phi_{r}(\mathbf{x})\right)$ eigs of the integral operator \mathcal{V} wrto $V\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{\sigma^{2}} C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
$\left(\lambda_{r} \searrow \quad C: D \times D \rightarrow \mathbb{R}\right.$ covariance fun.)

Discretization by stochastic Galerkin

Approx with space in tensor product form ${ }^{\text {a }} \mathcal{X}_{h} \times S_{p}$

$$
\mathcal{A} \mathbf{x}=\mathbf{b}, \quad \mathcal{A}=G_{0} \otimes K_{0}+\sum_{r=1}^{m} G_{r} \otimes K_{r}, \quad \mathbf{b}=\mathbf{g}_{0} \otimes \mathbf{f}_{0}
$$

\mathbf{x} : expansion coef. of approx to u in the tensor product basis $\left\{\varphi_{i} \psi_{k}\right\}$
$K_{r} \in \mathbb{R}^{n_{x} \times n_{x}}$, FE matrices (sym)
$G_{r} \in \mathbb{R}^{n_{\xi} \times n_{\xi}}, r=0,1, \ldots, m$ Galerkin matrices associated w/ S_{p} (sym.)
g_{0} : first column of G_{0}
f_{0} : FE rhs of deterministic PDE

$$
n_{\xi}=\operatorname{dim}\left(S_{p}\right)=\frac{(m+p)!}{m!p!} \quad \Rightarrow n_{x} \cdot n_{\xi} \text { huge }
$$

[^0]The matrix equation formulation

$$
\left(G_{0} \otimes K_{0}+G_{1} \otimes K_{1}+\ldots+G_{m} \otimes K_{m}\right) \mathbf{x}=\mathbf{g}_{0} \otimes \mathbf{f}_{0}
$$

transforms into

$$
\begin{aligned}
& \quad K_{0} \mathbf{X} G_{0}+K_{1} \mathbf{X} G_{1}+\ldots+K_{m} \mathbf{X} G_{m}=F, \quad F=\mathbf{f}_{0} \mathbf{g}_{0}^{\top} \\
& \left(G_{0}=I\right)
\end{aligned}
$$

Solution strategy. Conjecture:

- $\left\{K_{r}\right\}$ from trunc'd Karhunen-Loève (KL) expansion

$$
\mathbf{X} \approx \tilde{X} \text { low rank, } \widetilde{X}=X_{1} X_{2}^{T}
$$

(Possibly extending results of Gradesyk, 2004)

Matrix Galerkin approximation of the deterministic part. 1
Approximation space \mathcal{K}_{k} and basis matrix $V_{k}: \quad \mathbf{X} \approx X_{k}=V_{k} Y$

$$
V_{k}^{\top} R_{k}=0, \quad R_{k}:=K_{0} X_{k}+K_{1} X_{k} G_{1}+\ldots+K_{m} X_{k} G_{m}-\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

Computational challenges:

- Generation of \mathcal{K}_{k} involved $m+1$ different matrices $\left\{K_{r}\right\}$!
- Matrices K_{r} have different spectral properties
- n_{x}, n_{ξ} so large that X_{k}, R_{k} should not be formed !

Joint project with Catherine Powell, David Silvester, Univ. Manchester

Example 2. $-\nabla \cdot(a \nabla u)=1, \quad D=(-1,1)^{2}$. KL expansion.

$\mu=1, \xi_{r} \sim U(-\sqrt{3}, \sqrt{3})$ and $C\left(\vec{x}_{1}, \vec{x}_{2}\right)=\sigma^{2} \exp \left(-\frac{\left\\|\vec{x}_{1}-\vec{x}_{2}\right\\|_{1}}{2}\right), n_{x}=65,025, ~$								
m	p	n_{ξ}		inner its		$\begin{array}{r} \text { rank } \\ \widetilde{\mathbf{X}} \end{array}$	time secs	$\begin{array}{r} \text { CG } \\ \text { time (its) } \end{array}$
8$87 \%$	2	45	17	9.8	128	45	32.1	13.4 (8)
	3	165	21	12.2	160	129	41.4	56.6 (10)
	4	495	24	14.5	183	178	51.1	197.0 (12)
	5	1,287	27	16.9	207	207	64.0	553.0 (13)
$\begin{gathered} 12 \\ 89 \% \end{gathered}$	2	91	15	9.9	165	89	47.8	30.0 (8)
	3	455	18	12.2	201	196	61.6	175.0 (10)
	4	1,820	21	15.0	236	236	86.4	821.0 (12)
	5	6,188	25	18.6	281	281	188.0	3070.0 (13)
$\begin{gathered} 20 \\ 93 \% \end{gathered}$	2	231	16	9.4	281	206	111.0	94.7 (8)
	3	1,771	23	12.3	399	399	197.0	845.0 (10)
	4	10,626	26	15.4	454	454	556.0	Out of Mem

Not discussed but in this category

- Bilinear systems of matrix equation

$$
\begin{aligned}
& A_{1} X+Y B_{1}=C_{1} \\
& A_{2} X+Y B_{2}=C_{2}
\end{aligned}
$$

...very few numerical procedures available

Not discussed but in this category

- Bilinear systems of matrix equation

$$
\begin{aligned}
& A_{1} X+Y B_{1}=C_{1} \\
& A_{2} X+Y B_{2}=C_{2}
\end{aligned}
$$

...very few numerical procedures available

- Sylvester-like linear matrix equations

$$
\begin{aligned}
& \qquad A X+f(X) B=C \\
& \text { typically (but not only!): } f(X)=\bar{X}, f(X)=X^{\top}, \text { or } f(X)=X^{*} \\
& \text { (Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, } \\
& \text { Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, } \\
& \text { Vorntsov, Watkins, Wu, ...) }
\end{aligned}
$$

Not discussed but in this category

- Bilinear systems of matrix equation

$$
\begin{aligned}
& A_{1} X+Y B_{1}=C_{1} \\
& A_{2} X+Y B_{2}=C_{2}
\end{aligned}
$$

...very few numerical procedures available

- Sylvester-like linear matrix equations

$$
\begin{aligned}
& \qquad A X+f(X) B=C \\
& \text { typically (but not only!): } f(X)=\bar{X}, f(X)=X^{\top}, \text { or } f(X)=X^{*} \\
& \text { (Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, } \\
& \text { Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, } \\
& \text { Vorntsov, Watkins, Wu, ...) }
\end{aligned}
$$

- Linear systems with complex tensor structure

$$
\mathcal{A} \mathbf{x}=b \quad \text { with } \quad \mathcal{A}=\sum_{j=1}^{k} I_{n_{1}} \otimes \cdots \otimes I_{n_{j-1}} \otimes A_{j} \otimes I_{n_{j+1}} \cdots \otimes I_{n_{k}} .
$$

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov, and many more...

Conclusions

Multiterm (Kron) linear equations is the new challenge

- Great advances in solving really large linear matrix equations
- Second order (matrix) challenges rely on strength and maturity of linear system solvers
- Low-rank tensor formats is the new generation of approximations

Reference for linear matrix equations:

* V. Simoncini,

Computational methods for linear matrix equations, SIAM Review, Sept. 2016.

[^0]: ${ }^{\mathrm{a}} S_{p}$ set of multivariate polyn of total degree $\leq p$

