

Computational methods for large-scale linear matrix equations: recent advances

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

• Sylvester matrix equation

$$A\mathbf{X} + \mathbf{X}B + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

• Sylvester matrix equation

$$A\mathbf{X} + \mathbf{X}B + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\mathsf{T}} + D = 0, \qquad D = D^{\mathsf{T}}$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Sylvester matrix equation

$$AX + XB + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\mathsf{T}} + D = 0, \qquad D = D^{\mathsf{T}}$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Multiterm matrix equation

$$A_1\mathbf{X}B_1 + A_2\mathbf{X}B_2 + \ldots + A_{\ell}\mathbf{X}B_{\ell} = C$$

Control, (Stochastic) PDEs, ...

Sylvester matrix equation

$$AX + XB + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

• Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\mathsf{T}} + D = 0, \qquad D = D^{\mathsf{T}}$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Multiterm matrix equation

$$A_1\mathbf{X}B_1 + A_2\mathbf{X}B_2 + \ldots + A_\ell\mathbf{X}B_\ell = C$$

Control, (Stochastic) PDEs, ...

Focus: All or some of the matrices are large (and possibly sparse)

Solving the Lyapunov equation. The problem

Approximate X in:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

$$A \in \mathbb{R}^{n \times n}$$
 neg.real $B \in \mathbb{R}^{n \times p}, \qquad 1 \leq p \ll n$

Solving the Lyapunov equation. The problem

Approximate X in:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

$$A \in \mathbb{R}^{n \times n}$$
 neg.real $B \in \mathbb{R}^{n \times p}, \qquad 1 \leq p \ll n$

Time-invariant linear system:

$$\mathbf{x}'(t) = A\mathbf{x}(t) + B\mathbf{u}(t), \quad \mathbf{x}(0) = x_0$$

Closed form solution:

$$\mathbf{X} = \int_0^\infty e^{-tA} B B^{\top} e^{-tA^{\top}} dt$$

X symmetric semidef.

see, e.g., Antoulas '05, Benner '06

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Large linear matrix equations:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

- No preconditioning to preserve symmetry
- \bullet X is a large, dense matrix \Rightarrow low rank approximation

$$\mathbf{X} pprox \widetilde{X} = ZZ^{\top}, \quad Z \text{ tall}$$

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Large linear matrix equations:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

Kronecker formulation:

$$(A \otimes I + I \otimes A)x = b$$
 $x = \text{vec}(\mathbf{X})$

Projection-type methods

Given an approximation space K,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition:
$$R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Projection-type methods

Given an approximation space \mathcal{K} ,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition:
$$R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Assume $V_m^\top V_m = I_m$ and let $X_m := V_m Y_m V_m^\top$.

Projected Lyapunov equation:

$$V_m^{\top} (AV_m Y_m V_m^{\top} + V_m Y_m V_m^{\top} A^{\top} + BB^{\top}) V_m = 0$$

Projection-type methods

Given an approximation space \mathcal{K} ,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition:
$$R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Assume $V_m^\top V_m = I_m$ and let $X_m := V_m Y_m V_m^\top$.

Projected Lyapunov equation:

$$V_{m}^{\top} (AV_{m}Y_{m}V_{m}^{\top} + V_{m}Y_{m}V_{m}^{\top}A^{\top} + BB^{\top})V_{m} = 0$$
$$(V_{m}^{\top}AV_{m})Y_{m} + Y_{m}(V_{m}^{\top}A^{\top}V_{m}) + V_{m}^{\top}BB^{\top}V_{m} = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for

$$\mathcal{K} = \mathcal{K}_m(A, B) = \text{Range}([B, AB, \dots, A^{m-1}B])$$

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

$$\mathcal{K} = \mathcal{K}_m(A,B) + \mathcal{K}_m(A^{-1},A^{-1}B),$$
 that is,
$$\mathcal{K} = \mathrm{Range}([B,A^{-1}B,AB,A^{-2}B,A^2B,A^{-3}B,\dots,])$$
 (Druskin & Knizhnerman '98, Simoncini '07)

More recent options as approximation space

Enrich space to decrease space dimension

Extended Krylov subspace

$$\mathcal{K}=\mathcal{K}_m(A,B)+\mathcal{K}_m(A^{-1},A^{-1}B),$$
 that is, $\mathcal{K}=\mathrm{Range}([B,A^{-1}B,AB,A^{-2}B,A^2B,A^{-3}B,\dots,])$ (Druskin & Knizhnerman '98, Simoncini '07)

Rational Krylov subspace

$$\mathcal{K} = \mathbb{K} := \operatorname{Range}([B, (A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B])$$
 usually, $\{s_1, \dots, s_m\} \subset \mathbb{C}^+$ chosen a-priori

More recent options as approximation space

Enrich space to decrease space dimension

Extended Krylov subspace

$$\mathcal{K}=\mathcal{K}_m(A,B)+\mathcal{K}_m(A^{-1},A^{-1}B),$$
 that is, $\mathcal{K}=\mathrm{Range}([B,A^{-1}B,AB,A^{-2}B,A^2B,A^{-3}B,\dots,])$ (Druskin & Knizhnerman '98, Simoncini '07)

Rational Krylov subspace

$$\mathcal{K} = \mathbb{K} := \operatorname{Range}([B, (A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B])$$
 usually, $\{s_1, \dots, s_m\} \subset \mathbb{C}^+$ chosen a-priori

In both cases, for Range $(V_m) = \mathcal{K}$, projected Lyapunov equation:

$$(V_m^\top A V_m) Y_m + Y_m (V_m^\top A^\top V_m) + V_m^\top B B^\top V_m = 0$$
$$X_m = V_m Y_m V_m^\top$$

Multiterm linear matrix equation

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

Applications:

- Matrix least squares
- Control
- (Stochastic) PDEs
- ...

Multiterm linear matrix equation

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

Applications:

- Matrix least squares
- Control
- (Stochastic) PDEs
- ...

Main device: Kronecker formulation

$$(B_1^{\top} \otimes A_1 + \ldots + B_{\ell}^{\top} \otimes A_{\ell}) x = c$$

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)

Multiterm linear matrix equation

$$A_1\mathbf{X}B_1 + A_2\mathbf{X}B_2 + \ldots + A_\ell\mathbf{X}B_\ell = C$$

Applications:

- Matrix least squares
- Control
- (Stochastic) PDEs
- ...

Alternative approaches:

low-rank approx in the problem space. Some examples:

- Control problem
- PDEs on uniform discretizations
- Stochastic PDE

A class of generalized Lyapunov equations

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$

- * $A \in \mathbb{R}^{n \times n}$ nonsing
- * $N_j \in \mathbb{R}^{n \times n}$ low rank
- * $B \in \mathbb{R}^{n \times \ell}$, $\ell \ll n$

Typical applications:

- Model order reduction of bilinear control systems
- Linear parameter-varying systems
- Stability analysis of linear stochastic differential equations

Stationary iterative methods by splitting

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$

$$\mathcal{M}(X) - \mathcal{N}(X) + BB^T = 0,$$

where $\mathcal{M}(X) = AX + XA^T$ (Lyapunov operator)

$$-\mathcal{N}(X) = \sum_{i=1}^{m} N_j X N_j^T$$

Stationary iterative methods by splitting

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$

$$\mathcal{M}(X) - \mathcal{N}(X) + BB^T = 0,$$

where

$$\mathcal{M}(X) = AX + XA^T$$
 (Lyapunov operator)

$$-\mathcal{N}(X) = \sum_{i=1}^{m} N_j X N_j^T$$

Assuming that (A,B) is controllable and X sym positive semi-def then

$$\operatorname{spec}(A) \subset \mathbb{C}^-, \qquad \rho(\mathcal{M}^{-1}\mathcal{N}) < 1$$

Stationary iteration:

$$\mathcal{M}(X_k) = \mathcal{N}(X_{k-1}) - BB^T, \quad k = 1, 2, \dots$$

(Shank & Simoncini & Szyld, 2016)

Stationary iterative methods by splitting. Cont'd

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$

Stationary iteration:

$$\mathcal{M}(X_k) = \mathcal{N}(X_{k-1}) - BB^T, \quad k = 1, 2, \dots$$

In practice:

Approximately Solve
$$AX + XA^T + BB^T = 0$$
 for $X_1 = Z_1Z_1^T$ for $k = 2, 3, ...$ Set $B_k = [N_1Z_{k-1}, \cdots, N_mZ_{k-1}, B]$ Approximately Solve $AX + XA^T + B_kB_k^T = 0$ for $X_k = Z_kZ_k^T$ If sufficiently accurate then stop

Stationary iterative methods by splitting. Cont'd

Approximately Solve
$$AX + XA^T + BB^T = 0$$
 for $X_1 = Z_1Z_1^T$ for $k = 2, 3, ...$

Set $B_k = [N_1Z_{k-1}, \cdots, N_mZ_{k-1}, B]$

Approximately Solve $AX + XA^T + B_kB_k^T = 0$ for $X_k = Z_kZ_k^T$

If sufficiently accurate then stop

Challenges:

- Inexact solves of Lyapunov equation at each step k
- Increase of B_k 's rank
- Computational cost of Lyapunov solves
- Memory effective stopping criterion

Matrix equations in PDEs

The Poisson equation - revisited

$$-u_{xx} - u_{yy} = f$$
, in $\Omega = (0, 1)^2$

+ Dirichlet b.c. (zero b.c. for simplicity)

Usual discretization \Rightarrow Au = b (with $A = T \otimes I + I \otimes T$)

Matrix equations in PDEs

The Poisson equation - revisited

$$-u_{xx} - u_{yy} = f$$
, in $\Omega = (0,1)^2$

+ Dirichlet b.c. (zero b.c. for simplicity)

Usual discretization \Rightarrow Au = b (with $A = T \otimes I + I \otimes T$)

Discretization: $U_{i,j} \approx u_{x_i,y_j}$, with (x_i,y_j) interior nodes, so that h: meshsize

$$u_{xx}(x_i, y_j) \approx \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} = \frac{1}{h^2} [1, -2, 1] \begin{bmatrix} U_{i-1,j} \\ U_{i,j} \\ U_{i+1,j} \end{bmatrix}$$

$$u_{yy}(x_i, y_j) \approx \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h^2} = \frac{1}{h^2} [U_{i,j-1}, U_{i,j}, U_{i,j+1}] \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$$

$$T\mathbf{U} + \mathbf{U}T = F, \qquad b = \text{vec}(F)$$

$$-\Delta u = 1, \quad \Omega = (0,1)^3 \quad \Rightarrow \quad A = (T \otimes I \otimes I + I \otimes T \otimes I + I \otimes I \otimes T)$$

 $-\Delta u = 1, \quad \Omega = (0,1)^3 \quad \Rightarrow \quad A = (T \otimes I \otimes I + I \otimes T \otimes I + I \otimes I \otimes T)$

CG for Ax = b vs Iterative solver for $(I \otimes T + T \otimes I)\mathbf{U} + \mathbf{U}T = F$

$$T \in \mathbb{R}^{n \times n}$$
, $A \in \mathbb{R}^{n^3 \times n^3}$, $n = 50$

	CG	PCG	Matrix Eqn solver
Elapsed Time	2.91	0.56	0.08

A 3D convection-diffusion equation

$$-\epsilon\Delta u+\mathbf{w}\cdot\nabla u=1$$
, in $\Omega=(0,1)^3$, with convection term
$$\mathbf{w}=(x\sin x,y\cos y,e^{z^2-1})$$

Sylvester equation:

$$[I \otimes (T_1 + \Phi_1 B_1) + (T_2 + \Psi_2 B_2)^{\top} \otimes I] \mathbf{U} + \mathbf{U} (T_3 + B_3 \Upsilon_3) = \mathbf{1} \mathbf{1}^{\top}$$

ϵ	n_x	FGMRES+AGMG	GMRES+MI20	Sylv Solver	
		CPU time (# its)	CPU time (# its)	CPU time (# its)	
0.0050	100	8.0207 (15)	9.7207 (7)	0.5677 (22)	
0.0010	100	7.6815 (14)	9.4935 (7)	0.5446 (22)	
0.0005	100	7.3914 (14)	9.6274 (7)	0.5927 (24)	

- Also for more general, separable coeff., operators on uniform grids
- If not separable coeff., use as preconditioner

(Palitta & Simoncini 2016)

... A classical approach

Matrix formulation is not new...

- Bickley & McNamee, 1960: Early literature on difference equations
- Wachspress, 1963: Model problem for ADI algorithm
- Ellner & Wachspress (1980's): interplay between the matrix and vector formulations (via preconditioning)

Novel solvers for matrix equations allow faster convergence

PDEs with random inputs

Stochastic steady-state diffusion eqn: $Find\ u: D \times \Omega \to \mathbb{R}\ s.t.\ \mathbb{P}$ -a.s.,

$$\begin{cases}
-\nabla \cdot (a(\mathbf{x}, \omega)\nabla u(\mathbf{x}, \omega)) = f(\mathbf{x}) & in D \\
u(\mathbf{x}, \omega) = 0 & on \partial D
\end{cases}$$

f: deterministic;

a: random field, linear function of finite no. of real-valued random variables $\xi_r:\Omega\to\Gamma_r\subset\mathbb{R}$

Common choice: truncated Karhunen-Loève (KL) expansion,

$$a(\mathbf{x}, \omega) = \mu(\mathbf{x}) + \sigma \sum_{r=1}^{m} \sqrt{\lambda_r} \phi_r(\mathbf{x}) \xi_r(\omega),$$

 $\mu(\mathbf{x})$: expected value of diffusion coef. σ : std dev. $(\lambda_r, \phi_r(\mathbf{x})) \text{ eigs of the integral operator } \mathcal{V} \text{ wrto } V(\mathbf{x}, \mathbf{x}') = \frac{1}{\sigma^2} C(\mathbf{x}, \mathbf{x}')$ $(\lambda_r \searrow C: D \times D \to \mathbb{R} \text{ covariance fun. })$

Discretization by stochastic Galerkin

Approx with space in tensor product form $\mathcal{X}_h \times S_p$

$$\mathcal{A}\mathbf{x} = \mathbf{b}, \qquad \mathcal{A} = G_0 \otimes K_0 + \sum_{r=1}^m G_r \otimes K_r, \quad \mathbf{b} = \mathbf{g}_0 \otimes \mathbf{f}_0,$$

 \mathbf{x} : expansion coef. of approx to u in the tensor product basis $\{\varphi_i\psi_k\}$

 $K_r \in \mathbb{R}^{n_x \times n_x}$, FE matrices (sym)

 $G_r \in \mathbb{R}^{n_\xi \times n_\xi}$, $r = 0, 1, \dots, m$ Galerkin matrices associated w/ S_p (sym.)

 \mathbf{g}_0 : first column of G_0

 \mathbf{f}_0 : FE rhs of deterministic PDE

$$n_{\xi} = \dim(S_p) = \frac{(m+p)!}{m!p!}$$
 $\Rightarrow \boxed{n_x \cdot n_{\xi}}$ huge

 $^{{}^{\}mathbf{a}}S_{p}$ set of multivariate polyn of total degree $\leq p$

The matrix equation formulation

$$(G_0 \otimes K_0 + G_1 \otimes K_1 + \ldots + G_m \otimes K_m) \mathbf{x} = \mathbf{g}_0 \otimes \mathbf{f}_0$$

transforms into

$$K_0\mathbf{X}G_0+K_1\mathbf{X}G_1+\ldots+K_m\mathbf{X}G_m=F, \qquad F=\mathbf{f}_0\mathbf{g}_0^{ op}$$
 $(G_0=I)$

Solution strategy. Conjecture:

• $\{K_r\}$ from trunc'd Karhunen-Loève (KL) expansion

$$\mathbf{X} \approx \widetilde{X} \text{ low rank, } \widetilde{X} = X_1 X_2^T$$

(Possibly extending results of Gradesyk, 2004)

Matrix Galerkin approximation of the deterministic part. 1

Approximation space K_k and basis matrix V_k : $\mathbf{X} \approx X_k = V_k Y$

$$V_k^{\top} R_k = 0, \qquad R_k := K_0 X_k + K_1 X_k G_1 + \ldots + K_m X_k G_m - \mathbf{f}_0 \mathbf{g}_0^{\top}$$

Computational challenges:

- Generation of \mathcal{K}_k involved m+1 different matrices $\{K_r\}$!
- Matrices K_r have different spectral properties
- n_x, n_ξ so large that X_k, R_k should not be formed !

Joint project with Catherine Powell, David Silvester, Univ. Manchester

Example 2. $-\nabla \cdot (a\nabla u) = 1$, $D = (-1,1)^2$. KL expansion.

$$\mu = 1, \ \xi_r \sim U(-\sqrt{3}, \sqrt{3}) \ \text{and} \ C(\vec{x}_1, \vec{x}_2) = \sigma^2 \exp\left(-\frac{\|\vec{x}_1 - \vec{x}_2\|_1}{2}\right), \ n_x = 65,025,$$

$$\sigma = 0.3$$

m	p	n_{ξ}	k	inner	n_k	rank	time	CG
				its	\mathcal{K}_k	$\widetilde{\mathbf{X}}$	secs	time (its)
	2	45	17	9.8	128	45	32.1	13.4 (8)
8	3	165	21	12.2	160	129	41.4	56.6 (10)
87%	4	495	24	14.5	183	178	51.1	197.0 (12)
	5	1,287	27	16.9	207	207	64.0	553.0 (13)
	2	91	15	9.9	165	89	47.8	30.0 (8)
12	3	455	18	12.2	201	196	61.6	175.0 (10)
89%	4	1,820	21	15.0	236	236	86.4	821.0 (12)
	5	6,188	25	18.6	281	281	188.0	3070.0 (13)
	2	231	16	9.4	281	206	111.0	94.7 (8)
20	3	1,771	23	12.3	399	399	197.0	845.0 (10)
93%	4	10,626	26	15.4	454	454	556.0	Out of Mem

[%] of variance integral of a

Not discussed but in this category

• Bilinear systems of matrix equation

$$A_1X + YB_1 = C_1$$

$$A_2X + YB_2 = C_2$$

...very few numerical procedures available

Not discussed but in this category

Bilinear systems of matrix equation

$$A_1X + YB_1 = C_1$$

$$A_2X + YB_2 = C_2$$

...very few numerical procedures available

Sylvester-like linear matrix equations

$$AX + f(X)B = C$$

typically (but not only!): $f(X) = \bar{X}, \ f(X) = X^{\top}, \ \text{or} \ f(X) = X^*$ (Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov, Watkins, Wu, ...)

Not discussed but in this category

Bilinear systems of matrix equation

$$A_1X + YB_1 = C_1$$

$$A_2X + YB_2 = C_2$$

...very few numerical procedures available

Sylvester-like linear matrix equations

$$AX + f(X)B = C$$

typically (but not only!): $f(X) = \bar{X}, \ f(X) = X^{\top}, \ \text{or} \ f(X) = X^*$ (Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov, Watkins, Wu, ...)

Linear systems with complex tensor structure

$$\mathcal{A}\mathbf{x} = b$$
 with $\mathcal{A} = \sum_{j=1}^{k} I_{n_1} \otimes \cdots \otimes I_{n_{j-1}} \otimes A_j \otimes I_{n_{j+1}} \cdots \otimes I_{n_k}$.

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov, and many more...

Conclusions

Multiterm (Kron) linear equations is the new challenge

- Great advances in solving really large linear matrix equations
- Second order (matrix) challenges rely on strength and maturity of linear system solvers
- Low-rank tensor formats is the new generation of approximations

Reference for linear matrix equations:

★ V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.