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The matrix equation problem

A1XB1 + A2XB2 + . . .+ A`XB` = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a
matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons
currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970
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Multiterm linear matrix equation. Classical device

A1XB1 + A2XB2 + . . .+ A`XB` = C

Kronecker formulation(
B>1 ⊗ A1 + . . .+ B>` ⊗ A`

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta,

Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : M ⊗P =

m11P . . . m1nP
...

. . .
...

mn1P . . . mnnP

 and vec(AXB) = (B>⊗A)vec(X )

Applications:

Control

Deterministic and stochastic, and time dependent PDEs

Inverse problems and optimization
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Multiterm linear matrix equation

A1XB1 + A2XB2 + . . .+ A`XB` = C

Alternative approaches to the Kronecker form:

I Fixed point iterations (an “evergreen”...)

I Projection-type methods ⇒ low rank approximation

I Ad-hoc problem-dependent procedures

I etc.

A sample of these methodologies on different problems:

♣ Stochastic PDE

♣ PDEs on polygonal domains

♣ All-at-once PDE-constrained optimization problem

♣ Bilinear control problems

♣ ....
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u : D × Ω→ R s.t. P-a.s.,{
−∇ · (a(x , ω)∇u(x , ω)) = f (x) in D

u(x , ω) = 0 on ∂D

f : deterministic;
a: random field, linear function of finite no. of real-valued random variables
ξr : Ω→ Γr ⊂ R

Common choice: truncated Karhunen–Loève (KL) expansion,

a(x , ω) = µ(x) + σ
∑̀
r=1

√
λrφr (x)ξr (ω),

µ(x): expected value of diffusion coef. σ: std dev.
(λr , φr (x)) eigs of the integral operator V wrto V (x , x ′) = 1

σ2 C (x , x ′)
(λ↘ C : D × D → R covariance fun. )
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Stochastic Galerkin discretization. The SPDE-practitioner
approach.

Approx with space in tensor product form1 Xh × Sp

Ax = c , A = G0 ⊗ K0 +
∑̀
r=1

Gr ⊗ Kr , b = g0 ⊗ f0,

x : expansion coef. of approx to u in the tensor product basis {ϕiψk}
Kr ∈ Rnx×nx , FE matrices (sym)
Gr ∈ Rnξ×nξ , r = 0, 1, . . . ,m Galerkin matrices associated w/ Sp (sym.)
g0: first column of G0

f0: FE rhs of deterministic PDE

nξ = dim(Sp) =
(`+ p)!

`!p!
⇒ nx · nξ huge

1Sp set of multivariate polyn of total degree ≤ p
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The matrix equation formulation

(G0 ⊗ K0 + G1 ⊗ K1 + . . .+ G` ⊗ K`) x = g0 ⊗ f0
transforms into

K0XG0 + K1XG1 + . . .+ K`XG` = F , F = f0g
>
0

(G0 = I )

Solution strategy. Conjecture:

• {Kr} from trunc’d Karhunen–Loève (KL) expansion

⇓

X ≈ X̃ low rank, X̃ = X1X
>
2
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Matrix Galerkin approximation of the deterministic part

Approximation space Kk and basis matrix Vk : X ≈ Xk = VkY

V>k Rk = 0, Rk := K0Xk + K1XkG1 + . . .+ K`XkG` − f0g>0

Computational challenges:

I Generation of Kk involved `+ 1 different matrices {Kr} !

I Matrices Kr have different spectral properties

I nx , nξ so large that Xk ,Rk should not be formed !

(Powell & Silvester & Simoncini 2017)
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Example. −∇ · (a∇u) = 1, D = (−1, 1)2. KL expansion

µ = 1, ξr ∼ U(−
√

3,
√

3) and C (~x1, ~x2) = σ2 exp
(
−‖~x1−~x2‖1

2

)
, nx = 65, 025, σ = 0.3

` p nξ k inner nk rank time CG

its Kk X̃ secs time (its)
2 45 17 9.8 128 45 32.1 13.4 (8)

8 3 165 21 12.2 160 129 41.4 56.6 (10)
87% 4 495 24 14.5 183 178 51.1 197.0 (12)

5 1,287 27 16.9 207 207 64.0 553.0 (13)
2 91 15 9.9 165 89 47.8 30.0 (8)

12 3 455 18 12.2 201 196 61.6 175.0 (10)
89% 4 1,820 21 15.0 236 236 86.4 821.0 (12)

5 6,188 25 18.6 281 281 188.0 3070.0 (13)
2 231 16 9.4 281 206 111.0 94.7 (8)

20 3 1,771 23 12.3 399 399 197.0 845.0 (10)
93% 4 10,626 26 15.4 454 454 556.0 Out of Mem

% of variance integral of a
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Linear matrix equations for convection-diffusion PDEs

−α1uxx − α2uyy + w · ∇u + βu = f , (x , y) ∈ Ω,

Ω ⊂ R2 sufficiently regular domains, e.g., polygons, not necessarily convex

Standard procedures giving Au = f :

I Large class of finite element methods

I Spectral (element) methods

I Isogeometric Analysis

I Mimetic FD or Virtual element methods

I Classical Finite differences

I ...

Proof of concept:

Explore venues leading to linear matrix equations
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The Poisson equation in a square

−uxx − uyy = f , in Ω = (0, 1)2 (+hom.Dirb.c .)

Usual lexicographic ordering ⇒ Au = b

Discretization: Ui,j ≈ uxi ,yj , with (xi , yj) interior nodes, so that

uxx (xi , yj ) ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
=

1

h2
[1,−2, 1]

Ui−1,j

Ui,j

Ui+1,j


uyy (xi , yj ) ≈

Ui,j−1 − 2Ui,j + Ui,j+1

h2
=

1

h2
[Ui,j−1, Ui,j , Ui,j+1]

 1
−2
1
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The Poisson equation - matrix formulation

Let T = 1
h2 tridiag(−1, 2,−1)

uxx(xi , yj) ≈
1

h2
[1,−2, 1]

Ui−1,j

Ui,j

Ui+1,j

 uyy (xi , yj) ≈
1

h2
[Ui,j−1, Ui,j , Ui,j+1]

 1
−2
1


Collecting all nodes together,

−uxx ≈ TU, −uyy ≈ UT

Therefore, directly from the grid,

−uxx − uyy = f ⇒ TU + UT = F , Fij = f (xi , yj)
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Convection-diffusion eqns in a rectangle (with D. Palitta)

−ε∆u + φ1(x)ψ1(y)ux + φ2(x)ψ2(y)uy + γ1(x)γ2(y)u = f

(x , y) ∈ Ω ⊂ R2, φi , ψi , γi , i = 1, 2 sufficiently regular func’s + b.c.

Problem discretization by means of a tensor basis

Multiterm linear matrix equation:

−εT1U− εUT2 + Φ1B1UΨ1 + Φ2UB>2 Ψ2 + Γ1UΓ2 = F

Finite Diff.: Ui,j = U(xi , yj) approximate solution at the nodes

but also Isogeometric Analysis (IGA), certain spectral methods, etc.

... A classical approach, Bickley & McNamee, 1960, Wachspress, 1963
(Early literature on difference equations)
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Discretization of more complex domains (with Y. Hao)

−uxx − uyy = f , in Ω

(x , y) ∈ Ω, x = r cos θ, y = r sin θ

(r , θ) ∈ [r0, r1]× [0,
π

4
]

polar grid

♣ Transformed equation in polar coordinates:

−r2ũrr − r ũr − ũθθ = f̃ , (r , θ) ∈ [r0, r1]× [0,
π

4
]

Matrix equation after mapping to the rectangle:

Φ2T Ũ + ŨT − ΦBŨ = F̃

♣ Transformed equation in log-polar coordinates (r = eρ):

−ûρρ − ûθθ = f̂ , (r , θ) ∈ [r0, r1]× [0,
π

4
]

Matrix equation after mapping to the rectangle:

T Û + +ÛT = F̂
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T Û + +ÛT = F̂

V. Simoncini - Multiterm linear matrix equations 14 / 27



Discretization of polygons with > 4 edges (with Y. Hao)

We need an automatic procedure to map a polygon into a rectangle

Schwarz-Christoffel conformal mappings

{z1, . . . , zn}: polygon vertices {φ1π, . . . , φnπ}: vertices interior angles
Pre-images of the vertices (or pre-vertices): ω1, ..., ωn ∈ R, with

ω1 < ω2 < · · · < ωn =∞.

Schwarz-Christoffel (SC) map g : g(ω) = g(ω0) + c

∫ ω

ω0

n−1∏
j=1

(ζ − ωj)
φj−1 dζ (∗)

Practical problems associated with Schwarz-Christoffel maps:

I SC parameter problem: determining the pre-vertices ωj in closed form;

I quadrature formulas: Integrating the rhs of (*)

Schwarz-Christoffel Toolbox for Matlab, T. Driscoll, 1996, 2005
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Computing with Schwarz-Christoffel maps (with Y. Hao)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Canonical rectangular domain Π → z = g(ξ, η) → (Convex) physical domain Ω

z = g(ω) = g(ξ + iη) = x(ξ, η) + iy(ξ, η)

Jacobian matrix of the conformal map g :

J =

[
xξ xη
yξ yη

]
J = J (ξ, η) = det(J ) = xξyη − xηyξ = x2

ξ + x2
η > 0

and ũξ = uxxξ + uyyξ, ũη = uxxη + uyyη
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Poisson equation in a polygon (with Y. Hao)

−uxx − uyy = f , (x , y) ∈ Ω

−ũξξ − ũηη = J f̃ , (ξ, η) ∈ Π

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

With finite diff. discretization:

T1U + UT2 = F , F̃ + b.c ., and F̃i,j = (J f̃ )(ξi , ηj), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

Poisson equation is the ideal setting for SC mappings!
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Adding a reaction term

−∆u + βu = f , (x , y) ∈ Ω, u = 0 on ∂Ω.

In the canonical (reference) domain Π:

−ũξξ − ũηη + (J β̃)ũ = J f̃ , (ξ, η) ∈ Π, ũ = 0, (ξ, η) ∈ ∂Π.

thus giving the following matrix equation:

T1U + UT2 + G ◦ U = F

(◦ denotes the (element-wise) Hadamard product)

with G (i , j) := (J β̃)(ξi , ηj), with 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2
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A simple convection-diffusion problem

−uxx − uyy + w · ∇u = f , (x , y) ∈ Ω

Transformed SC-mapped problem:

−ε(ũξξ + ũηη) + xξũξ + xηũη = J f̃ , (ξ, η) ∈ Π, ũ = 0, (ξ, η) ∈ ∂Π,

where we used w = (1, 0).

This yields the matrix equation

εT1U + εUT2 + Xξ ◦ (B1U) + Xη ◦ (UB2) = F ,

where (Xξ)i,j = xξ(ξi , ηj), (Xη)i,j = xη(ξi , ηj), i = 1, . . . , n1, j = 1, . . . , n2
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Conclusions. 1

I Linear matrix equations can be obtained for general domains with different
discretization procedures (IGA, FD, conformal mappings, ...)

I Structural properties should be exploited (different from Kronecker formulations)

I 3D case leads to linear tensor equations: a new research area
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Solution strategies: Projection-type methods. 1

A1XB1 + A2XB2 + . . .+ A`XB` = C

Given approximation spaces KA, KB ,

X ≈ Xm with vec(Xm) ∈ KB ⊗KA

X is approximated by a low rank matrix !

Galerkin condition: R := A1XmB1 + A2XmB2 + . . .+ A`XmB` − C ⊥ KB ⊗KA

V>m RWm = 0 KA = Range(Vm),KB = Range(Wm)

————————————

Let Xm := VmYmW
>
m .

Projected matrix equation:

V>m (A1XmB1 + . . .+ A`XmB` − C )Wm = 0

(V>m A1Vm)Y (W>m B1Wm) + . . .+ (V>m A`Vm)Y (W>m B`Wm)− V>m CWm = 0
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Solution strategies: Projection-type methods. 2

Solve for Y :

(V>m A1Vm)Y (W>m B1Wm) + . . .+ (V>m A`Vm)Y (W>m B`Wm)− V>m CWm = 0

Then, implicitly generate Xm := VmYmW
>
m

Procedure generalizes the case ` = 2, using the classical Galerkin projection methodology

Crucial issues for effectiveness:

I Choice of spaces KA,KB

I Generation of the two spaces KA,KB . Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

I Solution of the reduced multiterm equation
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Crucial issues for effectiveness:

I Choice of spaces KA,KB

I Generation of the two spaces KA,KB . Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

I Solution of the reduced multiterm equation
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Computational methods for certain structured problems

A particular case2:

AX + XAT + M1XM1 + . . .+ M`XM` = F ,

with A ∈ Rn×n, and the Mis having very low rank si , Mi = UiV
>
i

Using the Kronecker form (` = 1):

(A⊗ I + I ⊗ A + (U1 ⊗ U1)(V1 ⊗ V1)>)x = f

that is
(A+ UV>)x = f

with U = U1 ⊗ U1, V = V1 ⊗ V1 again of low rank s2
1

Solution method: Sherman-Morrison-Woodbury formula

x = (A+ UV>)−1f = A−1f −A−1U(I + VTA−1U)−1V>A−1f

2In fact, terms in the form MiXNi can also be treated
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Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + VTA−1U)−1V>A−1f

1. Solve Aw = f
2. Solve Apj = uj where U = [u1, . . . , us2 ] to give P = [p1, . . . , ps2 ];

3. Compute H = I + VTP ∈ Rs2×s2

4. Solve Hg = VTw
5. Compute x = w − Pg .

Steps 1. and 2.:

w = A−1f ⇔ AW + WAT = F , f = vec(F )

Analogously for each pj = vec(Pj) in step 2

AW + WAT = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.
vTj A−1ut = vT

i Ptvk , j = (k − 1)s + i

Analogously for VTw in step 4
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Numerical examples. 1

Let X? be a ref. soln (uniformly distr.random), and rhs computed explicitly

We monitor: Err := ‖X−X?‖F
‖X?‖F

Matrix form Vector Form
n s1/s2 CPU time Err CPU time Err
40 3/5 0.013 3.817934e-11 0.195 2.292375e-10

6/10 0.017 9.051326e-10 0.657 4.987161e-10
12/20 0.035 5.259884e-09 2.333 1.357709e-08

80 3/5 0.022 2.152743e-10 5.283 1.228423e-09
6/10 0.033 8.380606e-09 15.408 1.849484e-08

12/20 0.074 2.502003e-08 56.347 3.467476e-08
160 3/5 0.043 1.291839e-09 129.957 6.891372e-09

6/10 0.070 1.102578e-08 281.946 2.691323e-08
12/20 0.220 2.907566e-07 1030.242 1.202511e-06

Table: Symmetric and dense matrix A and U1,U2 (` = 2) for various ranks s1, s2
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Numerical examples. 2

Matrix form Vector Form
n CPU time Err CPU time Err
40 0.012 6.452267e-10 0.037 7.231068e-10
80 0.013 2.750854e-10 0.124 2.012480e-09

160 0.024 3.253562e-09 0.581 7.208432e-09
320 0.056 4.615180e-08 2.763 1.710614e-07

Table: Numerical results for symmetric and tridiagonal banded matrix A and U1,U2 random with
s1 = 3, s2 = 5 columns, resp.

Matrix form Vector Form
n CPU time Err CPU time Err
40 0.063 6.582486e-11 0.361 1.410898e-10
80 0.093 1.184547e-08 6.116 1.867875e-08

160 0.430 2.691697e-07 278.895 1.301593e-06

Table: Numerical results for nonsymmetric and full matrix A, with s1 = 3, s2 = 5 columns, resp.
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Conclusions. 2

I First examples where structure can be exploited

(Not reported) This approach can be used for solving linear tensor equations

I Devise more general “direct” solvers, to be used in the projection phase!

Visit: www.dm.unibo.it/˜simoncin
Email address: valeria.simoncini@unibo.it
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