

On projection methods for large-scale matrix Riccati equations

V. Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

Dynamical systems and the Riccati equation

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \\ y(t) = Cx(t), \end{cases}$$

u(t): control (input) vector; y(t): output vector x(t): state vector; $x_0:$ initial state

Dynamical systems and the Riccati equation

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \\ y(t) = Cx(t), \end{cases}$$

u(t) : control (input) vector; y(t) : output vector x(t) : state vector; x_0 : initial state

Minimization problem for a Cost functional: (simplified form)

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_0^\infty \left(x(t)^\top C^\top C x(t) + u(t)^\top u(t) \right) dt$$

Dynamical systems and the Riccati equation

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_0^\infty \left(x(t)^\top C^\top C x(t) + u(t)^\top u(t) \right) dt$$

Riccati equation:

$$A^{\top}\mathbf{X} + \mathbf{X}A - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

THEOREM. Let the pair (A, B) be stabilizable and (C, A) observable. Then there is a unique solution $\mathbf{X} \ge 0$ of the Riccati equation. Moreover,

i) For each x_0 there is a unique optimal control, and it is given by

$$u_*(t) = -B^{\top} \mathbf{X} \exp((A - BB^{\top} \mathbf{X})t) x_0 \quad \text{for} \quad t \ge 0$$

ii) $\mathcal{J}(u_*, x_0) = x_0^\top \mathbf{X} x_0$ for all $x_0 \in \mathbb{R}^n$

see, e.g., Lancaster & Rodman, 1995

Order reduction of dynamical systems by Galerkin projection Let $V_k \in \mathbb{R}^{n \times d_k}$ have orthonormal columns, $d_k \ll n$ Let $T_k = V_k^\top A V_k$, $B_k = V_k^\top B$, $C_k^\top = V_k^\top C^\top$

Reduced order dynamical system:

$$\begin{cases} \dot{\widehat{x}}(t) = T_k \widehat{x}(t) + B_k \widehat{u}(t), \qquad \widehat{x}(0) = \widehat{x}_0 := V_k^\top x_0 \\ \widehat{y}(t) = C_k \widehat{x}(t) \end{cases}$$

 $x_k(t) = V_k \widehat{x}(t) \approx x(t)$

Typical frameworks:

- Transfer function approximation
- Model reduction

* Petrov-Galerkin projection is also common (see, e.g., Antoulas '05)

Reduced Riccati equation

$$T_k^{\top} \mathbf{Y} + \mathbf{Y} T_k - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \qquad (*)$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \hat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

Reduced Riccati equation

$$T_k^{\top} \mathbf{Y} + \mathbf{Y} T_k - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \qquad (*)$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \ge 0$ of (*) that for each \hat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

A If there exists a matrix K such that A - BK is dissipative^a, then the pair (T_k, B_k) is stabilizable.

^aA matrix is dissipative if its field of values is all in \mathbb{C}^- .

Reduced optimal control vs approximate control

* Our reduced optimal control function:

$$\widehat{\boldsymbol{u}}_{*}(t) = -B_{k}^{\top} \mathbf{Y}_{k} e^{(T_{k} - B_{k} B_{k}^{\top} \mathbf{Y}_{k})t} \widehat{\boldsymbol{x}}_{0}, \quad t \ge 0$$

* Commonly used approximate control function:

Consider the Riccati equation

$$A^{\top}\mathbf{X} + \mathbf{X}A - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

If $\widetilde{\mathbf{X}}$ is some approximation to $\mathbf{X},$ then

$$\widetilde{\boldsymbol{u}}(t) := -B^{\top} \widetilde{\mathbf{X}} \widetilde{\boldsymbol{x}}(t) \quad \text{where} \quad \widetilde{\boldsymbol{x}}(t) := e^{(A - BB^{\top} \widetilde{\mathbf{X}})t} x_0$$

However,

$$\widehat{u}_* \neq \widetilde{u}$$

They induce different actions on the functional \mathcal{J} (even for $\widetilde{\mathbf{X}} \equiv V_k \mathbf{Y}_k V_k^{\top}$)

Reduced optimal control vs approximate control

Consider the interpolated approximation: $\mathbf{X}_k = V_k \mathbf{Y}_k V_k^\top$ Riccati residual matrix: $R_k := A^\top \mathbf{X}_k + \mathbf{X}_k A - \mathbf{X}_k B B^\top \mathbf{X}_k + C^\top C$

* Reduced optimal control function: $\hat{u}_*(t) = -B_k^\top \mathbf{Y}_k e^{(T_k - B_k B_k^\top \mathbf{Y}_k)t} \hat{x}_0$

THEOREM. Assume that
$$A - BB^{\top}\mathbf{X}_k$$
 is stable and
 $\widetilde{u}(t) := -B^{\top}\mathbf{X}_k x(t)$ approx control. Then
 $|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)| = \mathcal{E}_k, \text{ with } \mathcal{E}_k \leq \frac{\|R_k\|}{2\alpha} x_0^{\top} x_0,$
where $\alpha > 0$ is such that $\|e^{(A - BB^{\top}\mathbf{X}_k)t}\| \leq e^{-\alpha t}$ for all $t \geq 0$.

Note: $|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)|$ is nonzero for $R_k \neq 0$

On the choice of the reduction space

Reduced problem, $T_k = V_k^{\top} A V_k$, $B_k = V_k^{\top} B$, $CV_k = C_k$, $T_k^{\top} \mathbf{Y}_k + \mathbf{Y}_k T_k - \mathbf{Y}_k B_k B_k^{\top} \mathbf{Y}_k + C_k^{\top} C_k = 0$

 $\mathcal{K} = \operatorname{Range}(V_k)$:

Krylov-type subspaces (extensively used in the linear case)

- $\mathcal{K}_k(A, C^{\top}) := \operatorname{Range}([C^{\top}, AC^{\top}, \dots, A^{k-1}C^{\top}])$ (Polynomial)
- $\mathcal{EK}_k(A, C^{\top}) := \mathcal{K}_k(A, C^{\top}) + \mathcal{K}_k(A^{-1}, A^{-1}C^{\top})$ (EKS, Rational)

•
$$\mathcal{RK}_k(A, C^{\top}, \mathbf{s}) := \operatorname{Range}([C^{\top}, (A - s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{k-1} (A - s_{j+1} I)^{-1} C^{\top}])$$

(RKS, Rational) Adaptive choice of shifts involves nonlinear term BB^{\top}

- Proper Orthogonal Decomposition (functional based)
- Balanced Truncation

Back to the reduced Riccati equation

$$T_k^{\top} \mathbf{Y} + \mathbf{Y} T_k - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \qquad (*)$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \hat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

A If there exists a matrix K such that A - BK is dissipative, then the pair (T_k, B_k) is stabilizable.

The dissipating feedback matrix problem

Given

$$\begin{cases} \dot{x} = Ax - Bu \\ u = Kx, \end{cases}$$
(1)

and A not dissipative, find, if it exists, a dissipating feedback matrix K such that the *closed-loop* linear system $\dot{x} = (A - BK)x$ is dissipative.

(Guglielmi, Simoncini, tr 2018)

This means "the field of values of A - BK is all in \mathbb{C}^{-} ", that is

$$(A - BK) + (A - BK)^{\top} < 0$$

Known existence results and parameterization

A classical result (tailored to our setting):

see, e.g., Skelton, Iwasaki & Grigoriadis 1998

THEOREM. Assume B is full column rank. Then

(i) There exists a matrix K satisfying $A + A^\top - BK - (BK)^\top < 0$ if and only if

$$B^{\perp}(A+A^{\top})(B^{\perp})^{\top} < 0 \quad \text{or} \quad BB^{\top} > 0;$$

(ii) The following parameterization holds

$$K = -R^{-1}B^{\top} + R^{-\frac{1}{2}}L\Phi^{-\frac{1}{2}},$$

where $L \in \mathbb{R}^{q \times n}$ is an arbitrary matrix such that ||L|| < 1 and $R \in \mathbb{R}^{q \times q}$ is an arbitrary positive definite matrix such that $\Phi := (BR^{-1}B^{\top} - (A + A^{\top}))^{-1} > 0.$

A counter-example

This parameterization does not seem to include all possible Ks:

EXAMPLE. Consider $Q := A + A^{\top} = \operatorname{diag}(\alpha, -\alpha)$, with $\alpha > 0$, and $B = e_1 = [1; 0]$. Let us take $R^{-1} = \widehat{\alpha}$ with $\widehat{\alpha} > \alpha$. Then

$$\Phi = (BR^{-1}B^* - Q)^{-1} = \operatorname{diag}\left(\frac{1}{\widehat{\alpha} - \alpha}, \frac{1}{\alpha}\right) > 0,$$

$$\widetilde{B} = \Phi^{\frac{1}{2}}BR^{-\frac{1}{2}} = \frac{\sqrt{\widehat{\alpha}}}{\sqrt{\widehat{\alpha} - \alpha}}e_1$$

with $\|\widetilde{B}\| = \frac{\sqrt{\widehat{\alpha}}}{\sqrt{\widehat{\alpha}-\alpha}} > 1$ for all choices of $\alpha > 0$ and $\widehat{\alpha} > \alpha$. By taking $L = \frac{1}{2}\widetilde{B}$, α and $\widehat{\alpha}$ can be selected so that $\|L\| \ge 1$, while for this choice of L we still have $BK + K^{\top}B^{\top} + Q < 0$. \Box

Thinking again the existence result

$$\mathcal{M} = \begin{bmatrix} (A + A^{\top}) & B \\ B^{\top} & 0 \end{bmatrix}$$

- If the matrix $(A + A^{\top})$ is negative definite on the kernel of B^{\top} , then \mathcal{M} has exactly q positive and n negative eigenvalues
- The matrix $A + A^{\top}$ is negative definite on the kernel of B^{\top} if and only if there exists a $K \in \mathbb{R}^{q \times n}$ such that $W(A BK) \subset \mathbb{C}^{-}$

Constructive derivation:

$$\mathcal{M}\begin{bmatrix} X\\ Y \end{bmatrix} = \begin{bmatrix} X\\ Y \end{bmatrix} \Lambda, \qquad \Lambda < 0$$

Then

$$K = YX^{-1} \qquad (X \text{ nonsingular})$$

Thinking again the existence result. Generalization.

The set of all Ks can be enlarged:

THEOREM. There exists a matrix K such that $W(A - BK) \subset \mathbb{C}^-$ if and only if the pencil $(\mathcal{M}, \mathcal{D})$ admits n negative eigenvalues for some symmetric and positive definite matrix $\mathcal{D} \in \mathbb{R}^{(n+q) \times (n+q)}$.

Hence, for any ${\mathcal D}$ symmetric and positive definite such that

$$\mathcal{M}\begin{bmatrix} X\\ Y \end{bmatrix} = \mathcal{D}\begin{bmatrix} X\\ Y \end{bmatrix} \Lambda, \qquad \Lambda < 0$$

with $\begin{bmatrix} X \\ Y \end{bmatrix} \in \mathbb{R}^{(n+q) \times n} \mathcal{D}$ -orthogonal, we define $K := YX^{-1}$

- Other parameterizations are possible

Computing a (weakly) dissipating feedback of minimal norm

Let $\mathbb{W}^{q \times n}(A, B)$ be the set of dissipating matrices for the pair (A, B)

The problem: Find $K \in \mathbb{W}^{q \times n}(A, B)$ such that

 $\min_{K \in \mathbb{W}^{q \times n}(A,B)} \|K\|_{\star}$

 $(\star = F\text{-}norm, 2\text{-}norm)$

♣ For $K \in \mathbb{W}^{q \times n}(A, B)$, the matrix $A + A^{\top} - BK - (BK)^{\top}$ has a zero eigenvalue with multiplicity m, with $0 < m \leq q$

The Linear Matrix Inequality (LMI) optimization problem

LMI framework for the 2-norm:

$$\min_{K \in \mathbb{R}^{q \times n}} \|K\|_2 \qquad \text{subject to}$$
$$A + A^{\top} - BK - K^{\top}B^{\top} \le 0, \qquad \begin{bmatrix} \gamma I_q & K \\ K^{\top} & \gamma I_n \end{bmatrix} \ge 0$$

(where $\gamma > 0$ is such that $\|K\|_2 \leq \gamma$)

LMI framework for the F-norm:

$$\min_{K \in \mathbb{R}^{q \times n}} \|K\|_F \qquad \text{subject to}$$
$$A + A^\top - BK - K^\top B^\top \le 0, \qquad \begin{bmatrix} I & \operatorname{vec}(K) \\ \operatorname{vec}(K)^\top & \gamma \end{bmatrix} \ge 0$$

 $(\operatorname{vec}(K) \text{ stacks all columns of } K \text{ one after the other, so that } \|K\|_F^2 \leq \gamma)$

A simple example

Method	description	
GL(m)	2-step functional method with m eigs (Guglielmi-Lubich, '17)	
LMI	Matlab basic function for the LMI problem (mincx)	
Yalmip1	Matlab version of Yalmip with SeDuMi solver (2-norm)	
Yalmip2	Matlab version of Yalmip with SeDuMi solver (F-norm)	
Pencil	minimization problem with pencil $(\mathcal{M},\mathcal{D})$	

$$A = \begin{bmatrix} -0.2 & 1.6 & 0.2 & 2.6 & -0.4 \\ -0.2 & -0.8 & -1.2 & -0.7 & -1.8 \\ 1.4 & 0.7 & -1.1 & 0.2 & 0.8 \\ 0.3 & 0.8 & 0.1 & -0.1 & -0.9 \\ 0.2 & -0.2 & 0.7 & -1.9 & 0.1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0.6 & 0.5 \\ -0.2 & 0.3 \\ 0.5 & 0 \\ 0.2 & 0.6 \\ 0.6 & -0.6 \end{bmatrix}$$

٠

 $\lambda_i(\frac{1}{2}(A+A^{\top})) = \{-2.4752, -1.8301, -0.7238, 0.6506, 2.2785\}$

A simple example

Numerically optimal dissipating matrices:

$$K_{GL} = \begin{bmatrix} 0.3690 & -0.12149 & 0.34503 & 0.1119 & 0.35065 \\ 1.0340 & 0.66501 & -0.01895 & 1.3640 & -1.2432 \end{bmatrix}$$

and

$$K_{Yalmip2} = \begin{bmatrix} 0.3684 & -0.11954 & 0.35079 & 0.1097 & 0.3467 \\ 1.0118 & 0.65736 & -0.03002 & 1.3995 & -1.2240 \end{bmatrix}$$

• Eigs of
$$S(K) = A + A^{\top} - BK - (BK)^{\top}$$
:

 $\lambda_i(S(K_{GL})) \in \{-2.4765, -1.8306, -0.72468, -2.4 \cdot 10^{-9}, -1.3 \cdot 10^{-8}\}$

and

 $\lambda_i(S(K_{Yalmip2})) \in \{-2.4743, -1.8298, -0.72353, -2.4 \cdot 10^{-10}, 5.0 \cdot 10^{-10}\}$

A simple example

Comparison of the different methods:

Method	Minimization	$\ K_*\ _2$	$\ K_*\ _F$
GL(2)	F-norm	2.2166	2.3063
LMI	2-norm	2.2166	2.6714
Yalmip1	2-norm	2.2166	2.5765
Yalmip2	F-norm	2.2166	2.3063
Pencil	F-norm	2.2560	2.7585

Note: on harder problems Yalmip always gives smallest minimum

Outlook

Reduced Differential Riccati equations

(see, e.g., Koskela & Mena, tr 2017-2018, Güldogan etal tr 2017)

$$\dot{X}(t) = A^{\top}X(t) + X(t)A - X(t)BB^{\top}X(t) + C^{T}C$$

(work in progress, with G. Kirsten)

Parameterized Algebraic Riccati equations

(see, e.g., Schmidt & Haasdonk, 2018)

Feedback control for nonlinear PDEs by state dependent Riccati equation

$$\dot{x}(t) = f(x(t)) + Bu(t), \qquad f(x) = A(x)x$$
$$z(t) = Cx(t)$$

(work in progress, with A. Alla and D. Kalise)