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Dynamical systems and the Riccati equation

Time-invariant linear system




ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t),

u(t) : control (input) vector; y(t) : output vector

x(t) : state vector; x0 : initial state

Minimization problem for a Cost functional: (simplified form)

inf
u

J (u, x0) J (u, x0) :=

∫ ∞

0

(x(t)⊤C⊤Cx(t) + u(t)⊤u(t))dt
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Dynamical systems and the Riccati equation

inf
u

J (u, x0) J (u, x0) :=

∫ ∞

0

(
x(t)⊤C⊤Cx(t) + u(t)⊤u(t)

)
dt

Riccati equation:

A⊤
X+XA−XBB⊤

X+ C⊤C = 0

Theorem. Let the pair (A,B) be stabilizable and (C,A) observable.

Then there is a unique solution X ≥ 0 of the Riccati equation.

Moreover,

i) For each x0 there is a unique optimal control, and it is given by

u∗(t) = −B⊤
X exp((A−BB⊤

X)t)x0 for t ≥ 0

ii) J (u∗, x0) = x⊤
0 Xx0 for all x0 ∈ R

n

see, e.g., Lancaster & Rodman, 1995
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Order reduction of dynamical systems by Galerkin projection

Let Vk ∈ R
n×dk have orthonormal columns, dk ≪ n

Let Tk = V ⊤
k AVk, Bk = V ⊤

k B, C⊤
k = V ⊤

k C⊤

Reduced order dynamical system:




˙̂x(t) = Tkx̂(t) +Bkû(t), x̂(0) = x̂0 :=V ⊤
k x0

ŷ(t) = Ckx̂(t)

xk(t) = Vkx̂(t) ≈ x(t)

Typical frameworks:

• Transfer function approximation

• Model reduction

⋆ Petrov-Galerkin projection is also common (see, e.g., Antoulas ’05)
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Reduced Riccati equation

T⊤
k Y +YTk −YBkB

⊤
k Y + C⊤

k Ck = 0 (∗)

Theorem. Let the pair (Tk, Bk) be stabilizable and (Ck, Tk) observ-

able. Then there is a unique solution Yk ≥ 0 of (∗) that for each x̂0

gives the feedback optimal control

û∗(t) = −B∗
kYk exp((Tk −BkB

∗
kYk)t)x̂0, t ≥ 0

for the reduced system.

♣ If there exists a matrix K such that A−BK is dissipative, then the

pair (Tk, Bk) is stabilizable.
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∗
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Reduced optimal control vs approximate control

⋆ Our reduced optimal control function:

û∗(t) = −B⊤
k Yke

(Tk−BkB
⊤

k Yk)tx̂0, t ≥ 0

⋆ Commonly used approximate control function:

Consider the Riccati equation

A⊤
X+XA−XBB⊤

X+ C⊤C = 0

If X̃ is some approximation to X, then

ũ(t) := −B⊤
X̃x̃(t) where x̃(t) := e(A−BB⊤

X̃)tx0

However,

û∗ 6= ũ

They induce different actions on the functional J (even for X̃ ≡ VkYkV
⊤

k
)
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Reduced optimal control vs approximate control

Consider the interpolated approximation: Xk = VkYkV
⊤
k

Riccati residual matrix:

Rk := A⊤
Xk +XkA−XkBB⊤

Xk + C⊤C

⋆ Reduced optimal control function: û∗(t) = −B⊤

k
Yke

(Tk−BkB
⊤
k Yk)tx̂0

Theorem. Assume that A−BB⊤
Xk is stable and

ũ(t) := −B⊤
Xkx(t) approx control. Then

|J (ũ, x0)− Ĵk(û∗, x̂0)| = Ek, with Ek ≤ ‖Rk‖
2α

x⊤
0 x0,

where α > 0 is such that ‖e(A−BB⊤
Xk)t‖ ≤ e−αt for all t ≥ 0.

Note: |J (ũ, x0)− Ĵk(û∗, x̂0)| is nonzero for Rk 6= 0
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On the choice of the reduction space

Reduced problem, Tk = V
⊤

k AVk, Bk = V
⊤

k B, CVk = Ck,

T
⊤

k Yk +YkTk−YkBkB
⊤

k Yk + Ck
⊤
Ck = 0

K = Range(Vk):

♣ Krylov-type subspaces (extensively used in the linear case)

• Kk(A,C⊤) := Range([C⊤, AC⊤, . . . , Ak−1C⊤]) (Polynomial)

• EKk(A,C⊤) := Kk(A,C⊤) +Kk(A
−1, A−1C⊤) (EKS, Rational)

• RKk(A,C⊤, s) := Range([C⊤, (A− s2I)−1C⊤, . . . ,

k−1∏

j=1

(A− sj+1I)
−1C⊤])

(RKS, Rational) Adaptive choice of shifts involves nonlinear term BB⊤

♣ Proper Orthogonal Decomposition (functional based)

♣ Balanced Truncation
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Back to the reduced Riccati equation

T⊤
k Y +YTk −YBkB

⊤
k Y + C⊤

k Ck = 0 (∗)

Theorem. Let the pair (Tk, Bk) be stabilizable and (Ck, Tk) observ-

able. Then there is a unique solution Yk ≥ 0 of (∗) that for each x̂0

gives the feedback optimal control

û∗(t) = −B∗
kYk exp((Tk −BkB

∗
kYk)t)x̂0, t ≥ 0

for the reduced system.

♣ If there exists a matrix K such that A−BK is dissipative, then the

pair (Tk, Bk) is stabilizable.
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The dissipating feedback matrix problem

Given 



ẋ = Ax−Bu

u = Kx,
(1)

and A not dissipative, find, if it exists, a dissipating feedback matrix

K such that the closed-loop linear system ẋ = (A−BK)x is

dissipative.

(Guglielmi, Simoncini, tr 2018)

This means “the field of values of A−BK is all in C
−”, that is

(A−BK) + (A−BK)⊤ < 0
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Known existence results and parameterization

A classical result (tailored to our setting):

see, e.g., Skelton, Iwasaki & Grigoriadis 1998

Theorem. Assume B is full column rank. Then

(i) There exists a matrix K satisfying A+A⊤ −BK − (BK)⊤ < 0 if

and only if

B⊥(A+A⊤)(B⊥)⊤ < 0 or BB⊤ > 0;

(ii) The following parameterization holds

K = −R−1B⊤ +R− 1

2LΦ− 1

2 ,

where L ∈ R
q×n is an arbitrary matrix such that ‖L‖ < 1 and

R ∈ R
q×q is an arbitrary positive definite matrix such that

Φ := (BR−1B⊤ − (A+A⊤))−1 > 0.
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A counter-example

This parameterization does not seem to include all possible Ks:

Example. Consider Q := A+A⊤ = diag(α,−α), with α > 0, and

B = e1 = [1; 0]. Let us take R−1 = α̂ with α̂ > α. Then

Φ = (BR−1B∗ −Q)−1 = diag(
1

α̂− α
,
1

α
) > 0,

B̃ = Φ
1

2BR− 1

2 =

√
α̂√

α̂− α
e1

with ‖B̃‖ =
√
α̂√

α̂−α
> 1 for all choices of α > 0 and α̂ > α. By taking

L = 1
2 B̃, α and α̂ can be selected so that ‖L‖ ≥ 1, while for this

choice of L we still have BK +K⊤B⊤ +Q < 0. �
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Thinking again the existence result

M =


(A+A⊤) B

B⊤ 0




• If the matrix (A+A⊤) is negative definite on the kernel of B⊤,

then M has exactly q positive and n negative eigenvalues

• The matrix A+A⊤ is negative definite on the kernel of B⊤ if and

only if there exists a K ∈ R
q×n such that W (A−BK) ⊂ C

−

Constructive derivation:

M


X
Y


 =


X
Y


Λ, Λ < 0

Then

K = Y X−1 (X nonsingular)
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Thinking again the existence result. Generalization.

The set of all Ks can be enlarged:

Theorem. There exists a matrix K such that W (A − BK) ⊂ C
− if

and only if the pencil (M,D) admits n negative eigenvalues for some

symmetric and positive definite matrix D ∈ R
(n+q)×(n+q).

Hence, for any D symmetric and positive definite such that

M


X
Y


 = D


X
Y


Λ, Λ < 0

with


X
Y


 ∈ R

(n+q)×n D-orthogonal, we define K := Y X−1

- Other parameterizations are possible
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Computing a (weakly) dissipating feedback of minimal norm

Let Wq×n(A,B) be the set of dissipating matrices for the pair (A,B)

The problem: Find K ∈ W
q×n(A,B) such that

min
K∈Wq×n(A,B)

‖K‖⋆

(⋆ = F-norm, 2-norm)

♣ For K ∈ W
q×n(A,B), the matrix A+A⊤ −BK − (BK)⊤ has a

zero eigenvalue with multiplicity m, with 0 < m ≤ q
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The Linear Matrix Inequality (LMI) optimization problem

♣ LMI framework for the 2-norm:

min
K∈Rq×n

‖K‖2 subject to

A+A⊤ −BK −K⊤B⊤ ≤ 0,


γIq K

K⊤ γIn


 ≥ 0

(where γ > 0 is such that ‖K‖2 ≤ γ)

♣ LMI framework for the F-norm:

min
K∈Rq×n

‖K‖F subject to

A+A⊤ −BK −K⊤B⊤ ≤ 0,


 I vec(K)

vec(K)⊤ γ


 ≥ 0

(vec(K) stacks all columns of K one after the other, so that ‖K‖2F ≤ γ)
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A simple example

Method description

GL(m) 2-step functional method with m eigs (Guglielmi-Lubich, ’17)

LMI Matlab basic function for the LMI problem (mincx)

Yalmip1 Matlab version of Yalmip with SeDuMi solver (2-norm)

Yalmip2 Matlab version of Yalmip with SeDuMi solver (F-norm)

Pencil minimization problem with pencil (M,D)

A =




−0.2 1.6 0.2 2.6 −0.4

−0.2 −0.8 −1.2 −0.7 −1.8

1.4 0.7 −1.1 0.2 0.8

0.3 0.8 0.1 −0.1 −0.9

0.2 −0.2 0.7 −1.9 0.1




, B =




0.6 0.5

−0.2 0.3

0.5 0

0.2 0.6

0.6 −0.6




.

λi(
1

2
(A+A⊤)) = {−2.4752, −1.8301, −0.7238, 0.6506, 2.2785}
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A simple example

♣ Numerically optimal dissipating matrices:

KGL =


0.3690 −0.12149 0.34503 0.1119 0.35065

1.0340 0.66501 −0.01895 1.3640 −1.2432




and

KY almip2 =


0.3684 −0.11954 0.35079 0.1097 0.3467

1.0118 0.65736 −0.03002 1.3995 −1.2240




♣ Eigs of S(K) = A+A⊤ −BK − (BK)⊤:

λi(S(KGL)) ∈ {−2.4765, −1.8306, −0.72468, −2.4 · 10−9, −1.3 · 10−8}

and

λi(S(KY almip2)) ∈ {−2.4743, −1.8298, −0.72353, −2.4 · 10−10, 5.0 · 10−10}
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A simple example

Comparison of the different methods:

Method Minimization ‖K∗‖2 ‖K∗‖F
GL(2) F-norm 2.2166 2.3063

LMI 2-norm 2.2166 2.6714

Yalmip1 2-norm 2.2166 2.5765

Yalmip2 F-norm 2.2166 2.3063

Pencil F-norm 2.2560 2.7585

Note: on harder problems Yalmip always gives smallest minimum
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Outlook

♠ Reduced Differential Riccati equations
(see, e.g., Koskela & Mena, tr 2017-2018, Güldogan etal tr 2017)

Ẋ(t) = A⊤X(t) +X(t)A−X(t)BB⊤X(t) + CTC

(work in progress, with G. Kirsten)

♠ Parameterized Algebraic Riccati equations

(see, e.g., Schmidt & Haasdonk, 2018)

♠ Feedback control for nonlinear PDEs by state dependent Riccati
equation

ẋ(t) = f(x(t)) +Bu(t), f(x) = A(x)x

z(t) = Cx(t)

(work in progress, with A. Alla and D. Kalise)
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