Numerical solution of systems of linear matrix equations and applications

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

The problem

Find $\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}$ and $\mathbf{P} \in \mathbb{R}^{m \times n_{2}}$ such that

$$
\begin{aligned}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2}
\end{aligned}
$$

with $A_{i} \in \mathbb{R}^{n_{i} \times n_{i}}, B \in \mathbb{R}^{m \times n_{1}}, F_{1} \in \mathbb{R}^{n_{1} \times n_{2}}, F_{2} \in \mathbb{R}^{m \times n_{2}}, m \leq n_{1}$

The problem

Find $\mathbf{X} \in \mathbb{R}^{n_{1} \times n_{2}}$ and $\mathbf{P} \in \mathbb{R}^{m \times n_{2}}$ such that

$$
\begin{aligned}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2}
\end{aligned}
$$

with $A_{i} \in \mathbb{R}^{n_{i} \times n_{i}}, B \in \mathbb{R}^{m \times n_{1}}, F_{1} \in \mathbb{R}^{n_{1} \times n_{2}}, F_{2} \in \mathbb{R}^{m \times n_{2}}, m \leq n_{1}$

Emerging matrix formulation of different application problems

- Constraint control
- Mixed formulations of stochastic diffusion problems
- Discretized deterministic/stochastic (Navier-)Stokes equations
- ...

A natural generalization

Find $\mathbf{X} \in \mathbb{R}^{n_{2} \times n_{1}}, \mathbf{Y} \in \mathbb{R}^{n_{1} \times n_{2}}$ and $\mathbf{P} \in \mathbb{R}^{n_{1} \times n_{1}}$ such that

$$
\begin{aligned}
A_{2} \mathbf{X}+\mathbf{X} A_{1}+B^{T} \mathbf{P} & =F_{1} \\
A_{1} \mathbf{Y}+\mathbf{Y} A_{2}+\mathbf{P} B & =F_{2} \\
B \mathbf{X}+\mathbf{Y} B^{T} & =F_{3}
\end{aligned}
$$

with corresponding dimensions for the coefficient matrices and rhs
e.g., MAC discretization of Navier-Stokes equation

An example. Regulator equations in contraint Control

Consider the time-invariant dynamical linear system

$$
\begin{equation*}
\dot{x}=A x+B u, \quad y=C x \tag{*}
\end{equation*}
$$

and the reference model $(\dot{\widehat{x}})=\widehat{A} \widehat{x}+\widehat{B} \widehat{u}, \widehat{y}=\widehat{C} \widehat{x}$

Theorem (Duan-Zhang, 2007)
Let K be a stabilizing gain for the dynamical system (*) and assume \mathbf{X}, \mathbf{P} satisfy the equations

$$
\begin{equation*}
A \mathbf{X}-\mathbf{X} \widehat{A}+B \mathbf{P}=0, \quad C \mathbf{X}=\widehat{C} \tag{1}
\end{equation*}
$$

When the controller $u=u_{s}+u_{c}$ with $u_{s}=K x$ and $u_{c}=(\mathbf{P}-K \mathbf{X}) \widehat{x}$ is applied to $(*)$, it holds that $\lim _{t \rightarrow \infty}(y(t)-\widehat{y}(t))=0$.

Also tracking (see, e.g., Wonham (1979), Duan (2004), Saberietal (1999))

An example. Mixed FE formulation of stochastic Galerkin diffusion pb

$$
\begin{aligned}
c^{-1} \vec{u}-\nabla p & =0 \\
-\nabla \cdot \vec{u} & =f
\end{aligned}
$$

Assume that $c^{-1}=c_{0}+\sum_{r=1}^{\ell} \sqrt{\lambda_{r}} c_{r}(\vec{x}) \xi_{r}(\omega)$ and that an appropriate class of finite elements is used for the discretization of the problem (see, e.g., the derivation in Elman-Furnival-Powell, 2010)
After discretization the problem reads:

$$
\left[\begin{array}{cc}
G_{0} \otimes K_{0}+\sum_{r=1}^{\ell} \sqrt{\lambda} G_{r} \otimes K_{r} & G_{0}^{T} \otimes B_{0}^{T} \\
G_{0} \otimes B_{0}
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\left[\begin{array}{l}
0 \\
f
\end{array}\right]
$$

An example. Mixed FE formulation of stochastic Galerkin diffusion pb

$$
\begin{aligned}
c^{-1} \vec{u}-\nabla p & =0 \\
-\nabla \cdot \vec{u} & =f
\end{aligned}
$$

Assume that $c^{-1}=c_{0}+\sum_{r=1}^{\ell} \sqrt{\lambda_{r}} c_{r}(\vec{x}) \xi_{r}(\omega)$ and that an appropriate class of finite elements is used for the discretization of the problem (see, e.g., the derivation in Elman-Furnival-Powell, 2010)
After discretization the problem reads:

$$
\left[\begin{array}{cc}
G_{0} \otimes K_{0}+\sum_{r=1}^{\ell} \sqrt{\lambda} G_{r} \otimes K_{r} & G_{0}^{T} \otimes B_{0}^{T} \\
G_{0} \otimes B_{0}
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\left[\begin{array}{l}
0 \\
f
\end{array}\right]
$$

For $\ell=1$ we obtain

$$
K_{0} \mathbf{X} G_{0}+K_{1} \mathbf{X} G_{1}+B_{0}^{T} \mathbf{P} G_{0}=0, \quad B_{0} \mathbf{X} G_{0}=F
$$

The two matrix equation case. Computational strategies

$$
\begin{array}{ll}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2}
\end{array}
$$

Kronecker formulation:

$$
\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B}^{T} \\
\mathcal{B} & \mathcal{O}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right], \quad \mathcal{A}=I \otimes A_{1}+A_{2}^{T} \otimes I, \quad \mathcal{B}=B \otimes I
$$

with $\mathbf{x}=\operatorname{vec}(\mathbf{X}), \mathbf{p}=\operatorname{vec}(\mathbf{P}), f_{1}=\operatorname{vec}\left(F_{1}\right)$ and $f_{2}=\operatorname{vec}\left(F_{2}\right)$

Extremely rich literature from saddle point algebraic linear systems

Problem: Coefficient matrix has size $\left(n_{1} n_{2}+m n_{2}\right) \times\left(n_{1} n_{2}+m n_{2}\right)$

The two matrix equation case. Computational strategies. Cont'd

$$
\begin{array}{ll}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2}
\end{array}
$$

* Derive numerical strategies that directly work with the matrix equations:
- Small scale: Nullspace method
- Small and medium scale: Schur complement method (also directly applicable to three matrix equations)
- Large scale: Iterative method for low rank $F_{i}, i=1,2$
"Small and medium scale" actually means "Large scale" for the Kronecker form!

Small problem. Null space method

$$
\begin{array}{ll}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2} \tag{2}
\end{array}
$$

U_{0} s.t. Range $\left(U_{0}\right)=\operatorname{Null}(B), U_{0}^{T} U_{0}=I$
U_{1} s.t. Range $\left(U_{1}\right)=\operatorname{Range}\left(B^{T}\right), U_{1}^{T} U_{1}=I \quad \Rightarrow \quad \mathbf{X}=U_{0} \hat{\mathbf{X}}+U_{1} \mathbf{X}_{\perp}$

Small problem. Null space method

$$
\begin{array}{ll}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2} \tag{2}
\end{array}
$$

U_{0} s.t. Range $\left(U_{0}\right)=\operatorname{Null}(B), U_{0}^{T} U_{0}=I$
U_{1} s.t. Range $\left(U_{1}\right)=\operatorname{Range}\left(B^{T}\right), U_{1}^{T} U_{1}=I \quad \Rightarrow \quad \mathbf{X}=U_{0} \hat{\mathbf{X}}+U_{1} \mathbf{X}_{\perp}$

* From (2),
$\mathbf{X}_{\perp}=\left(B U_{1}\right)^{-1} F_{2}$

Small problem. Null space method

$$
\begin{array}{ll}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2} \tag{2}
\end{array}
$$

U_{0} s.t. Range $\left(U_{0}\right)=\operatorname{Null}(B), U_{0}^{T} U_{0}=I$
U_{1} s.t. Range $\left(U_{1}\right)=\operatorname{Range}\left(B^{T}\right), U_{1}^{T} U_{1}=I \quad \Rightarrow \quad \mathbf{X}=U_{0} \hat{\mathbf{X}}+U_{1} \mathbf{X}_{\perp}$

* From (2),

$$
\mathbf{X}_{\perp}=\left(B U_{1}\right)^{-1} F_{2}
$$

* From (1), multiplying by U_{0}^{T}

$$
U_{0}^{T} A_{1} U_{0} \hat{\mathbf{X}}+\hat{\mathbf{X}} A_{2}=-U_{0}^{T} A_{1} U_{1} \mathbf{X}_{\perp}+U_{0}^{T} F_{1}
$$

A Sylvester equation, giving $\hat{\mathbf{X}}$

Small problem. Null space method

$$
\begin{array}{ll}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2} \tag{2}
\end{array}
$$

U_{0} s.t. Range $\left(U_{0}\right)=\operatorname{Null}(B), U_{0}^{T} U_{0}=I$
U_{1} s.t. Range $\left(U_{1}\right)=\operatorname{Range}\left(B^{T}\right), U_{1}^{T} U_{1}=I \quad \Rightarrow \mathbf{X}=U_{0} \hat{\mathbf{X}}+U_{1} \mathbf{X}_{\perp}$

* From (2),

$$
\mathbf{X}_{\perp}=\left(B U_{1}\right)^{-1} F_{2}
$$

* From (1), multiplying by U_{0}^{T}

$$
U_{0}^{T} A_{1} U_{0} \hat{\mathbf{X}}+\hat{\mathbf{X}} A_{2}=-U_{0}^{T} A_{1} U_{1} \mathbf{X}_{\perp}+U_{0}^{T} F_{1}
$$

A Sylvester equation, giving $\hat{\mathbf{X}}$

* From (1), multiplying by U_{1}^{T}

$$
U_{1}^{T} A_{1} U_{1} \mathbf{X}_{\perp}+U_{1}^{T} A_{1} U_{0} \hat{\mathbf{X}}+\mathbf{X}_{\perp} A_{2}+U_{1}^{T} B^{T} \mathbf{P}=U_{1}^{T} F_{1}
$$

So that $\mathbf{P}=\left(U_{1}^{T} B^{T}\right)^{-1}\left(U_{1}^{T} F_{1}-U_{1}^{T} A_{1} U_{0} \hat{\mathbf{X}}-\mathbf{X}_{\perp} A_{2}-U_{1}^{T} A_{1} U_{1} \mathbf{X}_{\perp}\right)$

Large scale problem. Iterative method. $1 / 3$

$$
\begin{aligned}
A_{1} \mathbf{X}+\mathbf{X} A_{2}+B^{T} \mathbf{P} & =F_{1} \\
B \mathbf{X} & =F_{2}
\end{aligned}
$$

Rewrite as

$$
\left[\begin{array}{cc}
A_{1} & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{P}
\end{array}\right]+\left[\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{P}
\end{array}\right] A_{2}=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right] \Leftrightarrow \quad \mathcal{M} \mathbf{Z}+\mathcal{D}_{0} \mathbf{Z} A_{2}=F
$$

with
$\mathcal{M}, \mathcal{D}_{0} \in \mathbb{R}^{\left(n_{1}+m\right) \times\left(n_{1}+m\right)}$
$A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ nonsingular
\mathcal{D}_{0} highly singular

If $F \approx$ low rank, exploit projection-type strategies for Sylvester equations

Large scale problem. Iterative method. 2/3

$$
\left[\begin{array}{cc}
A_{1} & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{P}
\end{array}\right]+\left[\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{P}
\end{array}\right] A_{2}=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right], \quad \Leftrightarrow \quad \mathcal{M} \mathbf{Z}+\mathcal{D}_{0} \mathbf{Z} A_{2}=F
$$

with F low rank. We rewrite the matrix equation as

$$
\mathbf{Z} A_{2}^{-1}+\mathcal{M}^{-1} \mathcal{D}_{0} \mathbf{Z}=\widehat{F}, \quad \widehat{F}=\mathcal{M}^{-1} F A_{2}^{-1}
$$

which is a Sylvester equation with one singular coefficient matrix

$$
\Rightarrow \quad \mathbf{Z} \approx \widetilde{\mathbf{Z}}_{k}=V_{k} \mathcal{Z}_{k} W_{k}^{T}, \quad \text { for some } \mathcal{Z}_{k}
$$

with Range $\left(V_{k}\right)$, Range $\left(W_{k}\right)$ appropriate approximation spaces of small dimensions

Large scale problem. Iterative method. 3/3

$$
\mathbf{Z} A_{2}^{-1}+\mathcal{M}^{-1} \mathcal{D}_{0} \mathbf{Z}=\widehat{F}_{l} \widehat{F}_{r}^{T} \quad \Rightarrow \quad \mathbf{Z} \approx \widetilde{\mathbf{Z}}_{k}=V_{k} \mathcal{Z}_{k} W_{k}^{T}
$$

Choosing V_{k}, W_{k}. Let $K_{k}(T, F)=\operatorname{Range}\left(\left[F, T F, T^{2} F, \ldots, T^{k-1} F\right]\right)$.

Large scale problem. Iterative method. 3/3

$$
\mathbf{Z} A_{2}^{-1}+\mathcal{M}^{-1} \mathcal{D}_{0} \mathbf{Z}=\widehat{F}_{l} \widehat{F}_{r}^{T} \quad \Rightarrow \quad \mathbf{Z} \approx \widetilde{\mathbf{Z}}_{k}=V_{k} \mathcal{Z}_{k} W_{k}^{T}
$$

Choosing V_{k}, W_{k}. Let $K_{k}(T, F)=$ Range $\left(\left[F, T F, T^{2} F, \ldots, T^{k-1} F\right]\right)$.
A possible strategy:

- $W_{k}=\mathbb{E} \mathbb{K}_{k}\left(A_{2}^{-T}, \widehat{F}_{r}\right):=K_{k}\left(A_{2}^{-T}, \widehat{F}_{r}\right)+K_{k}\left(A_{2}^{T}, A_{2}^{T} \widehat{F}_{r}\right)$

Extended Krylov subspace

- $V_{k}=K_{k}\left(\mathcal{M}^{-1} \mathcal{D}_{0}, \widehat{F}_{l}\right)+K_{k}\left(\left(\mathcal{M}^{-1} \mathcal{D}_{0}+\sigma I\right)^{-1}, \widehat{F}_{l}\right)$

Augmented Krylov subspace, $\sigma \in \mathbb{R}$ (see, e.g., Shank-Simoncini (2013))

Note: \mathcal{M} has size $\left(n_{1}+m\right) \times\left(n_{1}+m\right)$
(Compare with $\left(n_{1} n_{2}+m n_{2}\right) \times\left(n_{1} n_{2}+m n_{2}\right)$ of the Kronecker form)

Numerical experiments

$A_{1} \mathbf{X}-\mathbf{X} A_{2}+B^{T} \mathbf{P}=0$					
$A_{1} \rightarrow \mathcal{L}_{1}=-u_{x x}-u_{y y}$					
$A_{2} \rightarrow \mathcal{L}_{2}=-\left(e^{-10 x y} u_{x}\right)_{x}-\left(e^{10 x y} u_{y}\right)_{y}+10(x+y) u_{x}$					
[$F_{1} ; F_{2}$] rank-1 matrix					
$B=\operatorname{bidiag}(-1, \underline{1}),\left(n_{2}-n_{1}\right) \times n_{2}, \quad$ iterative: tol $=10^{-6}, \sigma=10^{-2}$					
			Elapsed time		
n_{1}	n_{2}	$\operatorname{size}(\mathcal{A})$	Monolithic	Direct Nullspace	Matrix eqns
400	100	79,000	$6.9769 \mathrm{e}-02$	$9.4012 \mathrm{e}-02$	$3.1523 \mathrm{e}-02$ (4)
900	225	401,625	$3.4808 \mathrm{e}-01$	$6.3597 \mathrm{e}-01$	$5.0447 \mathrm{e}-02(4)$
1600	400	1272,000	$1.1319 \mathrm{e}+00$	$4.7888 \mathrm{e}+00$	$7.8018 \mathrm{e}-02$ (4)
2500	625	3109,375	$3.1212 \mathrm{e}+00$	$1.5063 \mathrm{e}+01$	$1.5282 \mathrm{e}-01$ (5)
3600	900	6453,000	$1.0210 \mathrm{e}+01$	$3.9419 \mathrm{e}+01$	$2.8053 \mathrm{e}-01$ (5)
4900	1225	11,962,125	$3.7699 \mathrm{e}+01$	$1.0721 \mathrm{e}+02$	$1.4754 \mathrm{e}+00$ (5)

Numerical experiments. 1D stochastic Stokes problem. 1/3

$$
\left[\begin{array}{cc}
\mathcal{H} & \mathcal{B}^{T} \\
\mathcal{B} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right], \quad \mathcal{H}=\left(\nu_{0} G_{0}+\nu_{1} G_{1}\right) \otimes A_{x}, \quad \mathcal{B}=G_{0} \otimes B_{x}
$$

where $\nu=\nu_{0}+\nu_{1} \xi(\omega)$ uncertain viscosity, ξ random variable
Then

$$
A_{x} \mathbf{X} G_{0} \nu_{0}+A_{x} \mathbf{X} G_{1} \nu_{1}+B_{x}^{T} \mathbf{P} G_{0}=F_{1}, \quad B_{x} \mathbf{X}=F_{2}
$$

with $G_{0}=I$. This corresponds to

$$
\left[\begin{array}{cc}
\nu_{0} A_{x} & B_{x}^{T} \\
B_{x} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{P}
\end{array}\right]+\left[\begin{array}{ll}
\nu_{1} A_{x} & \\
& 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{P}
\end{array}\right] G_{1}=\left[\begin{array}{l}
F 1 \\
F 2
\end{array}\right]
$$

that is

$$
\mathcal{M} \mathbf{Z}+\mathcal{D}_{0} \mathbf{Z} G_{1}=F
$$

Numerical experiments. 1D stochastic Stokes problem. 2/3

n_{1}	n_{2}	$\mathcal{M} \mathbf{Z}+\mathcal{D}_{0} \mathbf{Z} G_{1}=F$			$\mathcal{A} \mathbf{z}=f$	
		n_{B}	$\operatorname{size}(\mathcal{A})$	Monolithic direct	Monolithic MINRES	Iterative $\mathbb{E} \mathbb{K}(\sigma)$
1256	4	389	6,580	0.1852	0.146 (11)	0.19 (2)
3526	4	990	18,064	0.9063	0.275 (11)	0.52 (2)
9812	4	2615	49,708	4.6418	0.981 (10)	2.09 (2)

$\nu_{0}=1 / 10, \nu_{1}=3 \nu_{0} / 10 \quad$ Powell-Silvester (2012)

Numerical experiments. 1D stochastic Stokes problem. 3/3

n_{1}	n_{2}	$\mathcal{M} \mathbf{Z}+\mathcal{D}_{0} \mathbf{Z} G_{1}=F$		$F \quad$ vs $\quad \mathcal{A} \mathbf{z}=f$		
		n_{B}	$\operatorname{size}(\mathcal{A})$	Monolithic	Monolithic	Iterative
				direct	minres	$\mathbb{E K}(\sigma)$
1256	165	389	271,425	2.91	1.53 (11)	0.20 (2)
3526	165	990	745,140	12.16	7.43 (11)	0.45 (2)
9812	165	2615	2050,455	-	-	1.87 (2)

- n_{2} could be much larger, $n_{2}=O\left(10^{3}\right)$
- Memory requirements are very limited, $\widetilde{\mathbf{Z}}=Z_{1} Z_{2}^{T}$ of very low rank

Numerical experiments. 2D stochastic Stokes problem

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathcal{H} & \mathcal{B}^{T} \\
\mathcal{B} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right], \quad \begin{array}{l}
\mathcal{H}=\operatorname{Blkdiag}\left(\left(\nu_{0} \mathrm{G}_{0}+\nu_{1} \mathrm{G}_{1}\right) \otimes \mathrm{A}_{\mathbf{x}},\left(\nu_{0} \mathrm{G}_{0}+\nu_{1} \mathrm{G}_{1}\right) \otimes \mathrm{A}_{\mathrm{y}}\right) \\
\left.B_{x}, G_{0} \otimes B_{y}\right]
\end{array}} \\
& \mathcal{M} \mathbf{Z}+\mathcal{D}_{0} \mathbf{Z} G_{1}=F \quad \text { vs } \quad \mathcal{A} \mathbf{z}=f
\end{aligned}
$$

$$
\nu_{0}=1 / 10, \nu_{1}=3 \nu_{0} / 10 \quad \text { Powell-Silvester (2012) }
$$

Conclusions and further comments
... A new matrix-oriented methodology

- Matrix formulation is computationally effective and memory saving
- Very preliminary numerical results are encouraging
- Three matrix equation solver effective via matrix-oriented Schur complement
- Operator $\mathcal{L}: X \rightarrow A_{1} X+X A_{2}$ could be replaced with $\mathcal{L}: X \rightarrow \sum_{k} A_{k} X G_{k}$
(work in progress with C. Powell)

For further information
http://www.dm.unibo.it/~simoncin

