

On projection methods for large-scale Riccati equations

V. Simoncini

Dipartimento di Matematica

Alma Mater Studiorum - Università di Bologna

valeria.simoncini@unibo.it

The problem

Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{s \times n}$, $p,s = \mathcal{O}(1)$

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

The problem

Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{s \times n}$, $p, s = \mathcal{O}(1)$

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

We focus on the large scale case: $n \gg 1000$

Different strategies

- (Inexact) Kleinman iteration (Newton-type method)
- Projection methods
- Invariant subspace iteration
- (Sparse) multilevel methods
-

Recent Comparisons: Simoncini-Szyld-Monsalve, '14, Benner et al, '18, etc.

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

$$V_k^{\top} (A\mathbf{X}_k + \mathbf{X}_k A^{\top} - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C) V_k = 0$$

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

$$V_k^{\top} (A\mathbf{X}_k + \mathbf{X}_k A^{\top} - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C) V_k = 0$$

giving the reduced Riccati equation

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

 \mathbf{Y}_k is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009)

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

$$V_k^{\top} (A\mathbf{X}_k + \mathbf{X}_k A^{\top} - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C) V_k = 0$$

giving the reduced Riccati equation

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

 \mathbf{Y}_k is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009) Key questions:

- Which approximation space?
- Is this meaningful from a Control Theory perspective?

Dynamical systems and the Riccati equation

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0 \\ y(t) = Cx(t), \end{cases}$$

 $u(t): {\sf control\ (input)\ vector}; \qquad y(t): {\sf output\ vector}$

x(t): state vector; x_0 : initial state

Dynamical systems and the Riccati equation

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0 \\ y(t) = Cx(t), \end{cases}$$

u(t): control (input) vector; y(t): output vector

x(t): state vector; x_0 : initial state

Minimization problem for a Cost functional: (simplified form)

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_{0}^{\infty} \left(x(t)^{\top} C^{\top} C x(t) + u(t)^{\top} u(t) \right) dt$$

Dynamical systems and the Riccati equation

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_{0}^{\infty} \left(x(t)^{\top} C^{\top} C x(t) + u(t)^{\top} u(t) \right) dt$$

Riccati equation:

$$A^{\top}\mathbf{X} + \mathbf{X}A - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

THEOREM. Let the pair (A, B) be stabilizable and (C, A) observable. Then there is a unique solution $\mathbf{X} \geq 0$ of the Riccati equation.

Moreover,

i) For each x_0 there is a unique optimal control, and it is given by

$$u_*(t) = -B^{\mathsf{T}} \mathbf{X} \exp((A - BB^{\mathsf{T}} \mathbf{X})t) x_0 \quad \text{for} \quad t \ge 0$$

ii)
$$\mathcal{J}(u_*, x_0) = x_0^{\top} \mathbf{X} x_0$$
 for all $x_0 \in \mathbb{R}^n$

see, e.g., Lancaster & Rodman, 1995

Order reduction of dynamical systems by Galerkin projection

Let $V_k \in \mathbb{R}^{n \times d_k}$ have orthonormal columns, $d_k \ll n$

Let
$$T_k = V_k^{\top} A V_k$$
, $B_k = V_k^{\top} B$, $C_k^{\top} = V_k^{\top} C^{\top}$

Reduced order dynamical system:

$$\begin{cases} \dot{\widehat{x}}(t) = T_k \widehat{x}(t) + B_k \widehat{u}(t), & \widehat{x}(0) = \widehat{x}_0 := V_k^\top x_0 \\ \widehat{y}(t) = C_k \widehat{x}(t) \end{cases}$$

$$x_k(t) = V_k \widehat{x}(t) \approx x(t)$$

Typical frameworks:

- Transfer function approximation
- Model reduction
- * Petrov-Galerkin projection is also common (see, e.g., Antoulas '05)

Reduced Riccati equation

$$T_k^{\top} \mathbf{Y} + \mathbf{Y} T_k - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \tag{*}$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \widehat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

Reduced Riccati equation

$$T_k^{\top} \mathbf{Y} + \mathbf{Y} T_k - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \tag{*}$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \widehat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

 \clubsuit If there exists a matrix K such that A-BK is dissipative^a, then the pair (T_k,B_k) is stabilizable.

^aA matrix is dissipative if its field of values is all in \mathbb{C}^- .

Reduced optimal control vs approximate control

* Our reduced optimal control function:

$$\widehat{\boldsymbol{u}}_*(t) = -B_k^{\top} \mathbf{Y}_k e^{(T_k - B_k B_k^{\top} \mathbf{Y}_k)t} \widehat{\boldsymbol{x}}_0, \quad t \ge 0$$

* Commonly used approximate control function:

Consider the Riccati equation

$$A^{\top}\mathbf{X} + \mathbf{X}A - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

If $\widetilde{\mathbf{X}}$ is some approximation to \mathbf{X} , then

$$\widetilde{\boldsymbol{u}}(t) := -B^{\top} \widetilde{\mathbf{X}} \widetilde{\boldsymbol{x}}(t)$$
 where $\widetilde{\boldsymbol{x}}(t) := e^{(A - BB^{\top} \widetilde{\mathbf{X}})t} \boldsymbol{x}_0$

However,

$$\left|\widehat{u}_{*} \neq \widetilde{u}\right|$$

They induce different actions on the functional \mathcal{J} (even for $\widetilde{\mathbf{X}} \equiv V_k \mathbf{Y}_k V_k^{\top}$)

Reduced optimal control vs approximate control

Consider the interpolated approximation: $\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$

Riccati residual matrix:

$$R_k := A^{\top} \mathbf{X}_k + \mathbf{X}_k A - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C$$

* Reduced optimal control function: $\widehat{u}_*(t) = -B_k^{\top} \mathbf{Y}_k e^{(T_k - B_k B_k^{\top} \mathbf{Y}_k)t} \widehat{x}_0$

THEOREM. Assume that $A - BB^{\top}\mathbf{X}_k$ is stable and

 $\widetilde{u}(t) := -B^{\top} \mathbf{X}_k x(t)$ approx control. Then

$$|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)| = \mathcal{E}_k, \quad \text{with} \quad \mathcal{E}_k \le \frac{\|R_k\|}{2\alpha} x_0^\top x_0,$$

where $\alpha > 0$ is such that $||e^{(A-BB^{\top}\mathbf{X}_k)t}|| \leq e^{-\alpha t}$ for all $t \geq 0$.

Note: $|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)|$ is nonzero for $R_k \neq 0$

On the choice of the reduction space

Reduced problem,
$$T_k = V_k^{\top} A V_k$$
, $B_k = V_k^{\top} B$, $C V_k = C_k$,
$$T_k^{\top} \mathbf{Y}_k + \mathbf{Y}_k T_k - \mathbf{Y}_k B_k B_k^{\top} \mathbf{Y}_k + C_k^{\top} C_k = 0$$

 $\mathcal{K} = \text{Range}(V_k)$:

- Krylov-type subspaces (extensively used in the linear case)
 - $\mathcal{K}_k(A, C^\top) := \text{Range}([C^\top, AC^\top, \dots, A^{k-1}C^\top])$ (Polynomial)
 - $\mathcal{EK}_k(A, C^\top) := \mathcal{K}_k(A, C^\top) + \mathcal{K}_k(A^{-1}, A^{-1}C^\top)$ (EKS, Rational)
 - $\mathcal{RK}_k(A, C^\top, \mathbf{s}) := \text{Range}([C^\top, (A s_2 I)^{-1} C^\top, \dots, \prod_{j=1}^{k-1} (A s_{j+1} I)^{-1} C^\top])$

(RKS, Rational) Adaptive choice of shifts involves nonlinear term BB^{\top}

- Proper Orthogonal Decomposition (functional based)
- Balanced Truncation

Back to the reduced Riccati equation

$$T_k^{\top} \mathbf{Y} + \mathbf{Y} T_k - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \tag{*}$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \widehat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

 \clubsuit If there exists a matrix K such that A-BK is dissipative, then the pair (T_k, B_k) is stabilizable.

The dissipating feedback matrix problem

Given

$$\begin{cases} \dot{x} = Ax - Bu \\ u = Kx, \end{cases} \tag{1}$$

and A not dissipative, find, if it exists, a dissipating feedback matrix K such that the closed-loop linear system $\dot{x} = (A - BK)x$ is dissipative.

(Guglielmi, Simoncini, tr 2018)

This means "the field of values of A - BK is all in \mathbb{C}^{-} ", that is

$$(A - BK) + (A - BK)^{\top} < 0$$

Known existence results and parameterization

A classical result (tailored to our setting):

see, e.g., Skelton, Iwasaki & Grigoriadis 1998

THEOREM. Assume B is full column rank. Then

(i) There exists a matrix K satisfying $A+A^\top-BK-(BK)^\top<0$ if and only if

$$B^{\perp}(A + A^{\top})(B^{\perp})^{\top} < 0 \text{ or } BB^{\top} > 0;$$

(ii) The following parameterization holds

$$K = -R^{-1}B^{\top} + R^{-\frac{1}{2}}L\Phi^{-\frac{1}{2}},$$

where $L \in \mathbb{R}^{q \times n}$ is an arbitrary matrix such that $\|L\| < 1$ and $R \in \mathbb{R}^{q \times q}$ is an arbitrary positive definite matrix such that $\Phi := (BR^{-1}B^\top - (A + A^\top))^{-1} > 0$.

A counter-example

This parameterization does not seem to include all possible Ks:

EXAMPLE. Consider $Q := A + A^{\top} = \operatorname{diag}(\alpha, -\alpha)$, with $\alpha > 0$, and $B = e_1 = [1; 0]$. Let us take $R^{-1} = \widehat{\alpha}$ with $\widehat{\alpha} > \alpha$. Then

$$\Phi = (BR^{-1}B^* - Q)^{-1} = \operatorname{diag}(\frac{1}{\widehat{\alpha} - \alpha}, \frac{1}{\alpha}) > 0,$$

$$\widetilde{B} = \Phi^{\frac{1}{2}} B R^{-\frac{1}{2}} = \frac{\sqrt{\widehat{\alpha}}}{\sqrt{\widehat{\alpha} - \alpha}} e_1$$

with $\|\widetilde{B}\| = \frac{\sqrt{\widehat{\alpha}}}{\sqrt{\widehat{\alpha} - \alpha}} > 1$ for all choices of $\alpha > 0$ and $\widehat{\alpha} > \alpha$. By taking $L = \frac{1}{2}\widetilde{B}$, α and $\widehat{\alpha}$ can be selected so that $\|L\| \geq 1$, while for this choice of L we still have $BK + K^\top B^\top + Q < 0$. \square

Thinking again the existence result

$$\mathcal{M} = \begin{bmatrix} (A + A^{\top}) & B \\ B^{\top} & 0 \end{bmatrix}$$

- If the matrix $(A + A^{\top})$ is negative definite on the kernel of B^{\top} , then $\mathcal M$ has exactly q positive and n negative eigenvalues
- The matrix $A+A^{\top}$ is negative definite on the kernel of B^{\top} if and only if there exists a $K\in\mathbb{R}^{q\times n}$ such that $W(A-BK)\subset\mathbb{C}^{-}$

Constructive derivation:

$$\mathcal{M} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} \Lambda, \qquad \Lambda < 0$$

Then

$$K = YX^{-1}$$
 (X nonsingular)

Thinking again the existence result. Generalization.

The set of all Ks can be enlarged:

THEOREM. There exists a matrix K such that $W(A-BK)\subset\mathbb{C}^-$ if and only if the pencil $(\mathcal{M},\mathcal{D})$ admits n negative eigenvalues for some symmetric and positive definite matrix $\mathcal{D}\in\mathbb{R}^{(n+q)\times(n+q)}$.

Hence, for any \mathcal{D} symmetric and positive definite such that

$$\mathcal{M} \begin{bmatrix} X \\ Y \end{bmatrix} = \mathcal{D} \begin{bmatrix} X \\ Y \end{bmatrix} \Lambda, \qquad \Lambda < 0$$

with
$$\begin{bmatrix} X \\ Y \end{bmatrix} \in \mathbb{R}^{(n+q) imes n}$$
 \mathcal{D} -orthogonal, we define $K := YX^{-1}$

- Other parameterizations are possible

Computing a (weakly) dissipating feedback of minimal norm

Let $\mathbb{W}^{q \times n}(A, B)$ be the set of dissipating matrices for the pair (A, B)

The problem: $Find K \in \mathbb{W}^{q \times n}(A, B)$ such that

$$\min_{K \in \mathbb{W}^{q \times n}(A,B)} ||K||_{\star}$$

 $(\star = F\text{-}norm, 2\text{-}norm)$

The Linear Matrix Inequality (LMI) optimization problem

LMI framework for the 2-norm:

$$\min_{K \in \mathbb{R}^{q \times n}} ||K||_2 \qquad \text{subject to}$$

$$A + A^{\top} - BK - K^{\top}B^{\top} \le 0, \qquad \begin{bmatrix} \gamma I_q & K \\ K^{\top} & \gamma I_n \end{bmatrix} \ge 0$$

(where $\gamma > 0$ is such that $||K||_2 \leq \gamma$)

LMI framework for the F-norm:

$$\min_{K \in \mathbb{R}^{q \times n}} ||K||_F \qquad \text{subject to}$$

$$A + A^{\top} - BK - K^{\top}B^{\top} \le 0, \qquad \begin{bmatrix} I & \text{vec}(K) \\ \text{vec}(K)^{\top} & \gamma \end{bmatrix} \ge 0$$

 $(\operatorname{vec}(K) \text{ stacks all columns of } K \text{ one after the other, so that } ||K||_F^2 \leq \gamma)$

A simple example

Method	description	
GL(m)	2-step functional method with m eigs (Guglielmi-Lubich, '17)	
LMI	Matlab basic function for the LMI problem (mincx)	
Yalmip1	Matlab version of Yalmip with SeDuMi solver (2-norm)	
Yalmip2	Matlab version of Yalmip with SeDuMi solver (F-norm)	
Pencil	minimization problem with pencil $(\mathcal{M},\mathcal{D})$	

$$A = \begin{bmatrix} -0.2 & 1.6 & 0.2 & 2.6 & -0.4 \\ -0.2 & -0.8 & -1.2 & -0.7 & -1.8 \\ 1.4 & 0.7 & -1.1 & 0.2 & 0.8 \\ 0.3 & 0.8 & 0.1 & -0.1 & -0.9 \\ 0.2 & -0.2 & 0.7 & -1.9 & 0.1 \end{bmatrix}, \quad B = \begin{bmatrix} 0.6 & 0.5 \\ -0.2 & 0.3 \\ 0.5 & 0 \\ 0.2 & 0.6 \\ 0.6 & -0.6 \end{bmatrix}.$$

$$\lambda_i(\frac{1}{2}(A+A^\top)) = \{-2.4752, -1.8301, -0.7238, 0.6506, 2.2785\}$$

A simple example

Numerically optimal dissipating matrices:

$$K_{GL} = \begin{bmatrix} 0.3690 & -0.12149 & 0.34503 & 0.1119 & 0.35065 \\ 1.0340 & 0.66501 & -0.01895 & 1.3640 & -1.2432 \end{bmatrix}$$

and

$$K_{Yalmip2} = \begin{bmatrix} 0.3684 & -0.11954 & 0.35079 & 0.1097 & 0.3467 \\ 1.0118 & 0.65736 & -0.03002 & 1.3995 & -1.2240 \end{bmatrix}$$

 \clubsuit Eigs of $S(K) = A + A^{\top} - BK - (BK)^{\top}$:

$$\lambda_i(S(K_{GL})) \in \{-2.4765, -1.8306, -0.72468, -2.4 \cdot 10^{-9}, -1.3 \cdot 10^{-8}\}$$

and

$$\lambda_i(S(K_{Yalmip2})) \in \{-2.4743, -1.8298, -0.72353, -2.4 \cdot 10^{-10}, 5.0 \cdot 10^{-10}\}$$

A simple example

Comparison of the different methods:

Method	Minimization	$ K_* _2$	$\ K_*\ _F$
GL (2)	F-norm	2.2166	2.3063
LMI	2-norm	2.2166	2.6714
Yalmip1	2-norm	2.2166	2.5765
Yalmip2	F-norm	2.2166	2.3063
Pencil	F-norm	2.2560	2.7585

Note: on harder problems Yalmip always gives smallest minimum

Outlook

Reduced Differential Riccati equations

(see, e.g., Koskela & Mena, tr 2017-2018, Güldogan etal tr 2017)

$$\dot{X}(t) = A^{\top}X(t) + X(t)A - X(t)BB^{\top}X(t) + C^{T}C$$

(work in progress, with G. Kirsten)

Parameterized Algebraic Riccati equations

(see, e.g., Schmidt & Haasdonk, 2018)

♠ Feedback control for nonlinear PDEs by state dependent Riccati equation

$$\dot{x}(t) = f(x(t)) + Bu(t), \qquad f(x) = A(x)x$$
$$z(t) = Cx(t)$$

(work in progress, with A. Alla and D. Kalise)