On projection methods for large-scale Riccati equations

V. Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

The problem
Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{s \times n}, p, s=\mathcal{O}(1)$
Rich literature on analysis, applications and numerics:
Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ..

The problem
Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{s \times n}, p, s=\mathcal{O}(1)$
Rich literature on analysis, applications and numerics:
Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...
We focus on the large scale case: $n \gg 1000$
Different strategies

- (Inexact) Kleinman iteration (Newton-type method)
- Projection methods
- Invariant subspace iteration
- (Sparse) multilevel methods
-

Recent Comparisons: Simoncini-Szyld-Monsalve, '14, Benner etal, '18, etc.

Galerkin projection method for the Riccati equation

Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

$$
V_{k}^{\top}\left(A \mathbf{X}_{k}+\mathbf{X}_{k} A^{\top}-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C\right) V_{k}=0
$$

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

$$
V_{k}^{\top}\left(A \mathbf{X}_{k}+\mathbf{X}_{k} A^{\top}-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C\right) V_{k}=0
$$

giving the reduced Riccati equation

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

\mathbf{Y}_{k} is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009)

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

$$
V_{k}^{\top}\left(A \mathbf{X}_{k}+\mathbf{X}_{k} A^{\top}-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C\right) V_{k}=0
$$

giving the reduced Riccati equation

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

\mathbf{Y}_{k} is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009)
Key questions:

- Which approximation space?
- Is this meaningful from a Control Theory perspective?

Dynamical systems and the Riccati equation

Time-invariant linear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t),
\end{array}\right.
$$

$u(t)$: control (input) vector; $\quad y(t)$: output vector
$x(t)$: state vector; $\quad x_{0}$: initial state

Dynamical systems and the Riccati equation

Time-invariant linear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t)
\end{array}\right.
$$

$u(t)$: control (input) vector; $\quad y(t)$: output vector
$x(t)$: state vector; $\quad x_{0}$: initial state
Minimization problem for a Cost functional:
(simplified form)

$$
\inf _{u} \mathcal{J}\left(u, x_{0}\right) \quad \mathcal{J}\left(u, x_{0}\right):=\int_{0}^{\infty}\left(x(t)^{\top} C^{\top} C x(t)+u(t)^{\top} u(t)\right) d t
$$

Dynamical systems and the Riccati equation

$$
\inf _{u} \mathcal{J}\left(u, x_{0}\right) \quad \mathcal{J}\left(u, x_{0}\right):=\int_{0}^{\infty}\left(x(t)^{\top} C^{\top} C x(t)+u(t)^{\top} u(t)\right) d t
$$

Riccati equation:

$$
A^{\top} \mathbf{X}+\mathbf{X} A-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

ThEOREM. Let the pair (A, B) be stabilizable and (C, A) observable. Then there is a unique solution $\mathbf{X} \geq 0$ of the Riccati equation. Moreover,
i) For each x_{0} there is a unique optimal control, and it is given by

$$
u_{*}(t)=-B^{\top} \mathbf{X} \exp \left(\left(A-B B^{\top} \mathbf{X}\right) t\right) x_{0} \quad \text { for } \quad t \geq 0
$$

ii) $\mathcal{J}\left(u_{*}, x_{0}\right)=x_{0}^{\top} \mathbf{X} x_{0}$ for all $x_{0} \in \mathbb{R}^{n}$
see, e.g., Lancaster \& Rodman, 1995

Order reduction of dynamical systems by Galerkin projection
Let $V_{k} \in \mathbb{R}^{n \times d_{k}}$ have orthonormal columns, $d_{k} \ll n$
Let $\quad T_{k}=V_{k}^{\top} A V_{k}, \quad B_{k}=V_{k}^{\top} B, \quad C_{k}^{\top}=V_{k}^{\top} C^{\top}$
Reduced order dynamical system:

$$
\left\{\begin{array}{l}
\dot{\widehat{x}}(t)=T_{k} \widehat{x}(t)+B_{k} \widehat{u}(t), \quad \widehat{x}(0)=\widehat{x}_{0}:=V_{k}^{\top} x_{0} \\
\widehat{y}(t)=C_{k} \widehat{x}(t)
\end{array}\right.
$$

$x_{k}(t)=V_{k} \widehat{x}(t) \approx x(t)$
Typical frameworks:

- Transfer function approximation
- Model reduction
* Petrov-Galerkin projection is also common (see, e.g., Antoulas '05)

Reduced Riccati equation

$$
\begin{equation*}
T_{k}^{\top} \mathbf{Y}+\mathbf{Y} T_{k}-\mathbf{Y} B_{k} B_{k}^{\top} \mathbf{Y}+C_{k}^{\top} C_{k}=0 \tag{*}
\end{equation*}
$$

Theorem. Let the pair $\left(T_{k}, B_{k}\right)$ be stabilizable and $\left(C_{k}, T_{k}\right)$ observable. Then there is a unique solution $\mathbf{Y}_{k} \geq 0$ of $(*)$ that for each \widehat{x}_{0} gives the feedback optimal control

$$
\widehat{u}_{*}(t)=-B_{k}^{*} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{*} \mathbf{Y}_{k}\right) t\right) \widehat{x}_{0}, \quad t \geq 0
$$

for the reduced system.

Reduced Riccati equation

$$
\begin{equation*}
T_{k}^{\top} \mathbf{Y}+\mathbf{Y} T_{k}-\mathbf{Y} B_{k} B_{k}^{\top} \mathbf{Y}+C_{k}^{\top} C_{k}=0 \tag{*}
\end{equation*}
$$

Theorem. Let the pair $\left(T_{k}, B_{k}\right)$ be stabilizable and $\left(C_{k}, T_{k}\right)$ observable. Then there is a unique solution $\mathbf{Y}_{k} \geq 0$ of $(*)$ that for each \widehat{x}_{0} gives the feedback optimal control

$$
\widehat{u}_{*}(t)=-B_{k}^{*} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{*} \mathbf{Y}_{k}\right) t\right) \widehat{x}_{0}, \quad t \geq 0
$$

for the reduced system.
\& If there exists a matrix K such that $A-B K$ is dissipative ${ }^{\text {a }}$, then the pair $\left(T_{k}, B_{k}\right)$ is stabilizable.

[^0]Reduced optimal control vs approximate control
\star Our reduced optimal control function:

$$
\widehat{u}_{*}(t)=-B_{k}^{\top} \mathbf{Y}_{k} e^{\left(T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k}\right) t} \widehat{x}_{0}, \quad t \geq 0
$$

\star Commonly used approximate control function:
Consider the Riccati equation

$$
A^{\top} \mathbf{X}+\mathbf{X} A-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

If $\widetilde{\mathbf{X}}$ is some approximation to \mathbf{X}, then

$$
\widetilde{u}(t):=-B^{\top} \widetilde{\mathbf{X}} \widetilde{x}(t) \quad \text { where } \quad \widetilde{x}(t):=e^{\left(A-B B^{\top} \widetilde{\mathbf{X}}\right) t} x_{0}
$$

However,

$$
\widehat{u}_{*} \neq \widetilde{u}
$$

They induce different actions on the functional \mathcal{J} (even for $\widetilde{\mathbf{X}} \equiv V_{k} \mathbf{Y}_{k} V_{k}^{\top}$)

Reduced optimal control vs approximate control
Consider the interpolated approximation: $\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}$
Riccati residual matrix:
$R_{k}:=A^{\top} \mathbf{X}_{k}+\mathbf{X}_{k} A-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C$
\star Reduced optimal control function: $\widehat{u}_{*}(t)=-B_{k}^{\top} \mathbf{Y}_{k} e^{\left(T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k}\right) t} \widehat{x}_{0}$

Theorem. Assume that $A-B B^{\top} \mathbf{X}_{k}$ is stable and $\widetilde{u}(t):=-B^{\top} \mathbf{X}_{k} x(t)$ approx control. Then

$$
\left|\mathcal{J}\left(\widetilde{u}, x_{0}\right)-\widehat{\mathcal{J}}_{k}\left(\widehat{u}_{*}, \widehat{x}_{0}\right)\right|=\mathcal{E}_{k}, \quad \text { with } \quad \mathcal{E}_{k} \leq \frac{\left\|R_{k}\right\|}{2 \alpha} x_{0}^{\top} x_{0}
$$

where $\alpha>0$ is such that $\left\|e^{\left(A-B B^{\top} \mathbf{X}_{k}\right) t}\right\| \leq e^{-\alpha t}$ for all $t \geq 0$.

Note: $\left|\mathcal{J}\left(\widetilde{u}, x_{0}\right)-\widehat{\mathcal{J}}_{k}\left(\widehat{u}_{*}, \widehat{x}_{0}\right)\right|$ is nonzero for $R_{k} \neq 0$

On the choice of the reduction space

Reduced problem, $T_{k}=V_{k}^{\top} A V_{k}, B_{k}=V_{k}^{\top} B, C V_{k}=C_{k}$,

$$
T_{k}^{\top} \mathbf{Y}_{k}+\mathbf{Y}_{k} T_{k}-\mathbf{Y}_{k} B_{k} B_{k}^{\top} \mathbf{Y}_{k}+C_{k}^{\top} C_{k}=0
$$

$\mathcal{K}=\operatorname{Range}\left(V_{k}\right):$
\& Krylov-type subspaces (extensively used in the linear case)

- $\mathcal{K}_{k}\left(A, C^{\top}\right):=\operatorname{Range}\left(\left[C^{\top}, A C^{\top}, \ldots, A^{k-1} C^{\top}\right]\right)$ (Polynomial)
- $\mathcal{E} \mathcal{K}_{k}\left(A, C^{\top}\right):=\mathcal{K}_{k}\left(A, C^{\top}\right)+\mathcal{K}_{k}\left(A^{-1}, A^{-1} C^{\top}\right)($ EKS, Rational $)$
- $\mathcal{R} \mathcal{K}_{k}\left(A, C^{\top}, \mathbf{s}\right):=\operatorname{Range}\left(\left[C^{\top},\left(A-s_{2} I\right)^{-1} C^{\top}, \ldots, \prod_{j=1}^{k-1}\left(A-s_{j+1} I\right)^{-1} C^{\top}\right]\right)$
(RKS, Rational) Adaptive choice of shifts involves nonlinear term $B B^{\top}$
\& Proper Orthogonal Decomposition (functional based)
\& Balanced Truncation

Back to the reduced Riccati equation

$$
\begin{equation*}
T_{k}^{\top} \mathbf{Y}+\mathbf{Y} T_{k}-\mathbf{Y} B_{k} B_{k}^{\top} \mathbf{Y}+C_{k}^{\top} C_{k}=0 \tag{*}
\end{equation*}
$$

THEOREM. Let the pair $\left(T_{k}, B_{k}\right)$ be stabilizable and $\left(C_{k}, T_{k}\right)$ observable. Then there is a unique solution $\mathbf{Y}_{k} \geq 0$ of $(*)$ that for each \widehat{x}_{0} gives the feedback optimal control

$$
\widehat{u}_{*}(t)=-B_{k}^{*} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{*} \mathbf{Y}_{k}\right) t\right) \widehat{x}_{0}, \quad t \geq 0
$$

for the reduced system.
\& If there exists a matrix K such that $A-B K$ is dissipative, then the pair $\left(T_{k}, B_{k}\right)$ is stabilizable.

The dissipating feedback matrix problem
Given

$$
\left\{\begin{align*}
\dot{x} & =A x-B u \tag{1}\\
u & =K x
\end{align*}\right.
$$

and A not dissipative, find, if it exists, a dissipating feedback matrix K such that the closed-loop linear system $\dot{x}=(A-B K) x$ is dissipative.
(Guglielmi, Simoncini, tr 2018)

This means "the field of values of $A-B K$ is all in $\mathbb{C}^{-",}$ that is

$$
(A-B K)+(A-B K)^{\top}<0
$$

Known existence results and parameterization
A classical result (tailored to our setting):
see, e.g., Skelton, Iwasaki \& Grigoriadis 1998
Theorem. Assume B is full column rank. Then
(i) There exists a matrix K satisfying $A+A^{\top}-B K-(B K)^{\top}<0$ if and only if

$$
B^{\perp}\left(A+A^{\top}\right)\left(B^{\perp}\right)^{\top}<0 \quad \text { or } \quad B B^{\top}>0
$$

(ii) The following parameterization holds

$$
K=-R^{-1} B^{\top}+R^{-\frac{1}{2}} L \Phi^{-\frac{1}{2}}
$$

where $L \in \mathbb{R}^{q \times n}$ is an arbitrary matrix such that $\|L\|<1$ and $R \in \mathbb{R}^{q \times q}$ is an arbitrary positive definite matrix such that $\Phi:=\left(B R^{-1} B^{\top}-\left(A+A^{\top}\right)\right)^{-1}>0$.

A counter-example

This parameterization does not seem to include all possible K s:

Example. Consider $Q:=A+A^{\top}=\operatorname{diag}(\alpha,-\alpha)$, with $\alpha>0$, and $B=e_{1}=[1 ; 0]$. Let us take $R^{-1}=\widehat{\alpha}$ with $\widehat{\alpha}>\alpha$. Then

$$
\begin{aligned}
\Phi & =\left(B R^{-1} B^{*}-Q\right)^{-1}=\operatorname{diag}\left(\frac{1}{\widehat{\alpha}-\alpha}, \frac{1}{\alpha}\right)>0 \\
\widetilde{B} & =\Phi^{\frac{1}{2}} B R^{-\frac{1}{2}}=\frac{\sqrt{\widehat{\alpha}}}{\sqrt{\widehat{\alpha}-\alpha}} e_{1}
\end{aligned}
$$

with $\|\widetilde{B}\|=\frac{\sqrt{\widehat{\alpha}}}{\sqrt{\widehat{\alpha}-\alpha}}>1$ for all choices of $\alpha>0$ and $\widehat{\alpha}>\alpha$. By taking $L=\frac{1}{2} \widetilde{B}, \alpha$ and $\widehat{\alpha}$ can be selected so that $\|L\| \geq 1$, while for this choice of L we still have $B K+K^{\top} B^{\top}+Q<0$. \square

Thinking again the existence result

$$
\mathcal{M}=\left[\begin{array}{cc}
\left(A+A^{\top}\right) & B \\
B^{\top} & 0
\end{array}\right]
$$

- If the matrix $\left(A+A^{\top}\right)$ is negative definite on the kernel of B^{\top}, then \mathcal{M} has exactly q positive and n negative eigenvalues
- The matrix $A+A^{\top}$ is negative definite on the kernel of B^{\top} if and only if there exists a $K \in \mathbb{R}^{q \times n}$ such that $W(A-B K) \subset \mathbb{C}^{-}$

Constructive derivation:

$$
\mathcal{M}\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right] \Lambda, \quad \Lambda<0
$$

Then

$$
K=Y X^{-1} \quad(X \text { nonsingular })
$$

Thinking again the existence result. Generalization.

The set of all $K s$ can be enlarged:
TheOrem. There exists a matrix K such that $W(A-B K) \subset \mathbb{C}^{-}$if and only if the pencil $(\mathcal{M}, \mathcal{D})$ admits n negative eigenvalues for some symmetric and positive definite matrix $\mathcal{D} \in \mathbb{R}^{(n+q) \times(n+q)}$.

Hence, for any \mathcal{D} symmetric and positive definite such that

$$
\mathcal{M}\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\mathcal{D}\left[\begin{array}{l}
X \\
Y
\end{array}\right] \Lambda, \quad \Lambda<0
$$

with $\left[\begin{array}{l}X \\ Y\end{array}\right] \in \mathbb{R}^{(n+q) \times n} \mathcal{D}$-orthogonal, we define $K:=Y X^{-1}$

- Other parameterizations are possible

Computing a (weakly) dissipating feedback of minimal norm

Let $\mathbb{W}^{q \times n}(A, B)$ be the set of dissipating matrices for the pair (A, B)

The problem: Find $K \in \mathbb{W}^{q \times n}(A, B)$ such that

$$
\min _{K \in \mathbb{W}^{q \times n}(A, B)}\|K\|_{\star}
$$

($\star=$ F-norm, 2-norm)
\& For $K \in \mathbb{W}^{q \times n}(A, B)$, the matrix $A+A^{\top}-B K-(B K)^{\top}$ has a zero eigenvalue with multiplicity m, with $0<m \leq q$

The Linear Matrix Inequality (LMI) optimization problem
\& LMI framework for the 2-norm:

$$
\begin{aligned}
\min _{K \in \mathbb{R}^{q \times n}}\|K\|_{2} & \text { subject to } \\
A+A^{\top}-B K-K^{\top} B^{\top} \leq 0, & {\left[\begin{array}{cc}
\gamma I_{q} & K \\
K^{\top} & \gamma I_{n}
\end{array}\right] \geq 0 }
\end{aligned}
$$

(where $\gamma>0$ is such that $\|K\|_{2} \leq \gamma$)
\& LMI framework for the F-norm:

$$
\begin{aligned}
\min _{K \in \mathbb{R}^{q \times n}}\|K\|_{F} & \text { subject to } \\
A+A^{\top}-B K-K^{\top} B^{\top} \leq 0, & {\left[\begin{array}{cc}
I & \operatorname{vec}(K) \\
\operatorname{vec}(K)^{\top} & \gamma
\end{array}\right] \geq 0 }
\end{aligned}
$$

($\operatorname{vec}(K)$ stacks all columns of K one after the other, so that $\|K\|_{F}^{2} \leq \gamma$)

A simple example

Method	description
GL (m)	2-step functional method with m eigs (Guglielmi-Lubich, '17)
LMI	Matlab basic function for the LMI problem (mincx)
Yalmip1	Matlab version of Yalmip with SeDuMi solver (2-norm)
Yalmip2	Matlab version of Yalmip with SeDuMi solver (F-norm)
Pencil	minimization problem with pencil $(\mathcal{M}, \mathcal{D})$

$$
\begin{aligned}
A= & {\left[\begin{array}{ccccc}
-0.2 & 1.6 & 0.2 & 2.6 & -0.4 \\
-0.2 & -0.8 & -1.2 & -0.7 & -1.8 \\
1.4 & 0.7 & -1.1 & 0.2 & 0.8 \\
0.3 & 0.8 & 0.1 & -0.1 & -0.9 \\
0.2 & -0.2 & 0.7 & -1.9 & 0.1
\end{array}\right], \quad B=\left[\begin{array}{cc}
0.6 & 0.5 \\
-0.2 & 0.3 \\
0.5 & 0 \\
0.2 & 0.6 \\
0.6 & -0.6
\end{array}\right] . } \\
& \lambda_{i}\left(\frac{1}{2}\left(A+A^{\top}\right)\right)=\{-2.4752,-1.8301,-0.7238,0.6506,2.2785\}
\end{aligned}
$$

A simple example

\& Numerically optimal dissipating matrices:

$$
K_{G L}=\left[\begin{array}{ccccc}
0.3690 & -0.12149 & 0.34503 & 0.1119 & 0.35065 \\
1.0340 & 0.66501 & -0.01895 & 1.3640 & -1.2432
\end{array}\right]
$$

and

$$
K_{\text {Yalmip } 2}=\left[\begin{array}{ccccc}
0.3684 & -0.11954 & 0.35079 & 0.1097 & 0.3467 \\
1.0118 & 0.65736 & -0.03002 & 1.3995 & -1.2240
\end{array}\right]
$$

\& Eigs of $S(K)=A+A^{\top}-B K-(B K)^{\top}$:

$$
\lambda_{i}\left(S\left(K_{G L}\right)\right) \in\left\{-2.4765,-1.8306,-0.72468,-2.4 \cdot 10^{-9},-1.3 \cdot 10^{-8}\right\}
$$

and

$$
\lambda_{i}\left(S\left(K_{Y a l m i p 2}\right)\right) \in\left\{-2.4743,-1.8298,-0.72353,-2.4 \cdot 10^{-10}, 5.0 \cdot 10^{-10}\right\}
$$

A simple example

Comparison of the different methods:

Method	Minimization	$\left\\|K_{*}\right\\|_{2}$	$\left\\|K_{*}\right\\|_{F}$
GL(2)	F-norm	$\mathbf{2 . 2 1 6 6}$	$\mathbf{2 . 3 0 6 3}$
LMI	2-norm	$\mathbf{2 . 2 1 6 6}$	2.6714
Yalmip1	2-norm	$\mathbf{2 . 2 1 6 6}$	2.5765
Yalmip2	F-norm	$\mathbf{2 . 2 1 6 6}$	$\mathbf{2 . 3 0 6 3}$
Pencil	F-norm	2.2560	2.7585

Note: on harder problems Yalmip always gives smallest minimum

Outlook

© Reduced Differential Riccati equations
(see, e.g., Koskela \& Mena, tr 2017-2018, Güldogan etal tr 2017)

$$
\dot{X}(t)=A^{\top} X(t)+X(t) A-X(t) B B^{\top} X(t)+C^{T} C
$$

(work in progress, with G. Kirsten)

A Parameterized Algebraic Riccati equations
(see, e.g., Schmidt \& Haasdonk, 2018)
A Feedback control for nonlinear PDEs by state dependent Riccati equation

$$
\begin{aligned}
\dot{x}(t) & =f(x(t))+B u(t), \quad f(x)=A(x) x \\
z(t) & =C x(t)
\end{aligned}
$$

(work in progress, with A. Alla and D. Kalise)

[^0]: ${ }^{\text {a }}$ A matrix is dissipative if its field of values is all in \mathbb{C}^{-}.

