

Rational function approximation to the matrix exponential operator

V. Simoncini

Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it

Joint works with

L. Lopez (Bari), M. Popolizio (Bari), A. Frommer (Wuppertal)

Approximation problem

Given $v \in \mathbb{R}^n$ and A symmetric and negative semidefinite, approximate

$$x = \exp(A) v$$

- Focus: A large dimension
- General approach: $x_m \in \mathcal{K}_m$ Krylov subspace

Problem in context

Wide range of applications, e.g.

- Numerical solution of Time-dependent PDEs
- (Analysis of) Low dimensional models of dynamical systems: approximate solution to Lyapunov equation

 $AX + XA^T + BB^T = 0$

• Flows on manifolds

 $Q_t = H(Q, t)Q, \quad Q(t)|_{t=0} = Q_0 \in V_k(\mathbb{R}^n)$

 V_k Stiefel manifold (computation of a few Lyapunov exponents)

Numerical approximation

A large dimension: $x = \exp(A) v \approx \mathcal{R}_{\mu,\nu}(A) v$

$$\mathcal{R}_{\mu,\nu}(\lambda) = \frac{\Phi_{\mu}(\lambda)}{\Psi_{\nu}(\lambda)}, \qquad \Phi_{\mu}(\lambda), \ \Psi_{\nu}(\lambda) \quad \text{polynomials}$$

- Polynomial approximation, $\nu=0$
- Padé (rational function) approximation, e.g., $\mu = \nu$
- Chebyshev (rational function) approximation, $\mu = \nu$
- Restricted Denominator (RD, rational function) approximation
- . . .

Approximation using Krylov subspace

$$\mathcal{K}_m \equiv \mathcal{K}_m(A, v) = \operatorname{span}\{v, Av, \dots, A^{m-1}v\}$$

$$V_m$$
 s.t. range $(V_m) = \mathcal{K}_m(A, v)$ and $V_m^T V_m = I$

Arnoldi relation

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$

A common approach

$$\exp(A)v \approx x_m = V_m \exp(H_m)e_1, \qquad ||v|| = 1$$

 x_m derived from interpolation problem in Hermite sense (Saad '92)

Outline

The tools:

- Krylov space: $\exp(A)v \approx x_m = V_m \exp(H_m)e_1$
- Rational approximation: $\exp(A) v \approx \mathcal{R}_{\mu,\nu}(A) v$

The exploration venues:

- Convergence theory
- Stopping criteria
- Acceleration procedures

Approximation of $\exp(A)v$ in Krylov subspace. I

Typical convergence bounds (Hochbruck & Lubich '97)

$$\begin{aligned} \|\exp(A)v - V_m \exp(H_m)e_1\| &\leq 10e^{-m^2/(5\rho)}, \quad \sqrt{4\rho} \leq m \leq 2\rho, \\ \|\exp(A)v - V_m \exp(H_m)e_1\| &\leq \frac{10}{\rho}e^{-\rho}\left(\frac{e\rho}{m}\right)^m, \quad m \geq 2\rho \end{aligned}$$

where $\sigma(A) \subseteq [-4\rho, 0]$

see also Tal-Ezer '89, Druskin & Knizhnerman '89, Stewart & Leyk '96

Approximation of $\exp(A)v$ in Krylov subspace. II

Typical a-posteriori estimate (see, e.g., Saad '92)

$$\|\exp(A)v - V_m \exp(H_m)e_1\| \approx O(h_{m+1,m}|e_m^T \exp(H_m)e_1|)$$

for *m* large enough

Note: for Ax(t) - x'(t) = 0, x(0) = v

$$h_{m+1,m}|e_m^*\exp(tH_m)e_1| = ||Ax_m(t) - x'_m(t)||$$

plays role of residual norm

(see, e.g., Druskin & Greenbaum & Knizhnerman '98)

Projection of Rational functions onto Krylov subspaces
Basic fact: If
$$x_m \in \mathcal{K}_m(A, v)$$
, $x_m \approx \mathcal{R}_\nu(A)v$ then
 $\|\exp(A)v - x_m\| \le \|\exp(A)v - \mathcal{R}_\nu(A)v\| + \|\mathcal{R}_\nu(A)v - x_m\|$
Focus: $\mathcal{R}_\nu = \Phi_\nu/\Psi_\nu$ Padé and Chebyshev approximation
 $(\Psi_\nu(A) \text{ positive definite})$

Projection onto Krylov subspace

 $x_{\star} = \mathcal{R}_{\nu}(A)v = \Psi_{\nu}(A)^{-1}\Phi_{\nu}(A)v \quad \Leftrightarrow \quad x_{\star} \text{ solves } \quad \Psi_{\nu}(A)x = \Phi_{\nu}(A)v$

Galerkin approximation in $\mathcal{K}_m(A, v)$:

Solve
$$V_m^* \Psi_\nu(A) V_m y = V_m^* \Phi_\nu(A) v, \qquad x_m^G = V_m y_m^G$$

Minimization property:

$$\min_{x \in K_m(A,v)} \|x_\star - x\|_{\Psi_\nu(A)} = \|x_\star - x_m^G\|_{\Psi_\nu(A)}$$

But: too expensive

Krylov approximation

 $\mathcal{R}_{\nu}(A)v \approx V_m \mathcal{R}_{\nu}(H_m)e_1$

Partial Fraction expansion:

$$\frac{\Phi_{\nu}(\lambda)}{\Psi_{\nu}(\lambda)} = \tau_0 + \sum_{j=1}^{\nu} \frac{\tau_j}{\lambda - \xi_j}$$

$$\mathcal{R}_{\nu}(A)v = \tau_{0}v + \sum_{j=1}^{\nu}\tau_{j}(A - \xi_{j}I)^{-1}v$$

$$\approx \tau_{0}v + \sum_{j=1}^{\nu}\tau_{j}V_{m}(H_{m} - \xi_{j}I)^{-1}e_{1}$$

$$= V_{m}\Psi_{\nu}(H_{m})^{-1}\Phi_{\nu}(H_{m})e_{1} \equiv V_{m}y_{m}^{K}$$

 $V_m y_m^K$ is a term-wise Galerkin projection: (van der Vorst, '87)

Linear bounds for convergence rate

$$x_m^K = V_m \mathcal{R}_\nu(H_m) e_1 \qquad \approx \qquad \mathcal{R}_\nu(A) v = \tau_0 v + \sum_{j=1}^\nu \tau_j (A - \xi_j I)^{-1} v$$

Then:

$$\|\mathcal{R}_{\nu}(A)v - x_{m}^{K}\| \leq \sum_{j=1}^{\nu} \eta_{j} \frac{1}{\rho_{j}^{m} + 1/\rho_{j}^{m}}$$

 $\rho_j = \rho_j(\sigma(A), \xi_j) \qquad \eta_j = \eta_j(\sigma(A), \xi_j)$

Lopez & Simoncini, SINUM '06

A-posteriori estimate and residual

$$x_{\star} = \tau_0 v + \sum_{j=1}^{\nu} \tau_j (A - \xi_j I)^{-1} v \approx V_m \left(\tau_0 e_1 + \sum_{j=1}^{\nu} \tau_j (H_m - \xi_j I)^{-1} e_1 \right)$$

Defining $r_m^K := \sum_{j=1}^{\nu} \tau_j r_m^{(j)}$ ($r_m^{(j)}$ single residuals) we have

$$h_{m+1,m}|e_m^*y_m^K| = ||r_m^K||$$

Acceleration strategies

Hochbruck & van den Eshof (SISC '06): for $f(\lambda) = \exp(\lambda)$

$$x_m \in \mathcal{K}_m((I - \gamma A)^{-1}, v), \quad \gamma > 0$$
$$x = f(A)v \qquad \Rightarrow \qquad \qquad$$

$$x_m = V_m f(\frac{1}{\gamma}(H_m^{-1} - I))e_1$$

If
$$f(\lambda) = \mathcal{R}_{\nu}(\lambda)$$
, $\mathcal{R}_{\nu}(A)v = \tau_0 v + \sum_j \tau_j (A - \xi_j I)^{-1} v$

 \Rightarrow x_m corresponds to preconditioning $(A - \xi_j I)d = v$:

$$(A - \xi_j I)d = v$$
 preconditioned with $(I - \gamma A)^{-1}$

Popolizio & Simoncini, tr.2006

Acceleration strategies. Cont'd

Connection to Partial Fraction Expansion used to select "optimal" parameter γ in

$$x_m = V_m f(\frac{1}{\gamma} (H_m^{-1} - I)) e_1 \approx \tau_0 v + \sum_j \tau_j (A - \xi_j I)^{-1} v$$

for $\sigma(A) \in [\alpha, 0]$ large, leads to a *discrete* min-max problem:

$$\max_{\substack{\xi_i \\ i=1,...,\nu}} \min_{\substack{\xi_j \\ j=1,...,\nu}} \frac{|\xi_i| + |\xi_j|}{||\xi_i| - \xi_j|}$$

ν	7	8	9	10	11	12	13	14
$\gamma_{\rm opt}^{-1}$	0.1264	0.1062	0.0914	0.0801	0.0711	0.0639	0.0580	0.0530

* Chebyshev approx

Numerical results. 1

- Partial Fraction Expansion (PFE). Explicit numerical solution of

$$\tau_0 v + \sum_j \tau_j (A - \xi_j I)^{-1} v$$

Systems corresponding to conjugate pairs are coupled

- Standard Lanczos: $\exp(A)v \approx V_m \exp(H_m)e_1 \in \mathcal{K}_m(A, v)$
- Shift-Invert Lanczos (SI):

$$x_m \in \mathcal{K}_m((I - \gamma A)^{-1}, v), \qquad x_m = V_m f(\frac{1}{\gamma}(H_m^{-1} - I))e_1$$

Note: PFE and SI require solving *shifted* systems

A =	= 3D Lap	Numeric lace opera	al results. <mark>Dire</mark> ator.	$ct system solv n = 125 : \sigma(2)$	$ ers. (-179.14) \subset [-179.14] $, -12.862]
ſ			Standard	Part.Fract.	Shift-Invert	
	n	tol	Lanczos	Expansion	Lanczos	
		10^{-5}	0.01 (13)	0.01	0.01 (7)	
	125	10^{-8}	0.01 (18)	0.01	0.01 (11)	
		10^{-11}	0.01 (22)	0.03	0.01 (14)	
		10^{-14}	0.01 (24)	0.03	0.01 (17)	
Ī		10^{-5}	0.14 (47)	1.32	0.48 (8)	
	3375	10^{-8}	0.21 (55)	2.13	0.65 (13)	
		10^{-11}	0.35 (67)	2.88	0.85 (19)	
		10^{-14}	0.52 (77)	3.70	1.06 (25)	
		10^{-5}	2.69 (89)	30.35	11.49 (10)	
	15625	10^{-8}	2.95 (93)	51.61	11.88 (11)	
		10^{-11}	4.76 (113)	69.03	14.22 (17)	
		10^{-14}	7.25 (130)	90.20	16.96 (24)	

E-Times (# its)

Ex.1

Numerical results. Direct system solvers.

Ex.2
$$A \approx \mathcal{L}(u) = ((1+y-x)u_x)_x + ((1+x+x^2)u_y)_y$$

 $n = 2500: \sigma(A) \subset [-35424, -25.256]$

		Standard	Part.Fract.	Shift-Invert	
n	tol	Lanczos	Expansion	Lanczos	
	10^{-5}	16 (194)	0.22	0.12 (10)	
2500	10^{-8}	18 (200)	0.33	0.13 (11)	
	10^{-11}	53 (242)	0.44	0.20 (19)	
	10^{-14}	111 (280)	0.53	0.24 (24)	
	10^{-5}	615 (406)	1.24	0.67 (11)	
10000	10^{-8}	610 (406)	1.87	0.66 (11)	
	10^{-11}	1221 (484)	2.55	0.94 (17)	
	10^{-14}	- (> 500)	3.20	1.24 (23)	

Numerical results. Iterative system solvers.							
		Stand.Lanczos	PFE+QMR (avg.its)	SI+PCG (out/avg in)			
Example 1							
	10^{-5}	0.14	0.67 (8)	0.44 (8/7)			
3375	10^{-8}	0.21	1.15 (11)	0.81 (13/9)			
	10^{-11}	0.35	1.75 (14)	1.27 (19/10)			
	10^{-5}	2.69	5.29 (11)	4.05 (10/10)			
15625	10^{-8}	2.95	9.36 (17)	5.37 (11/13)			
	10^{-11}	4.76	14.29 (22)	8.87 (17/15)			
			Example 2				
	10^{-5}	16	0.36 (13)	0.54 (10/12)			
2500	10^{-8}	18	0.68 (18)	0.75 (11/16)			
	10^{-11}	53	1.09 (22)	1.46 (19/18)			
	10^{-5}	615	2.46 (24)	4.4 (11/21)			
10000	10^{-8}	610	4.92 (35)	5.5 (11/27)			
	10^{-11}	1221	8.17 (43)	9.8 (17/32)			

Conclusions and Outlook

- Acceleration procedure effective on tough problem
- ... otherwise use Standard Lanczos !!
- Partial Fraction Expansion very efficient with iterative solves

- Further explore acceleration procedures
- Generalize PFA framework to nonsymmetric problem
- Generalize to other functions (log, \cos , ϕ -functions, etc.)

Related references

- 1. A. FROMMER AND V. SIMONCINI, *Matrix functions*, tech. rep., Dipartimento di Matematica, Bologna (I), March 2006.
- L. LOPEZ AND V. SIMONCINI, Analysis of projection methods for rational function approximation to the matrix exponential, SIAM J. Numer. Anal., 44 (2006), pp. 613–635.
- 3. M. POPOLIZIO AND V. SIMONCINI, Acceleration Techniques for Approximating the Matrix Exponential Operator, October 2006, pp.1-24.

valeria@dm.unibo.it

http://www.dm.unibo.it/~simoncin