

Recent developments in multiterm matrix equations solvers

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

Joint work with Martina lannacito and Davide Palitta

Multiterm linear matrix equation

$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$

$A_i \in \mathbb{R}^{n imes n}, \ B_i \in \mathbb{R}^{m imes m}$, $oldsymbol{X}$ unknown matrix

A sample of this equation on different problems:

- Stochastic PDEs
- PDEs on polygonal domains, IGA, spectral methods, etc
- Space-time PDEs
- All-at-once PDE-constrained optimization problem
- Bilinear control problems
- **.** ..

A sample of computational strategies:

- Kronecker form and back on track
- Fixed point iterations (an "evergreen"...)
- ▶ Projection-type methods ⇒ low rank approximation
- Optimization problems with fixed (low) rank approximation
- Ad-hoc problem-dependent procedures
- etc

Multiterm linear matrix equation

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

 $A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{m \times m}$, **X** unknown matrix

A sample of this equation on different problems:

- Stochastic PDEs
- PDEs on polygonal domains, IGA, spectral methods, etc
- Space-time PDEs
- All-at-once PDE-constrained optimization problem
- Bilinear control problems
- A sample of computational strategies:
 - Kronecker form and back on track
 - Fixed point iterations (an "evergreen"...)
 - ▶ Projection-type methods ⇒ low rank approximation
 - Optimization problems with fixed (low) rank approximation
 - Ad-hoc problem-dependent procedures
 - etc.

4

Multiterm linear matrix equation

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

 $A_i \in \mathbb{R}^{n \times n}, B_i \in \mathbb{R}^{m \times m}$, **X** unknown matrix

A sample of this equation on different problems:

- Stochastic PDEs
- PDEs on polygonal domains, IGA, spectral methods, etc
- Space-time PDEs
- All-at-once PDE-constrained optimization problem
- Bilinear control problems
- **.**...

A sample of computational strategies:

- Kronecker form and back on track
- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Optimization problems with fixed (low) rank approximation
- Ad-hoc problem-dependent procedures
- etc.

Application to dynamical systems: bilinear control problems

Deterministic bilinear dynamical system:

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + \sum_{j=1}^{m} N_j \mathbf{x}(t) u_j(t) + B\mathbf{u}(t)$$
(1)

In this setting,

$$A\boldsymbol{X} + \boldsymbol{X}A^{\top} + \sum_{j=1}^{m} N_j \boldsymbol{X} N_j^{\top} + BB^{\top} = 0$$

and the matrix solution \boldsymbol{X} is the controllability Gramian of the system (1)

Multiterm linear matrix equation. Classical device

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

Kronecker formulation¹

$$(B_1^\top \otimes A_1 + \ldots + B_\ell^\top \otimes A_\ell) \mathbf{x} = \mathbf{c} \qquad \Leftrightarrow \qquad \mathcal{A}\mathbf{x} = \mathbf{c}$$

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Bioli, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy, Onwunta, Palitta, Raydan, Robol, Stoll, Tobler, Wedderburn, Zander, ...)

Current very active area of research

1

Assume ${\mathcal A}$ is sym pos.def. (spd) $\ \Rightarrow$ CG

Kronecker product :
$$M \otimes P = \begin{bmatrix} m_{11}P & \dots & m_{1n}P \\ \vdots & \ddots & \vdots \\ m_{n1}P & \dots & m_{nn}P \end{bmatrix}$$
 and $\operatorname{vec}(AXB) = (B^{\top} \otimes A)\operatorname{vec}(X)$

Multiterm linear matrix equation. Classical device

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

Kronecker formulation¹

$$(B_1^\top \otimes A_1 + \ldots + B_\ell^\top \otimes A_\ell) \mathbf{x} = \mathbf{c} \qquad \Leftrightarrow \qquad \mathcal{A}\mathbf{x} = \mathbf{c}$$

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Bioli, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy, Onwunta, Palitta, Raydan, Robol, Stoll, Tobler, Wedderburn, Zander, ...)

Current very active area of research

1

Assume \mathcal{A} is sym pos.def. (spd) \Rightarrow CG

Kronecker product :
$$M \otimes P = \begin{bmatrix} m_{11}P & \dots & m_{1n}P \\ \vdots & \ddots & \vdots \\ m_{n1}P & \dots & m_{nn}P \end{bmatrix}$$
 and $\operatorname{vec}(AXB) = (B^{\top} \otimes A)\operatorname{vec}(X)$

V. Simoncini - SubspaceCG

* Matricization. Typically,

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \in \mathbb{R}^{n^2} \qquad \Rightarrow \quad X^{(k+1)} = X^{(k)} + \alpha_k P^{(k)} \in \mathbb{R}^{n \times n}$$

* **Truncation.** If $X^{(k)} = X_1^{(k)} (X_1^{(k)})^\top$ with $X_1^{(k)}$ low rank, and similarly for $P^{(k)}$, then $X^{(k+1)} = X_1^{(k)} (X_1^{(k)})^\top + \alpha_k P_1^{(k)} (P_1^{(k)})^\top$

• $X^{(k+1)}$ low rank:

$$X^{(k+1)} = [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}] \ [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}]^\top$$
(2)

(but generally larger than at iteration k)

Cure: Rank shrinking $[X_1^{(k)}, \sqrt{\alpha_k}P_1^{(k)}] \Rightarrow X_1^{(k+1)} \quad X^{(k+1)} \approx X_1^{(k+1)}(X_1^{(k+1)})^\top$ Implementation: $\mathcal{T}(X^{(k+1)})$ acts on the QR-SVD of factor in (2)

Alternative truncation criteria:

🖡 Fix lower threshold tolerance

🖡 Fix maximum allowed rank

* Matricization. Typically,

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \in \mathbb{R}^{n^2} \qquad \Rightarrow \quad X^{(k+1)} = X^{(k)} + \alpha_k P^{(k)} \in \mathbb{R}^{n \times n}$$

* Truncation. If $X^{(k)} = X_1^{(k)}(X_1^{(k)})^{\top}$ with $X_1^{(k)}$ low rank, and similarly for $P^{(k)}$, then $X^{(k+1)} = X_1^{(k)}(X_1^{(k)})^{\top} + \alpha_k P_1^{(k)}(P_1^{(k)})^{\top}$

• $X^{(k+1)}$ low rank:

$$X^{(k+1)} = [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}] \ [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}]^\top$$
(2)

(but generally larger than at iteration k)

Cure: Rank shrinking $[X_1^{(k)}, \sqrt{\alpha_k}P_1^{(k)}] \Rightarrow X_1^{(k+1)} \quad X^{(k+1)} \approx X_1^{(k+1)}(X_1^{(k+1)})^\top$ Implementation: $\mathcal{T}(X^{(k+1)})$ acts on the QR-SVD of factor in (2)

Alternative truncation criteria:

🖡 Fix maximum allowed rank

* Matricization. Typically,

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \in \mathbb{R}^{n^2} \qquad \Rightarrow \quad X^{(k+1)} = X^{(k)} + \alpha_k P^{(k)} \in \mathbb{R}^{n \times n}$$

* **Truncation.** If $X^{(k)} = X_1^{(k)}(X_1^{(k)})^\top$ with $X_1^{(k)}$ low rank, and similarly for $P^{(k)}$, then $X^{(k+1)} = X_1^{(k)}(X_1^{(k)})^\top + \alpha_k P_1^{(k)}(P_1^{(k)})^\top$

• $X^{(k+1)}$ low rank:

$$X^{(k+1)} = [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}] \ [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}]^\top$$
(2)

(but generally larger than at iteration k)

► Cure: Rank shrinking $[X_1^{(k)}, \sqrt{\alpha_k}P_1^{(k)}] \Rightarrow X_1^{(k+1)} \quad X^{(k+1)} \approx X_1^{(k+1)}(X_1^{(k+1)})^\top$ Implementation: $\mathcal{T}(X^{(k+1)})$ acts on the QR-SVD of factor in (2)

Alternative truncation criteria:

* Matricization. Typically,

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \in \mathbb{R}^{n^2} \qquad \Rightarrow \quad X^{(k+1)} = X^{(k)} + \alpha_k P^{(k)} \in \mathbb{R}^{n \times n}$$

* **Truncation.** If $X^{(k)} = X_1^{(k)}(X_1^{(k)})^\top$ with $X_1^{(k)}$ low rank, and similarly for $P^{(k)}$, then $X^{(k+1)} = X_1^{(k)}(X_1^{(k)})^\top + \alpha_k P_1^{(k)}(P_1^{(k)})^\top$

• $X^{(k+1)}$ low rank:

$$X^{(k+1)} = [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}] \ [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}]^\top$$
(2)

(but generally larger than at iteration k)

► Cure: Rank shrinking $[X_1^{(k)}, \sqrt{\alpha_k}P_1^{(k)}] \Rightarrow X_1^{(k+1)} \qquad X_1^{(k+1)} \approx X_1^{(k+1)}(X_1^{(k+1)})^\top$ Implementation: $\mathcal{T}(X^{(k+1)})$ acts on the QR-SVD of factor in (2)

Alternative truncation criteria: Fix lower threshold tolerance

* Matricization. Typically,

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \in \mathbb{R}^{n^2} \qquad \Rightarrow \quad X^{(k+1)} = X^{(k)} + \alpha_k P^{(k)} \in \mathbb{R}^{n \times n}$$

* **Truncation.** If $X^{(k)} = X_1^{(k)} (X_1^{(k)})^\top$ with $X_1^{(k)}$ low rank, and similarly for $P^{(k)}$, then $X^{(k+1)} = X_1^{(k)} (X_1^{(k)})^\top + \alpha_k P_1^{(k)} (P_1^{(k)})^\top$

• $X^{(k+1)}$ low rank:

$$X^{(k+1)} = [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}] \ [X_1^{(k)}, \sqrt{\alpha_k} P_1^{(k)}]^\top$$
(2)

(but generally larger than at iteration k)

► Cure: Rank shrinking $[X_1^{(k)}, \sqrt{\alpha_k}P_1^{(k)}] \Rightarrow X_1^{(k+1)} \qquad X_1^{(k+1)} \approx X_1^{(k+1)}(X_1^{(k+1)})^\top$ Implementation: $\mathcal{T}(X^{(k+1)})$ acts on the QR-SVD of factor in (2)

Alternative truncation criteria:

Fix lower threshold tolerance

Fix maximum allowed rank

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $\mathcal{L}(\mathbf{X}) = A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_{\ell} \mathbf{X} B_{\ell}$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format. Truncation operator \mathcal{T} . Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $||\mathcal{L}(X) - C||_F / ||C||_F \le tol$

- 1. $X_0 = 0$, $R_0 = C$, $P_0 = R_0$, $Q_0 = \mathcal{L}(P_0)$ 2. $\xi_0 = \langle P_0, Q_0 \rangle, \ k = 0$ $\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y)$ 3. While $||R_k||_F > tol$ 4. $\alpha_k = \langle R_k, P_k \rangle / \xi_k$ 5. $X_{k+1} = X_k + \alpha_k P_k$. $X_{k+1} \leftarrow \mathcal{T}(X_{k+1})$ 6. $R_{k+1} = C - \mathcal{L}(X_{k+1})$. Optionally: $R_{k+1} \leftarrow \mathcal{T}(R_{k+1})$ 7. $\beta_k = -\langle R_{k+1}, Q_k \rangle / \xi_k$ $P_{k+1} \leftarrow \mathcal{T}(P_{k+1})$ $P_{k+1} = R_{k+1} + \beta_k P_k.$ 8 $Q_{k+1} = \mathcal{L}(P_{k+1}),$ 9 Optionally: $Q_{k+1} \leftarrow \mathcal{T}(Q_{k+1})$ 10 $\xi_{k+1} = \langle P_{k+1}, Q_{k+1} \rangle$ k = k + 111
- 12. end while

Iterates kept in factored form!

Kressner and Tobler, '11

Typical convergence behavior

(Hao, '20, personal comm.)

Typical iterate rank behavior

(Simoncini & Hao, '22)

Within the CG framework, can we do better?

Considerations:

- 1. At best, convergence as for Kronecker problem
- 2. Rank of iterates hard to control to maintain convergence
- 3. Coeffs α, β under exploited

$$\boldsymbol{p}_k = \operatorname{vec}(\boldsymbol{P}_k), \boldsymbol{r}_k = \operatorname{vec}(\boldsymbol{R}_k) \quad \Rightarrow \quad \{\boldsymbol{r}_0, \dots, \boldsymbol{r}_k\}, \{\boldsymbol{p}_0, \dots, \boldsymbol{p}_k\} \quad \text{orth prop}$$

Recalling CG basics: Ax = b

Problem: Minimize the convex function

$$\Phi(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathsf{T}}\mathcal{A}\boldsymbol{x} - \boldsymbol{b}^{\mathsf{T}}\boldsymbol{x}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k, \qquad \alpha_k \, s.t. \, \min_{\alpha} \Phi(\mathbf{x}_k + \alpha \mathbf{p}_k)$$

with residual and direction updates:

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \mathcal{A}\mathbf{p}_k \alpha_k, \quad \mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \mathbf{p}_k \beta_k.$$

Within the CG framework, can we do better?

Considerations:

- 1. At best, convergence as for Kronecker problem
- 2. Rank of iterates hard to control to maintain convergence
- 3. Coeffs α, β under exploited

$$\boldsymbol{p}_k = \operatorname{vec}(\boldsymbol{P}_k), \boldsymbol{r}_k = \operatorname{vec}(\boldsymbol{R}_k) \quad \Rightarrow \quad \{\boldsymbol{r}_0, \dots, \boldsymbol{r}_k\}, \{\boldsymbol{p}_0, \dots, \boldsymbol{p}_k\} \quad \text{orth prop}$$

Recalling CG basics: $A\mathbf{x} = \mathbf{b}$

Problem: Minimize the convex function

$$\Phi(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathsf{T}} \mathcal{A} \boldsymbol{x} - \boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k, \qquad \alpha_k \, s.t. \, \min_{\alpha} \Phi(\mathbf{x}_k + \alpha \mathbf{p}_k)$$

with residual and direction updates:

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \mathcal{A}\mathbf{p}_k \alpha_k, \quad \mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \mathbf{p}_k \beta_k.$$

Warning: For the sake of the presentation, we assume a simplified form:

$$\mathcal{L}(\boldsymbol{X}) = \mathcal{L}(\boldsymbol{X})^T, \quad \text{for any} \quad \boldsymbol{X} = \boldsymbol{X}^T$$

This assumption allows us to write a square **X** as $\mathbf{X} = XX^T$

In practice, the whole derivation holds for $\mathcal{A} = B_1 \otimes A_1 + \cdots + B_\ell \otimes A_\ell$ spd (that is, \mathcal{L} spd in the matrix inner product) so that

$$\boldsymbol{X} \in \mathbb{R}^{n_l imes n_r}, \qquad \boldsymbol{X} = X^l (X^r)^T$$

Warning: For the sake of the presentation, we assume a simplified form:

$$\mathcal{L}(\boldsymbol{X}) = \mathcal{L}(\boldsymbol{X})^T, \quad \text{for any} \quad \boldsymbol{X} = \boldsymbol{X}^T$$

This assumption allows us to write a square \boldsymbol{X} as $\boldsymbol{X} = XX^T$

In practice, the whole derivation holds for $\mathcal{A} = B_1 \otimes A_1 + \cdots + B_\ell \otimes A_\ell$ spd (that is, \mathcal{L} spd in the matrix inner product) so that

$$\boldsymbol{X} \in \mathbb{R}^{n_l imes n_r}, \qquad \boldsymbol{X} = X^l (X^r)^T$$

The new **subspace** CG

We define $\Phi : \mathbb{R}^{n \times n} \to \mathbb{R}$,

$$\Phi(\boldsymbol{X}) = \frac{1}{2} \langle \boldsymbol{X}, \mathcal{L}(\boldsymbol{X}) \rangle - \langle \boldsymbol{X}, \boldsymbol{C} \rangle$$

The new minimization problem: Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$oldsymbol{X} = rg\min_{oldsymbol{X} \in \mathbb{R}^{n imes n}} \Phi(oldsymbol{X})$$

with iteration

$$\boldsymbol{X}_{k+1} = \boldsymbol{X}_k + P_k \boldsymbol{\alpha}_k P_k^T$$

where $\boldsymbol{\alpha}_k \in \mathbb{R}^{s_k \times s_k}$ and $P_k \in \mathbb{R}^{n \times s_k}$

Residual and direction computation:

$$oldsymbol{R}_{k+1} = oldsymbol{R}_k - \mathcal{L}(P_k oldsymbol{lpha}_k P_k^T), \qquad oldsymbol{P}_{k+1} = oldsymbol{R}_{k+1} + P_k oldsymbol{eta}_k P_k^T,$$

where $P_{k+1} = P_{k+1}P_{k+1}^{T}$

The new **subspace** CG

We define $\Phi : \mathbb{R}^{n \times n} \to \mathbb{R}$,

$$\Phi(\boldsymbol{X}) = \frac{1}{2} \langle \boldsymbol{X}, \mathcal{L}(\boldsymbol{X}) \rangle - \langle \boldsymbol{X}, \boldsymbol{C} \rangle$$

The new minimization problem: Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$\boldsymbol{X} = \arg\min_{\boldsymbol{X}\in\mathbb{R}^{n imes n}}\Phi(\boldsymbol{X})$$

with iteration

$$\boldsymbol{X}_{k+1} = \boldsymbol{X}_k + P_k \boldsymbol{\alpha}_k P_k^T$$

where $\boldsymbol{\alpha}_k \in \mathbb{R}^{s_k \times s_k}$ and $P_k \in \mathbb{R}^{n \times s_k}$

Residual and direction computation:

$$\boldsymbol{R}_{k+1} = \boldsymbol{R}_k - \mathcal{L}(P_k \boldsymbol{\alpha}_k P_k^T), \qquad \boldsymbol{P}_{k+1} = \boldsymbol{R}_{k+1} + P_k \boldsymbol{\beta}_k P_k^T,$$

where $P_{k+1} = P_{k+1}P_{k+1}^T$

Defining the coefficients. I

At the *k*th iteration:

1. Construct α_k so that

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^{s_k\times s_k}}\Phi(\boldsymbol{X}_k+P_k\boldsymbol{\alpha}P_k^T)$$

2. Impose a descent direction requirement for $\boldsymbol{P}_k = P_k P_k^T$:

$$\langle
abla \Phi(\boldsymbol{X}_k), \boldsymbol{P}_k
angle < 0$$

3. Construct β_k so that the new direction P_{k+1} is \mathcal{L} -orthogonal with respect to the previous ones:

$$(P_k \otimes P_k)^T \operatorname{vec}(\mathcal{L}(\boldsymbol{P}_{k+1})) = 0$$

Defining the coefficients. II

Let
$$\widetilde{A}_k^{(i)} = P_k^T A_i P_k, \widetilde{B}_k^{(i)} = P_k^T B_i P_k, i = 1, \dots, \ell$$

Construction of α_k:
 α_k is the unique solution of

$$\widetilde{A}_{k}^{(1)} lpha \widetilde{B}_{k}^{(1)} + \ldots + \widetilde{A}_{k}^{(\ell)} lpha \widetilde{B}_{k}^{(\ell)} = P_{k}^{T} R_{k} P_{k}$$

Construction of β_k:
 β_k is the unique solution of

$$\widetilde{A}_{k}^{(1)}\beta\widetilde{B}_{k}^{(1)}+\ldots+\widetilde{A}_{k}^{(\ell)}\beta\widetilde{B}_{k}^{(\ell)}=-P_{k}^{\mathsf{T}}\mathcal{L}(P_{k}\beta_{k}P_{k}^{\mathsf{T}})P_{k}$$

Defining the coefficients. II

Let
$$\widetilde{A}_k^{(i)} = P_k^T A_i P_k, \widetilde{B}_k^{(i)} = P_k^T B_i P_k, i = 1, \dots, \ell$$

Construction of α_k:
 α_k is the unique solution of

$$\widetilde{A}_{k}^{(1)} lpha \widetilde{B}_{k}^{(1)} + \ldots + \widetilde{A}_{k}^{(\ell)} lpha \widetilde{B}_{k}^{(\ell)} = P_{k}^{T} R_{k} P_{k}$$

Construction of β_k:
 β_k is the unique solution of

$$\widetilde{A}_{k}^{(1)}eta\widetilde{B}_{k}^{(1)}+\ldots+\widetilde{A}_{k}^{(\ell)}eta\widetilde{B}_{k}^{(\ell)}=-P_{k}^{ op}\mathcal{L}(P_{k}eta_{k}P_{k}^{ op})P_{k}$$

Making the idea practical

$$\begin{aligned} \boldsymbol{X}_{k+1} &= X_k \tau_k X_k^T + P_k \alpha_k P_k^T = [X_k, P_k] \tau_{k+1} [X_k, P_k]^T \\ \boldsymbol{R}_{k+1} &= [R_0, \boldsymbol{A}_{\star} \bullet X_{k+1}] \boldsymbol{\rho}_{k+1} [R_0, \boldsymbol{B}_{\star} \bullet X_{k+1}]^T \end{aligned}$$

where $\boldsymbol{A}_{\star} \bullet R = [A_1 R, \dots, A_{\ell} R]$

All terms are kept in factored form

The rank grows

⇒ Rank truncation

Computing R_{k+1} becomes too expensive (CPU time and memory) \Rightarrow Randomized range finder

Given a target rank maxrankR and a Gaussian matrix $G' \in \mathbb{R}^{n_B imes ext{maxrankR}}$

$$\mathbf{R}_{k+1}G' = C_1(C_2^TG') - \sum_{i=1}^{\ell} A_i(X_{k+1}^i \tau_{k+1}((X_{k+1}^r)^T(B_iG')))$$

(Analogously for $m{R}'_{k+1})$ Then proceed with a cheap evaluation of the reduced residual matrix

Making the idea practical

$$\begin{aligned} \boldsymbol{X}_{k+1} &= X_k \tau_k X_k^T + P_k \alpha_k P_k^T = [X_k, P_k] \tau_{k+1} [X_k, P_k]^T \\ \boldsymbol{R}_{k+1} &= [R_0, \boldsymbol{A}_{\star} \bullet X_{k+1}] \boldsymbol{\rho}_{k+1} [R_0, \boldsymbol{B}_{\star} \bullet X_{k+1}]^T \end{aligned}$$

where $\boldsymbol{A}_{\star} \bullet R = [A_1 R, \dots, A_{\ell} R]$

- All terms are kept in factored form
- The rank grows

⇒ Rank truncation

• Computing \mathbf{R}_{k+1} becomes too expensive (CPU time and memory)

 \Rightarrow Randomized range finder

Given a target rank <code>maxrankR</code> and a Gaussian matrix $G' \in \mathbb{R}^{n_B imes ext{maxrankR}}$

$$\mathbf{R}_{k+1}G' = C_1(C_2^TG') - \sum_{i=1}^{\ell} A_i(X_{k+1}^{\prime}\tau_{k+1}((X_{k+1}^{\prime})^T(B_iG')))$$

(Analogously for $R^{\prime}_{k+1})$ Then proceed with a cheap evaluation of the reduced residual matrix

Making the idea practical

$$\begin{aligned} \boldsymbol{X}_{k+1} &= X_k \tau_k X_k^T + P_k \alpha_k P_k^T = [X_k, P_k] \tau_{k+1} [X_k, P_k]^T \\ \boldsymbol{R}_{k+1} &= [R_0, \boldsymbol{A}_{\star} \bullet X_{k+1}] \boldsymbol{\rho}_{k+1} [R_0, \boldsymbol{B}_{\star} \bullet X_{k+1}]^T \end{aligned}$$

where $\boldsymbol{A}_{\star} \bullet R = [A_1 R, \dots, A_{\ell} R]$

All terms are kept in factored form

The rank grows

⇒ Rank truncation

• Computing \mathbf{R}_{k+1} becomes too expensive (CPU time and memory)

 \Rightarrow Randomized range finder

Given a target rank maxrankR and a Gaussian matrix $G' \in \mathbb{R}^{n_B \times \text{maxrankR}}$:

$$\mathbf{R}_{k+1}G' = C_1(C_2^TG') - \sum_{i=1}^{\ell} A_i(X_{k+1}'\tau_{k+1}((X_{k+1}')^T(B_iG')))$$

(Analogously for \mathbf{R}_{k+1}^{T}) Then proceed with a cheap evaluation of the reduced residual matrix

A computational experiment. I

Heat model problem: $A\mathbf{X} + \mathbf{X}A^{\top} + N\mathbf{X}N^{\top} + BB^{\top} = 0$

A: FD discr of 2D Laplace op in $(0, 1)^2$ N: includes Robin b.c. $\mathbf{n} \cdot \nabla(x) = \delta u(x - 1)$ on one side (zero Dirichlet on the rest of boundary) δ : parameter, $\delta \in \{0.5, 0.9\}$

Computational setting:

- Two different meshgrids: $n = 320^2, 500^2$
- Preconditioner: 8 LR-ADI iters for $\mathcal{L}_0\,:\,\mathcal{C} o\mathcal{A}X+X\!\mathcal{A}^ op$
- Stopping tolerance: 10⁻

- Stopping criterion: Relative difference in subsequent approximate soln norms (true residual norm computed at termination)

- * SS-CG-determ: new method, residual matrix computed sequentially;
- * SS-CG-rand'zed: new method, residual matrix computed using Randfinder
- * TPCG: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
- * sss: Efficient fixed-point iteration $\Phi = \mathcal{L}_0^{-1} \otimes \mathcal{N}$, (Shank, Szyld, Simoncini, 2016)

A computational experiment. I

Heat model problem: $A\mathbf{X} + \mathbf{X}A^{\top} + N\mathbf{X}N^{\top} + BB^{\top} = 0$

A: FD discr of 2D Laplace op in $(0, 1)^2$ N: includes Robin b.c. $\mathbf{n} \cdot \nabla(x) = \delta u(x - 1)$ on one side (zero Dirichlet on the rest of boundary) δ : parameter, $\delta \in \{0.5, 0.9\}$

Computational setting:

- Two different meshgrids: $n = 320^2, 500^2$
- Preconditioner: 8 LR-ADI iters for \mathcal{L}_0 : $\mathcal{C} \to \mathcal{A} \mathcal{X} + \mathcal{X} \mathcal{A}^\top$
- Stopping tolerance: 10^{-6}

- Stopping criterion: Relative difference in subsequent approximate soln norms (true residual norm computed at termination)

- * SS-CG-determ: new method, residual matrix computed sequentially;
- * SS-CG-rand'zed: new method, residual matrix computed using Randfinder
- * TPCG: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
- * sss: Efficient fixed-point iteration $\Phi = \mathcal{L}_0^{-1} \otimes \mathcal{N}$, (Shank, Szyld, Simoncini, 2016)

A computational experiment. I

Heat model problem: $A\mathbf{X} + \mathbf{X}A^{\top} + N\mathbf{X}N^{\top} + BB^{\top} = 0$

A: FD discr of 2D Laplace op in $(0, 1)^2$ N: includes Robin b.c. $\mathbf{n} \cdot \nabla(x) = \delta u(x - 1)$ on one side (zero Dirichlet on the rest of boundary) δ : parameter, $\delta \in \{0.5, 0.9\}$

Computational setting:

- Two different meshgrids: $n = 320^2, 500^2$
- Preconditioner: 8 LR-ADI iters for \mathcal{L}_0 : $\mathcal{C} \to \mathcal{A} \mathcal{X} + \mathcal{X} \mathcal{A}^\top$
- Stopping tolerance: 10^{-6}

- Stopping criterion: Relative difference in subsequent approximate soln norms (true residual norm computed at termination)

- * SS-CG-determ: new method, residual matrix computed sequentially;
- * ss-cg-rand'zed: new method, residual matrix computed using Randfinder
- * TPCG: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
- * sss: Efficient fixed-point iteration $\Phi = \mathcal{L}_0^{-1} \otimes \mathcal{N}$, (Shank, Szyld, Simoncini, 2016)

A computational experiment. I. cont'd

Example	n _A	maxrank	SSS	TPCG	SS-CG	SS-CG		
			(iter/alloc/rank)		determ.	rand'zed		
HEAT1(0.5)	102400	20		61.35 (16)	- (100)	- (100)		
		30		22.78 (4)	17.93 (3)	18.17 (3)		
			6.15 (7/126/31)					
	250000	20		- (100)	- (100)	- (100)		
		30		60.84 (4)	64.46 (4)	64.45 (4)		
			18.35 (7/139/31)					
	102400	40		- (100)	- (100)	- (100)		
		50		310.72 (26)	58.11 (5)	58.52 (5)		
HEAT1(0.9)		-	- (50//)					
	250000	50		2401.90 (93)	- (100)	- (100)		
		60		936.39 (30)	119.55 (4)	120.43 (4)		
		-	- (50//)	. ,				
- no conv.								

- Running time in seconds, and in parenthesis the number of iterations

- For sss: no iterations / subspace total memory alloc for length *n* vecs / solution rank

A computational experiment. II

Parameterized diffusion equation (Biolietal, 2025)

$$-\nabla \cdot (k\nabla u) = 0$$
 in $(0,1)^2$

with homogeneous boundary conditions and semi-separable diffusion coefficient:

$$k(x,y) = \sum_{j=1}^{\ell_k} \delta_j k_{j,x}(x) k_{j,y}(y) = 1 + \sum_{j=1}^{\ell_k - 1} \frac{10^j}{j!} x^j y^j, \qquad \ell_k = 4$$

This gives

$$\sum_{j=1}^{\ell_k} \delta_j (A_{j,x} \boldsymbol{X} D_{j,y} + D_{j,y} \boldsymbol{X} A_{j,y}) = \boldsymbol{C}$$

with C rank-four nonsymmatrix accounting for b.c. (total of $\ell = 8$ terms)

Algorithms to be compared:

* SS-CG-determ: new method, residual matrix computed sequentially;

- * SS-CG-rand'zed: new method, residual matrix computed using Randfinder
- * TPCG: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
- * R-NLTCG: Riemannian, nonlinear CG (Bioli, Kressner, Robol, 2025)

A computational experiment. II

Parameterized diffusion equation (Biolietal, 2025)

$$-\nabla \cdot (k\nabla u) = 0 \qquad \text{in} \quad (0,1)^2$$

with homogeneous boundary conditions and semi-separable diffusion coefficient:

$$k(x,y) = \sum_{j=1}^{\ell_k} \delta_j k_{j,x}(x) k_{j,y}(y) = 1 + \sum_{j=1}^{\ell_k - 1} \frac{10^j}{j!} x^j y^j, \qquad \ell_k = 4$$

This gives

$$\sum_{j=1}^{\ell_k} \delta_j (A_{j,x} \boldsymbol{X} D_{j,y} + D_{j,y} \boldsymbol{X} A_{j,y}) = \boldsymbol{C}$$

with C rank-four nonsymmatrix accounting for b.c. (total of $\ell = 8$ terms)

- * SS-CG-determ: new method, residual matrix computed sequentially;
- * ss-cg-rand'zed: new method, residual matrix computed using Randfinder
- * TPCG: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
- * R-NLTCG: Riemannian, nonlinear CG (Bioli, Kressner, Robol, 2025)

A computational experiment. II

n	Precond	maxrank	R-NLCG	TPCG	SS-CG	SS-CG
type					determ.	rand'zed
10000	\mathcal{P}_1	20	- (100)	- (100)	- (100)	- (100)
	\mathcal{P}_1	40	- (100)	- (100)	1.08 (5)	0.92 (5)
	\mathcal{P}_1	60	- (100)	- (100)	2.47 (5)	2.34 (5)
	\mathcal{P}_2	20	11.25 (36)	11.42 (38)	- (100)	- (100)
	\mathcal{P}_2	40	*42.97 (36)	15.54 (33)	- (100)	- (100)
	\mathcal{P}_2	60	*98.62 (35)	32.39 (28)	9.59 (5)	8.37 (5)
102400	\mathcal{P}_1	20	- (100)	- (100)	- (100)	- (100)
	\mathcal{P}_1	40	†	- (100)	18.17 (6)	8.74 (6)
	\mathcal{P}_1	60	†	- (100)	23.50 (5)	16.93 (5)
	\mathcal{P}_2	20	183.44 (41)	- (100)	- (100)	- (100)
	\mathcal{P}_2	40	†	446.94 (47)	- (100)	- (100)
	\mathcal{P}_2	60	†	884.20 (26)	115.73 (3)	101.91 (3)

- no conv

* Lower final residual norm than other methods

† Out of Memory

Running time in seconds (# iter's) Stopping tolerance $tol = 5 \cdot 10^{-6}$

True residual norm at termination

 \mathcal{P}_1 : one-term precond, cheap

 \mathcal{P}_2 : two-term precond, expensive (fixed ADI iters)

Further considerations

What I have not told you:

- Orthogonality properties of residuals and directions
- Optimality and finite termination properties
- Preconditioning
- More experiments on a variety of application problems

Outlook:

- Experiments are very promising
- The idea can be generalized to other Krylov methods
- Tensor version under investigation

Reference

Davide Palitta, Martina lannacito, and V. Simoncini *A subspace-conjugate gradient method for linear matrix equations* pp. 1-25, Jan 2025. ArXiv 2501.02938

Happy Birthday Volker!

Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms (Oct 12 – Oct 17, 2003)