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Multiterm linear matrix equation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

A sample of this equation on different problems:

♣ Stochastic PDEs
♣ PDEs on polygonal domains, IGA, spectral methods, etc
♣ Space-time PDEs
♣ All-at-once PDE-constrained optimization problem
♣ Bilinear control problems
♣ ....

A sample of computational strategies:

▶ Kronecker form and back on track
▶ Fixed point iterations (an “evergreen”...)
▶ Projection-type methods ⇒ low rank approximation
▶ Optimization problems with fixed (low) rank approximation
▶ Ad-hoc problem-dependent procedures
▶ etc.
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Application to dynamical systems: bilinear control problems

Deterministic bilinear dynamical system:

ẋ(t) = Ax(t) +
m∑
j=1

Njx(t)uj(t) + Bu(t) (1)

In this setting,

AX + XA⊤ +
m∑
j=1

NjXN⊤
j + BB⊤ = 0

and the matrix solution X is the controllability Gramian of the system (1)
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Multiterm linear matrix equation. Classical device

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Kronecker formulation1(
B⊤
1 ⊗ A1 + . . .+ B⊤

ℓ ⊗ Aℓ

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Bioli, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies,

Nagy, Onwunta, Palitta, Raydan, Robol, Stoll, Tobler, Wedderburn, Zander, ...)

Current very active area of research

Assume A is sym pos.def. (spd) ⇒ CG

1

Kronecker product : M ⊗ P =


m11P . . . m1nP

.

.

.

.
.
.

.

.

.
mn1P . . . mnnP

 and vec(AXB) = (B⊤ ⊗ A)vec(X )
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CG matricization and truncation

⋆ Matricization. Typically,

x (k+1) = x (k) + αkp
(k) ∈ Rn2 ⇒ X (k+1) = X (k) + αkP

(k) ∈ Rn×n

⋆ Truncation. If X (k) = X
(k)
1 (X

(k)
1 )⊤ with X

(k)
1 low rank, and similarly for P(k), then

X (k+1) = X
(k)
1 (X

(k)
1 )⊤ + αkP

(k)
1 (P

(k)
1 )⊤

▶ X (k+1) low rank:

X (k+1) = [X
(k)
1 ,

√
αkP

(k)
1 ] [X

(k)
1 ,

√
αkP

(k)
1 ]⊤ (2)

(but generally larger than at iteration k)

▶ Cure: Rank shrinking [X
(k)
1 ,

√
αkP

(k)
1 ] ⇒ X

(k+1)
1 X (k+1) ≈ X

(k+1)
1 (X

(k+1)
1 )⊤

Implementation: T (X (k+1)) acts on the QR-SVD of factor in (2)

Alternative truncation criteria:
♣ Fix lower threshold tolerance ♣ Fix maximum allowed rank
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Truncated matrix-oriented CG (TCG) for Kronecker form

Input: L(X ) = A1XB1 + A2XB2 + . . .+ AℓXBℓ, right-hand side C ∈ Rn×n in low-rank format.
Truncation operator T .
Output: Matrix X ∈ Rn×n in low-rank format s.t. ||L(X )− C ||F /||C ||F ≤ tol

1. X0 = 0, R0 = C , P0 = R0, Q0 = L(P0)

2. ξ0 = ⟨P0,Q0⟩, k = 0 ⟨X ,Y ⟩ = tr(X⊤Y )

3. While ||Rk ||F > tol

4. αk = ⟨Rk ,Pk ⟩/ξk
5. Xk+1 = Xk + αkPk , Xk+1 ← T (Xk+1)

6. Rk+1 = C − L(Xk+1), Optionally: Rk+1 ← T (Rk+1)

7. βk = −⟨Rk+1,Qk ⟩/ξk
8. Pk+1 = Rk+1 + βkPk , Pk+1 ← T (Pk+1)

9. Qk+1 = L(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10. ξk+1 = ⟨Pk+1,Qk+1⟩
11. k = k + 1

12. end while

♣ Iterates kept in factored form! Kressner and Tobler, ’11
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Typical convergence behavior
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(Hao, ’20, personal comm.)
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Typical iterate rank behavior
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Within the CG framework, can we do better?

Considerations:

1. At best, convergence as for Kronecker problem

2. Rank of iterates hard to control to maintain convergence

3. Coeffs α, β under exploited

pk = vec(Pk), rk = vec(Rk) ⇒ {r0, . . . , rk}, {p0, . . . ,pk} orth prop

Recalling CG basics: Ax = b

Problem: Minimize the convex function

Φ(x) =
1

2
xTAx − bTx

xk+1 = xk + αkpk , αk s.t. min
α

Φ(xk + αpk)

with residual and direction updates:

rk+1 = rk −Apkαk , pk+1 = rk+1 + pkβk .
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The new subspace-CG

Warning: For the sake of the presentation, we assume a simplified form:

L(X ) = L(X )T , for any X = XT

This assumption allows us to write a square X as X = XXT

In practice, the whole derivation holds for A = B1 ⊗ A1 + · · ·+ Bℓ ⊗ Aℓ spd
(that is, L spd in the matrix inner product)
so that

X ∈ Rnl×nr , X = X l(X r )T
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The new subspace CG

We define Φ : Rn×n → R,

Φ(X ) =
1

2
⟨X ,L

(
X
)
⟩ − ⟨X ,C ⟩

The new minimization problem: Find X ∈ Rn×n such that

X = arg min
X∈Rn×n

Φ(X )

with iteration
X k+1 = X k + PkαkP

T
k

where αk ∈ Rsk×sk and Pk ∈ Rn×sk

Residual and direction computation:

Rk+1 = Rk − L(PkαkP
T
k ), Pk+1 = Rk+1 + PkβkP

T
k ,

where Pk+1 = Pk+1P
T
k+1
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Defining the coefficients. I

At the kth iteration:

1. Construct αk so that

min
α∈Rsk×sk

Φ(X k + PkαPT
k )

2. Impose a descent direction requirement for Pk = PkP
T
k :

⟨∇Φ(X k),Pk⟩ < 0

3. Construct βk so that the new direction Pk+1 is L-orthogonal with respect to the
previous ones:

(Pk ⊗ Pk)
T vec(L(Pk+1)) = 0

V. Simoncini - SubspaceCG 12 / 20



Defining the coefficients. II

Let Ã
(i)
k = PT

k AiPk , B̃
(i)
k = PT

k BiPk , i = 1, . . . , ℓ

▶ Construction of αk :
αk is the unique solution of

Ã
(1)
k αB̃

(1)
k + . . .+ Ã

(ℓ)
k αB̃

(ℓ)
k = PT

k RkPk

▶ Construction of βk :
βk is the unique solution of

Ã
(1)
k βB̃

(1)
k + . . .+ Ã

(ℓ)
k βB̃

(ℓ)
k = −PT

k L(PkβkP
T
k )Pk
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Making the idea practical

Xk+1 = XkτkX
T
k + PkαkP

T
k = [Xk ,Pk ]τk+1[Xk ,Pk ]

T

Rk+1 = [R0,A⋆ • Xk+1]ρk+1[R0,B⋆ • Xk+1]
T

where A⋆ • R = [A1R, . . . ,AℓR]

▶ All terms are kept in factored form

▶ The rank grows

⇒ Rank truncation

▶ Computing Rk+1 becomes too expensive (CPU time and memory)

⇒ Randomized range finder

Given a target rank maxrankR and a Gaussian matrix G l ∈ RnB×maxrankR:

Rk+1G
l = C1(C

T
2 G l)−

ℓ∑
i=1

Ai (X
l
k+1τk+1((X

r
k+1)

T (BiG
l)))

(Analogously for RT
k+1)

Then proceed with a cheap evaluation of the reduced residual matrix
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A computational experiment. I

Heat model problem: AX + XA⊤ + NXN⊤ + BB⊤ = 0

A: FD discr of 2D Laplace op in (0, 1)2

N: includes Robin b.c. n · ∇(x) = δu(x − 1) on one side
(zero Dirichlet on the rest of boundary)
δ: parameter, δ ∈ {0.5, 0.9}

Computational setting:
- Two different meshgrids: n = 3202, 5002

- Preconditioner: 8 LR-ADI iters for L0 : C → AX + XA⊤

- Stopping tolerance: 10−6

- Stopping criterion: Relative difference in subsequent approximate soln norms (true
residual norm computed at termination)

Algorithms to be compared:
* ss-cg-determ: new method, residual matrix computed sequentially;
* ss-cg-rand’zed: new method, residual matrix computed using Randfinder
* tpcg: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
* sss: Efficient fixed-point iteration Φ = L−1

0 ⊗N , (Shank, Szyld, Simoncini, 2016)
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A computational experiment. I. cont’d

Example nA maxrank sss tpcg ss–cg ss–cg
(iter/alloc/rank) determ. rand’zed

heat1(0.5)

102400 20 61.35 (16) – (100) – (100)
30 22.78 (4) 17.93 (3) 18.17 (3)

6.15 (7/126/31)
250000 20 – (100) – (100) – (100)

30 60.84 (4) 64.46 (4) 64.45 (4)
18.35 (7/139/31)

heat1(0.9)

102400 40 – (100) – (100) – (100)
50 310.72 (26) 58.11 (5) 58.52 (5)
– – (50/ / )

250000 50 2401.90 (93) – (100) – (100)
60 936.39 (30) 119.55 (4) 120.43 (4)
– – (50/ / )

– no conv.

- Running time in seconds, and in parenthesis the number of iterations
- For sss: no iterations / subspace total memory alloc for length n vecs / solution rank
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A computational experiment. II

Parameterized diffusion equation (Biolietal, 2025)

−∇ · (k∇u) = 0 in (0, 1)2

with homogeneous boundary conditions and semi-separable diffusion coefficient:

k(x , y) =

ℓk∑
j=1

δjkj,x(x)kj,y (y) = 1 +

ℓk−1∑
j=1

10j

j!
x jy j , ℓk = 4

This gives
ℓk∑
j=1

δj(Aj,xXDj,y + Dj,yXAj,y ) = C

with C rank-four nonsym matrix accounting for b.c. (total of ℓ = 8 terms)

Algorithms to be compared:
* ss-cg-determ: new method, residual matrix computed sequentially;
* ss-cg-rand’zed: new method, residual matrix computed using Randfinder
* tpcg: truncated matrix-oriented preconditioned CG (Kressner, Tobler, 2011, and others)
* r-nltcg: Riemannian, nonlinear CG (Bioli, Kressner, Robol, 2025)
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A computational experiment. II

n Precond maxrank r-nlcg tpcg ss–cg ss–cg
type determ. rand’zed
10000 P1 20 – (100) – (100) – (100) – (100)

P1 40 – (100) – (100) 1.08 ( 5) 0.92 ( 5)
P1 60 – (100) – (100) 2.47 ( 5) 2.34 ( 5)
P2 20 11.25 (36) 11.42 (38) – (100) – (100)
P2 40 *42.97 (36) 15.54 (33) – (100) – (100)
P2 60 *98.62 (35) 32.39 (28) 9.59 ( 5) 8.37 ( 5)

102400 P1 20 – (100) – (100) – (100) – (100)
P1 40 † – (100) 18.17 ( 6) 8.74 ( 6)
P1 60 † – (100) 23.50 ( 5) 16.93 ( 5)
P2 20 183.44 (41) – (100) – (100) – (100)
P2 40 † 446.94 (47) – (100) – (100)
P2 60 † 884.20 (26) 115.73 ( 3) 101.91 ( 3)

– no conv. * Lower final residual norm than other methods † Out of Memory

Running time in seconds (# iter’s)
Stopping tolerance tol = 5 · 10−6 True residual norm at termination

P1: one-term precond, cheap P2: two-term precond, expensive (fixed ADI iters)
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Further considerations

What I have not told you:

▶ Orthogonality properties of residuals and directions

▶ Optimality and finite termination properties

▶ Preconditioning

▶ More experiments on a variety of application problems

Outlook:

▶ Experiments are very promising

▶ The idea can be generalized to other Krylov methods

▶ Tensor version under investigation

Reference
Davide Palitta, Martina Iannacito, and V. Simoncini
A subspace-conjugate gradient method for linear matrix equations
pp. 1-25, Jan 2025. ArXiv 2501.02938
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Happy Birthday Volker!

Dagstuhl Seminar
Theoretical and Computational Aspects of Matrix Algorithms
( Oct 12 – Oct 17, 2003 )
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