Universita di Bologna

Exploring (un)conventional preconditioning strategies
for large saddle point algebraic linear systems

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

The problem

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Image restoration
- ... Survey: Benzi, Golub and Liesen, Acta Num 2005

The problem. Simplifications

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Iterative solution by means of Krylov subspace methods
- Structural properties. Focus for this talk:
$\star A$ symmetric positive (semi)definite
$\star B^{T}$ tall, possibly rank deficient
* C symmetric positive (semi)definite

Spectral properties

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right]
$$

$$
\begin{array}{ll}
0<\lambda_{n} \leq \cdots \leq \lambda_{1} & \text { eigs of } A \\
0=\sigma_{m} \leq \cdots \leq \sigma_{1} & \text { sing. vals of } B \\
\lambda_{\max }(C)>0, \quad B B^{T}+C \quad \text { full rank } & \\
& \operatorname{spec}(\mathcal{M}) \subset[-a,-b] \cup[c, d], \quad a, b, c, d>0
\end{array}
$$

\Rightarrow A large variety of results on the spectrum of \mathcal{M}, also for indefinite and singular A
\Rightarrow Search for good preconditioning strategies...

General preconditioning strategy

- Find \mathcal{P} such that

$$
\mathcal{M} \mathcal{P}^{-1} \hat{u}=b \quad \hat{u}=\mathcal{P} u
$$

is easier (faster) to solve than $\mathcal{M} u=b$

- A look at efficiency:
- Dealing with \mathcal{P} should be cheap
- Storage requirements for \mathcal{P} should be low
- Properties (algebraic/functional) should be exploited Mesh/parameter independence

Structure preserving preconditioners

Block diagonal Preconditioner

$\star A$ nonsing., $C=0$:

$$
\begin{gathered}
\mathcal{P}_{0}=\left[\begin{array}{cc}
A & 0 \\
0 & B A^{-1} B^{T}
\end{array}\right] \\
\Rightarrow \quad \mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}=\left[\begin{array}{cc}
I & A^{-\frac{1}{2}} B^{T}\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} \\
\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} B A^{-\frac{1}{2}} & 0
\end{array}\right]
\end{gathered}
$$

MINRES converges in at most 3 iterations. $\quad \operatorname{spec}\left(\mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}\right)=\left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$

Block diagonal Preconditioner

$\star A$ nonsing., $C=0$:

$$
\begin{gathered}
\mathcal{P}_{0}=\left[\begin{array}{cc}
A & 0 \\
0 & B A^{-1} B^{T}
\end{array}\right] \\
\Rightarrow \quad \mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}=\left[\begin{array}{cc}
I & A^{-\frac{1}{2}} B^{T}\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} \\
\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} B A^{-\frac{1}{2}} & 0
\end{array}\right]
\end{gathered}
$$

MINRES converges in at most 3 iterations. $\quad \operatorname{spec}\left(\mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}\right)=\left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$
A more practical choice:

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & \widetilde{S}
\end{array}\right] \quad \text { spd. } \quad \widetilde{A} \approx A \quad \widetilde{S} \approx B A^{-1} B^{T}
$$

eigs of $\mathcal{M} \mathcal{P}^{-1}$ in $\quad[-a,-b] \cup[c, d], \quad a, b, c, d>0$
Still an Indefinite Problem

Giving up symmetry ...

- Change the preconditioner: Mimic the $L U$ factors

$$
\mathcal{M}=\left[\begin{array}{cc}
I & O \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right] \Rightarrow \mathcal{P} \approx\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right]
$$

Giving up symmetry ..

- Change the preconditioner: Mimic the LU factors

$$
\mathcal{M}=\left[\begin{array}{cc}
I & O \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right] \Rightarrow \mathcal{P} \approx\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right]
$$

- Change the preconditioner: Mimic the Structure

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right] \Rightarrow \mathcal{P} \approx \mathcal{M}
$$

> Giving up symmetry ...

- Change the preconditioner: Mimic the LU factors

$$
\mathcal{M}=\left[\begin{array}{cc}
I & O \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right] \Rightarrow \mathcal{P} \approx\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right]
$$

- Change the preconditioner: Mimic the Structure

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right] \Rightarrow \mathcal{P} \approx \mathcal{M}
$$

- Change the matrix: Eliminate indef. $\quad \mathcal{M}_{-}=\left[\begin{array}{cc}A & B^{T} \\ -B & C\end{array}\right]$

Giving up symmetry ...

- Change the preconditioner: Mimic the LU factors

$$
\mathcal{M}=\left[\begin{array}{cc}
I & O \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right] \Rightarrow \mathcal{P} \approx\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right]
$$

- Change the preconditioner: Mimic the Structure

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right] \Rightarrow \mathcal{P} \approx \mathcal{M}
$$

- Change the matrix: Eliminate indef. $\quad \mathcal{M}_{-}=\left[\begin{array}{cc}A & B^{T} \\ -B & C\end{array}\right]$
- Change the matrix: Regularize $(C=0)$

$$
\mathcal{M} \Rightarrow \mathcal{M}_{\gamma}=\left[\begin{array}{cc}
A & B^{T} \\
B & -\gamma W
\end{array}\right] \text { or } \mathcal{M}_{\gamma}=\left[\begin{array}{cc}
A+\frac{1}{\gamma} B^{T} W^{-1} B & B^{T} \\
B & O
\end{array}\right]
$$

... But recovering symmetry in disguise

Nonstandard inner product:

Let \mathcal{W} be any of $\mathcal{M P}^{-1}, \mathcal{M}_{-}$

For $\operatorname{spec}(\mathcal{W})$ in \mathbb{R}^{+}, find symmetric matrix H such that

$$
\mathcal{W} H=H \mathcal{W}^{T}
$$

(that is, \mathcal{W} is H-symmetric)

... But recovering symmetry in disguise

Nonstandard inner product:

Let \mathcal{W} be any of $\mathcal{M P}^{-1}, \mathcal{M}_{-}$

For $\operatorname{spec}(\mathcal{W})$ in \mathbb{R}^{+}, find symmetric matrix H such that

$$
\mathcal{W} H=H \mathcal{W}^{T}
$$

(that is, \mathcal{W} is H-symmetric)

$$
\text { If } H \text { is spd then }
$$

- \mathcal{W} is diagonalizable
- Use PCG on \mathcal{W} with H-inner product

Constraint (Indefinite) Preconditioner

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & B^{T} \\
B & -C
\end{array}\right] \quad \mathcal{M} \mathcal{P}^{-1}=\left[\begin{array}{cc}
A \widetilde{A}^{-1}(I-\Pi)+\Pi & \star \\
O & I
\end{array}\right]
$$

with $\Pi=B\left(B \widetilde{A}^{-1} B^{T}+C\right)^{-1} B \widetilde{A}^{-1}$

- Constraint equation satisfied at each iteration
- If C nonsing \Rightarrow all eigs real and positive
- If $B^{T} C=0$ and $B B^{T}+C>0 \Rightarrow$ all eigs real and positive
\Rightarrow More general cases, $\widetilde{B} \approx B, \widetilde{C} \approx C$

The Stokes problem

Minimize

$$
J(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} f \cdot u d x
$$

subject to $\nabla \cdot u=0$ in Ω

Lagrangian: $\quad \mathcal{L}(u, p)=J(u)+\int_{\Omega} p \nabla \cdot u d x$

Optimality condition on discretized Lagrangian leads to:

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right]
$$

A second-order operator, B first-order operator, C zero-order operator

The Stokes problem. Contraint preconditioning

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & B^{T} \\
B & B \widetilde{A}^{-1} B^{T}-S
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
B \widetilde{A}^{-1} & I_{m}
\end{array}\right]\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & -S
\end{array}\right]\left[\begin{array}{cc}
I_{n} & \widetilde{A}^{-1} B^{T} \\
0 & I_{m}
\end{array}\right]
$$

with $S \approx B \widetilde{A}^{-1} B^{T}+C \operatorname{spd}$

The Stokes problem. Contraint preconditioning

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & B^{T} \\
B & B \widetilde{A}^{-1} B^{T}-S
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
B \widetilde{A}^{-1} & I_{m}
\end{array}\right]\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & -S
\end{array}\right]\left[\begin{array}{cc}
I_{n} & \widetilde{A}^{-1} B^{T} \\
0 & I_{m}
\end{array}\right]
$$

with $S \approx B \widetilde{A}^{-1} B^{T}+C$ spd
Selection of $\widetilde{A}, S: \quad \widetilde{A}=\operatorname{AMG}(A), S=Q$ (pressure mass matrix)
IFISS 3.1 (Elman, Ramage, Silvester):
Flow over a backward facing step
Stable Q2-Q1 approximation $\left(C=0, B \in \mathbb{R}^{m \times n}\right)$
stopping tolerance: 10^{-6} non-symmetric solver

n	m	$\#$ it.
1538	209	18
5890	769	18
23042	2945	18
91138	11521	17
362498	45569	17

A standard choice: block diagonal preconditioning

$$
\begin{gathered}
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & \widetilde{S}
\end{array}\right] \quad \text { spd. } \widetilde{A} \approx A \quad \widetilde{S} \approx B A^{-1} B^{T} \\
\text { spectrum of } \mathcal{M P}^{-1} \text { in } \quad[-a,-b] \cup[c, d], \quad a, b, c, d>0
\end{gathered}
$$

\Rightarrow if \widetilde{A}, A and $\widetilde{S}, B A^{-1} B^{T}$ spectrally equivalent, then spectrum of $\mathcal{M P}^{-1}$ is independent of mesh parameter

An example. Stokes problem

$$
\left[\begin{array}{cc}
-\Delta & -\operatorname{grad} \\
\operatorname{div} &
\end{array}\right] \approx\left[\begin{array}{cc}
-\widetilde{\Delta} & \\
& I
\end{array}\right]
$$

In algebraic terms:
$I \rightarrow$ mass matrix
$-\widetilde{\Delta} \rightarrow$ Algebraic MG
(spectrally equivalent matrix)
(cf. K.-A. Mardal \& R. Winther
JNLAA 2011)

An example. Stokes problem

$\left[\begin{array}{cc}-\Delta & -\operatorname{grad} \\ \operatorname{div} & \end{array}\right] \approx\left[\begin{array}{ll}-\widetilde{\Delta} & \\ & \\ \end{array}\right]$	2D. Final		norm $<10^{-6}$
	size (\mathcal{M})	its	Time (secs)
In algebraic terms:	578	26	0.04
$I \rightarrow$ mass matrix	217	26	0.14
$-\widetilde{\Delta} \rightarrow$ Algebraic MG	8450	26	0.50
(spectrally equivalent matrix)	132098	26	11.17
(cf. K.-A. Mardal \& R. Winther			
JNLAA 2011)			

Next: some unexpected behaviors...

Choice of Schur complement approximation. A quasi-optimal choice

$$
\widetilde{S} \approx B A^{-1} B^{T}
$$

For certain operators, \widetilde{S} is quasi-optimal:
$\operatorname{spec}\left(B A^{-1} B^{T} \widetilde{S}^{-1}\right)$ well clustered except for few eigenvalues

Choice of Schur complement approximation. A quasi-optimal choice

$$
\widetilde{S} \approx B A^{-1} B^{T}
$$

For certain operators, \widetilde{S} is quasi-optimal:
$\operatorname{spec}\left(B A^{-1} B^{T} \widetilde{S}^{-1}\right)$ well clustered except for few eigenvalues

Possibly: well clustered eigs also mesh-independent

The role of \widetilde{S}

Claim:
The presence of outliers in $B A^{-1} B^{T} \widetilde{S}^{-1}$ is accurately inherited by the preconditioned matrix $\mathcal{M} \mathcal{P}^{-1}$ so that $\kappa\left(\mathcal{M P}^{-1}\right) \gg 1$

(for a proof, see Olshanskii \& Simoncini, SIMAX '10)

Stokes type problem with variable viscosity in $\Omega \subset \mathbb{R}^{d}$

$$
\begin{aligned}
-\operatorname{div} \nu(\mathbf{x}) \mathbf{D u}+\nabla p & =\mathbf{f} \quad \text { in } \quad \Omega \\
-\operatorname{div} \mathbf{u} & =0 \\
\mathbf{u} & \text { in } \Omega \\
\Omega & \text { on } \partial \Omega
\end{aligned}
$$

with $0<\nu_{\min } \leq \nu(\mathbf{x}) \leq \nu_{\max }<\infty\left(\right.$ Here, $\left.\nu(\mathbf{x})=2 \mu+\frac{\tau_{s}}{\sqrt{\varepsilon^{2}+|\mathrm{Du}(\mathbf{x})|^{2}}}\right)$
\mathbf{u} : velocity vector field $\quad p$: pressure
$\mathbf{D u}=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}\right)$ rate of deformation tensor

Prec. S : pressure mass matrix wrto weighted product $\left(\nu^{-1} \cdot, \cdot\right)_{L^{2}(\Omega)}$

Performance of Krylov subspace solver MINRES

$\widetilde{A}=\operatorname{IC}(A, \delta), \delta=10^{-2}$ poor approximation
\Rightarrow also one small positive eig
Bercovier-Engelman model of the Bingham viscoplastic fluid

Performance of Krylov subspace solver MINRES

deflation of approximate "bad" eigenvectors $\widetilde{A}=\operatorname{IC}(A, \delta), \delta=10^{-2}$ poor approximation
\Rightarrow also one small positive eig
Bercovier-Engelman model of the Bingham viscoplastic fluid

Distributed optimal control for time-periodic parabolic equations

Joint work with W. Zulehner and W. Krendl

$$
J(y, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left|y(x, t)-y_{d}(x, t)\right|^{2} d x d t+\frac{\nu}{2} \int_{0}^{T} \int_{\Omega}|u(x, t)|^{2} d x d t
$$

subject to the time-periodic parabolic problem

$$
\begin{aligned}
\frac{\partial}{\partial t} y(x, t)-\Delta y(x, t) & =u(x, t) & & \text { in } Q_{T} \\
y(x, t) & =0 & & \text { on } \Sigma_{T}, \\
y(x, 0) & =y(x, T) & & \text { on } \Omega \\
u(x, 0) & =u(x, T) & & \text { on } \Omega .
\end{aligned}
$$

Here $y_{d}(x, t)$ is a given target (or desired) state and $\nu>0$ is a cost or regularization parameter.

Assuming y_{d} to be time-harmonic (so that there exist y, u time-harmonic), gives the problem:

Minimize

$$
\frac{1}{2} \int_{\Omega}\left|y(x)-y_{d}(x)\right|^{2} d x+\frac{\nu}{2} \int_{\Omega}|u(x)|^{2} d x
$$

subject to

$$
\begin{aligned}
i \omega y(x)-\Delta y(x) & =u(x) & & \text { in } \Omega \\
y(x) & =0 & & \text { on } \Gamma
\end{aligned}
$$

Solution using Lagrange multipliers, discretization and elimination of the control, yields:

$$
\left[\begin{array}{cc}
M & K-i \omega M \\
K+i \omega M & -\frac{1}{\nu} M
\end{array}\right]\left[\begin{array}{l}
\underline{y} \\
\underline{p}
\end{array}\right]=\left[\begin{array}{c}
M \underline{y}_{d} \\
0
\end{array}\right]
$$

Solving the saddle point linear system

After simple scaling,

$$
\left[\begin{array}{cc}
M & \sqrt{\nu}(K-i \omega M) \\
\sqrt{\nu}(K+i \omega M) & -M
\end{array}\right]\left[\begin{array}{c}
\underline{y} \\
\frac{1}{\sqrt{\nu}} \underline{p}
\end{array}\right]=\left[\begin{array}{c}
M \underline{y}_{d} \\
0
\end{array}\right]
$$

Block diagonal Preconditioner:

$$
\mathcal{P}=\left[\begin{array}{cc}
M+\sqrt{\nu}(K+\omega M) & 0 \\
0 & M+\sqrt{\nu}(K+\omega M)
\end{array}\right]
$$

- Accurate estimates for the spectral intervals
- Convergence of MINRES independent of the mesh and regularization parameters

Convergence history. Staircase behavior

Explanation of the Staircase behavior

The previous matrix has the form:

$$
\mathcal{M}=\left[\begin{array}{cc}
A & B^{*} \\
B & -A
\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}
$$

with $A \in \mathbb{R}^{n \times n}$ spd, and $B \in \mathbb{C}^{n \times n}$ complex symmetric, i.e., $B=B^{T}$

Theorem: Assume that B is nonsingular. Then the eigenvalues μ of \mathcal{M} come in pairs, $(\mu,-\mu)$, with $\mu \in \mathbb{R}$.
\Rightarrow MINRES behaves like CG on a matrix having only the positive eigenvalues, but with twice as many iterations

Remark: Similar setting for more complex structures, e.g., for Distributed optimal control for the time-periodic Stokes equations

Convergence history. Staircase behavior
An alternative (indefinite) preconditioner - work in progress:

$$
\mathcal{P}=\left[\begin{array}{cc}
0 & K+\omega M \\
K+\omega M & -\frac{1}{\nu} M
\end{array}\right]
$$

Convergence history. Staircase behavior

An alternative (indefinite) preconditioner - work in progress:

$$
\mathcal{P}=\left[\begin{array}{cc}
0 & K+\omega M \\
K+\omega M & -\frac{1}{\nu} M
\end{array}\right]
$$

Similar results for the Distributed optimal control for the time-periodic Stokes equations

Final remarks

- Much is known about the behavior of structured preconditioners for well established problems and formulations
- New problems provide new challenges
- Understanding the underlying Linear algebra may be key

References for this talk

W. Krendl, V. Simoncini and W. Zulehner, Stability Estimates and Structural Spectral Properties of Saddle Point Problems, submitted, 2012.
M. A. Olshanskii, and V. Simoncini, Acquired clustering properties and solution of certain saddle point systems, SIAM. J. Matrix Anal. and Appl. 31(5), 2754-2768 (2010)
M. Benzi, G.H. Golub and J. Liesen, Numerical Solution of Saddle Point Problems, Acta Numerica, 14, 1-137 (2005)
K.A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra with Appl., 18, 1-40 (2011)

