

The Nullspace–free eigenvalue problem and the inexact Shift–and–invert Lanczos method

V. Simoncini

Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it

The generalized eigenvalue problem

Given

 $Ax = \lambda Mx$

A sym. pos. semidef. M sym. positive def. C sparse basis for large null space of A

Find

 $\min_{\lambda_i \neq 0} \lambda_i$

Difficulty: zero eigenvalues pollute approximation

Equivalent formulation for smallest eigenvalue

$$\min_{\substack{C^T M x = 0\\0 \neq x \in \mathbb{R}^n}} \frac{x^T A x}{x^T M x}$$

 $C^T M x = 0$ constraint \Rightarrow Nullspace free eigenvectors

Outline

- General Spectral Transformation
- Inexact Shift-and-Invert Lanczos Method
- Inexactness vs. Constraint
- Alternative Problem Formulations
 - Augmented Formulation
 - Modified Formulation
- A numerical example
- Computational enhancements

General Spectral Transformation

Original Problem: Solve

 $Ax = \lambda Mx$

Transformed Problem: Fix $\sigma \in \mathbb{R}$ and rewrite as

$$(A - \sigma M)^{-1}Mx = \eta x$$
 $\eta = (\lambda - \sigma)^{-1}$

 σ close to eigenvalues of interest \Rightarrow η large $\lambda = \sigma + \frac{1}{n}$

• Fast convergence of Lanczos method is expected

Other methods: Jacobi-Davidson, Subspace iteration, Preconditioned Inverse Iteration, etc.

General Shift-and-Invert Lanczos (SI(σ) Lanczos) Given $v_1 \in \mathbb{R}$, for j = 1, 2, ... $\tilde{v} = (A - \sigma M)^{-1} M v_j$ $v_{j+1}t_{j+1,j} = \tilde{v} - V_j T_{:,j} \qquad T_{:,j} = V_j^T M \tilde{v}$ $V_j = [v_1, \ldots, v_j]$

Yielding

$$(A - \sigma M)^{-1} M V_j = V_j T_j + [0, \dots, 0, r_{j+1}]$$

$$(A - \sigma M)^{-1} M V_j = V_j T_j + [0, \dots, 0, r_{j+1}]$$

If $T_j s_j^{(i)} = \eta_j^{(i)} s_j^{(i)}$ $i = 1, \dots, j$ then
 $\left(\sigma + \frac{1}{\eta_j^{(i)}}, V_j s_j^{(i)}\right), \quad i = 1, \dots, j$

are approximate eigenpairs of $Ax=\lambda Mx$

Warning: In our setting A is singular. If σ is close to zero, then many zero eigenvalues may be detected

Take
$$v_1$$
 s.t. $C^T M v_1 = 0 \implies C^T M V_j = 0 \quad \forall j$
(exact arithmetic)

General Inexact Shift-and-Invert Lanczos

Take
$$v_1$$
 s.t. $C^T M v_1 = 0$,
for $j = 1, 2, ...$
 $w \leftarrow M v_j$
 \hat{v} approx. solves $(A - \sigma M)\hat{v} = w$
 M -orthogonalize \hat{v} w.r. to $\{v_1, \ldots, v_j\} \rightarrow v_{j+1}$

$$V_j = [v_1, v_2, \dots, v_j]$$
$$C^T M V_j \stackrel{?}{=} 0$$

 \star Krylov subspace inner solvers

Natural fixes

[1] Null space is available. Explicitly deflate (purge) null space

Starting vector $v_1 \perp_M \mathcal{N}(A) \Rightarrow \operatorname{span}(V_j) \perp_M \mathcal{N}(A)$

```
for j = 1, 2, ...

w \leftarrow Mv_j

\hat{v} approx. solves (A - \sigma M)\hat{v} = w

\hat{v} \leftarrow (I - \pi)\hat{v}

M-orthogonalize \hat{v} w.r. to \{v_1, ..., v_j\} \rightarrow v_{j+1}

\pi projection onto \mathcal{N}(A) \pi = C(C^T M C)^{-1} C^T M

see e.g. Golub, Zhang, Zha 2000
```

[2] Use $\sigma = 0$ and generate approximation space in Range(A)

$$A^{\dagger}MV_j = V_jT_j + r_{j+1}e_j^T$$

At each iteration i, solve consistent system

$$Ay = Mv_i$$

Arbenz, Drmac 2000

Preconditioning techniques for singular A: Notay 1989-1990, Hiptmair, Neymeyr 2001, ...

Enforcing the constraint

Given v s.t. $C^T M v = 0$, approximately solve

$$(A - \sigma M)x = Mv \tag{1}$$

with the constraint $C^T M x = 0$

This problem is equivalent to

$$\begin{pmatrix} A - \sigma M & MC \\ (MC)^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Mv \\ 0 \end{pmatrix} \Leftrightarrow (\mathcal{A} - \sigma \mathcal{M})z = \mathcal{M}b \quad (2)$$

Saddle-point linear system

Exploit work on preconditioning

$$(\mathcal{A} - \sigma \mathcal{M})P^{-1}\hat{z} = \mathcal{M}b \qquad (*)$$

 \hat{z}_m approx. solution to (*) $\Rightarrow z_m = P^{-1}\hat{z}_m$ approx. solution to (2)

Structured preconditioning

Given the linear system

$$\left(\begin{array}{cc} K & B \\ B^T & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} f \\ g \end{array}\right)$$

Effective preconditioners include

$$\mathcal{P} = \begin{pmatrix} K_1 & 0 \\ 0 & S \end{pmatrix} \qquad \mathcal{Q} = \begin{pmatrix} K_1 & B \\ B^T & 0 \end{pmatrix} \qquad \mathcal{R} = \begin{pmatrix} K_1 & B \\ 0 & S \end{pmatrix}$$

$S\approx B^TK^{-1}B$

Large bibliography. See Benzi, Golub, Liesen, Acta Numerica 2005

Definite preconditioning

$$(A - \sigma M)x = Mv \qquad (1)$$

lf

$$\begin{pmatrix} A - \sigma M & MC \\ (MC)^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Mv \\ 0 \end{pmatrix}$$
(2)

is preconditioned by

$$\mathcal{P} = \begin{bmatrix} K_1 & 0 \\ 0 & (MC)^T K_1^{-1} (MC) \end{bmatrix}, \quad K_1 = A_1 - \tau M \quad A_1 C = 0$$

then MINRES soln of (2) is given by
$$z_m = \begin{bmatrix} x_m \\ 0 \end{bmatrix}$$
, where x_m is MINRES soln. of (1) preconditioned by K_1

Indefinite preconditioning

$$(A - \sigma M)x = Mv \qquad (1)$$

lf

$$\begin{pmatrix} A - \sigma M & MC \\ (MC)^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Mv \\ 0 \end{pmatrix}$$
(2)

is preconditioned by

$$\mathcal{Q} = \begin{bmatrix} K_1 & MC \\ (MC)^T & 0 \end{bmatrix}, \qquad K_1 = A_1 - \tau M \quad A_1 C = 0$$

then GMRES soln of (2) is given by
$$z_m = \begin{bmatrix} x_m \\ 0 \end{bmatrix}$$
, where x_m is GMRES soln. of (1) preconditioned by K_1

Important remark

Solve Preconditioned system

$$(A - \sigma M)K_1^{-1}\hat{x} = Mv$$
 $K_1 = A_1 - \tau M$

so that

$$x_m = K_1^{-1}\hat{x}_m$$

Then it holds

$$C^T M x_m = 0$$

Alternative Problem Formulations

 $Ax = \lambda Mx \qquad C^T Mx = 0$

[1] Augmented FE formulation (Kikuchi, 1987)

$$\begin{pmatrix} A & MC \\ (MC)^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \tilde{\lambda} \begin{pmatrix} M & 0 \\ 0^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\min\{\tilde{\lambda}_i\} = \min_{\lambda_i \neq 0}\{\lambda_i\}$$

Computational aspects in Arbenz Geus (1999), Arbenz Geus Adam (2001)

[2] Modified FE formulation (Bespalov, 1988)

Given a sym. nonsingular $H \in \mathbb{R}^{n_c \times n_c}$, solve

$$(A + MCH^{-1}C^TM)x = \eta Mx$$

for suitable H, $\min_i \{\eta_i\} = \min_{\lambda_i \neq 0} \{\lambda_i\}$

Augmented formulation

$$\underbrace{\begin{pmatrix} A & MC \\ (MC)^T & 0 \end{pmatrix}}_{\mathcal{A}} \begin{pmatrix} x \\ y \end{pmatrix} = \widetilde{\lambda} \underbrace{\begin{pmatrix} M & 0 \\ 0^T & 0 \end{pmatrix}}_{\mathcal{M}} \begin{pmatrix} x \\ y \end{pmatrix}$$

 $\mathcal{A}z = \widetilde{\lambda} \mathcal{M}z$

Spectral transformation:

$$(\mathcal{A} - \sigma \mathcal{M})^{-1} \mathcal{M} z = \eta z \qquad \eta = \frac{1}{\widetilde{\lambda} - \sigma}$$

 \Rightarrow

Apply inexact $SI(\sigma)$ Lanczos

Augmented formulation

At each iteration, solve Saddle-point linear system

$$\left(\begin{array}{cc} A - \sigma M & MC \\ (MC)^T & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} Mv \\ 0 \end{array}\right)$$

Natural inner preconditioners

$$\mathcal{P} = \begin{bmatrix} K_1 & 0 \\ 0 & (MC)^T K_1^{-1} (MC) \end{bmatrix}, \quad \begin{array}{l} K_1 = A_1 - \tau M \\ A_1 C = 0 \end{array}$$
$$\mathcal{Q} = \begin{bmatrix} K_1 & MC \\ (MC)^T & 0 \end{bmatrix}$$

but

Inexact SI(σ)-Lanczos applied to augmented formulation with inner preconditioner \mathcal{P} or \mathcal{Q}

generates the same approximate eigenpairs as

Inexact SI(σ)-Lanczos applied to

 $Ax = \lambda Mx$

with inner preconditioner K_1

The modified formulation

Original problem

 $Ax = \lambda Mx$

Given a sym. nonsingular $H \in \mathbb{R}^{n_c \times n_c}$, solve

$$(A + MCH^{-1}C^TM)x = \eta Mx$$

•
$$\lambda \neq 0 \quad \Rightarrow \exists \mu \text{ s.t. } \mu = \lambda$$

•
$$\lambda = 0 \quad \Rightarrow \mu \text{ eigenvalue of } (C^T M C, H)$$

Remark. No practical (numerical) advantages over solving $Ax = \lambda Mx$

A numerical example: Electromagnetic cavity resonator Variational formulation for the 2D computational model

Find $w_h \in \mathbb{R}$ s.t. $\exists 0 \not\equiv \underline{u}_h \in \Sigma_h \subset \Sigma$: $(rot(v_1, v_2) = (v_2)_x - (v_1)_y)$

$$(rot \ \underline{u}_h, rot \ \underline{v}_h) = \omega_h^2(\underline{u}_h, \underline{v}_h) \qquad \forall \underline{v}_h \in \Sigma_h,$$

 $\Sigma = \{ \underline{v} \in [L^2(\Omega)]^2 : \mathrm{rot} \ \underline{v} \in L^2(\Omega), \underline{v} \cdot \underline{t} = 0 \ \mathrm{on} \ \partial \Omega \}$

 \underline{t} counterclockwise oriented tangent versor to the boundary

$$\Omega =]0, \pi[^2 \qquad \Rightarrow \omega^2 = 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, \dots]$$

FE method using edge elements
Problem dimension = 3229 Number of zero eigenvalues = 1036
Boffi, Fernandes, Gastaldi, Perugia, SIAM J. Numer. Anal., v.36 (1999)

Norm of residual $\frac{\ Ax_j^{(1)} - \lambda_j^{(1)}Mx_j^{(1)}\ }{\lambda_j^{(1)}}$			
	$(A - \sigma M)^{-1}Mx = \eta x$	$(\mathcal{A} - \sigma \mathcal{M})^{-1}\mathcal{M}z = \eta z$	$(\mathcal{A} - \sigma \mathcal{M})^{-1} \mathcal{M} z = \eta z$
m	K_1	${\cal P}$	${\cal Q}$
4	0.02426393067395	0.02426393067727	0.02426393066981
6	0.02898748221567	0.02898746782699	0.02898748572682
8	0.01156203523797	0.01156203705189	0.01156203467534
10	0.00000041284501	0.00000041284501	0.00000041283893
12	0.0000000158821	0.0000000158844	0.0000000158891
14	0.0000000158802	0.0000000158827	0.0000000158882

Computational considerations: Inexact Lanczos

Starting vector $v_1 \perp_M \mathcal{N}(A) \Rightarrow \operatorname{span}(V_i) \perp_M \mathcal{N}(A)$ for j = 1, 2, ... $w \leftarrow M v_i$ \hat{v} approx. solves $(A - \sigma M)\hat{v} = w$ $\hat{v} \leftarrow (I - \pi)\hat{v}$ *M*-orthogonalize \hat{v} w.r. to $\{v_1, \ldots, v_j\} \rightarrow v_{j+1}$ Compute approximate $\eta_i^{(1)}, \ldots, \eta_i^{(j)}$ to η_1, η_2, \ldots Check convergence with Lanczos residuals

Question: How accurate should be the solution of $(A - \sigma M)\hat{v} = w$?

Answer: You can decrease the accuracy as the Lanczos method converges.

SHERMAN5 MatrixMarket. Approx. min $|\lambda|$ with "inverted" Arnoldi

At iteration j, solve $(A - \sigma M)\hat{v} = w$

 $\eta_{j-1}^{(1)}$ approx eig. after j-1 Lanczos its.

 r_{j-1} associated computed eigenvalue residual

 $f_j = (A - \sigma M)\hat{v}_k - w$ residual after k inner iterations (linear system)

Stopping criterion for inner system solver

Empirically (Bouras and Frayssé, t.r. '00):

$$||f_j|| \le \frac{10^{-\alpha}}{|\eta_{j-1}^{(1)}| \, ||r_{j-1}||} \varepsilon, \qquad \alpha = 0, 1, 2$$

At iteration j, solve $(A - \sigma M) \hat{v} = w$

 $\eta_{j-1}^{(1)}$ approx eig. after j-1 Lanczos its.

 r_{j-1} associated computed eigenvalue residual

 $f_j = (A - \sigma M)\hat{v}_k - w$ residual after k inner iterations (linear system)

Stopping criterion for inner system solver

New computable bound (Simoncini, t.r. '04):

$$||f_j|| \le \frac{\min\{||A - \sigma M||, \delta^{(j-1)}\}}{2m|\eta_{j-1}^{(1)}| ||r_{j-1}||}\varepsilon$$

where

$$\delta^{(j-1)} := \min_{\substack{\eta_{j-1}^{(k)} \in \Lambda(H_{j-1}) \setminus \{\eta_{j-1}^{(1)}\}}} |\eta_{j-1}^{(k)} - \eta_{j-1}^{(1)}|$$

The whole story

If, for any
$$k = 1, \dots, m$$
, $||r_k|| \le \frac{\delta_{m,k-1}^2}{4||s_m||}$ and
 $||f_k|| \le \frac{\delta_{m,k-1}}{2m|\eta_{j-1}^{(1)}|||r_{k-1}||}\varepsilon$

then after m iterations, $(\eta_m^{(1)},s)$ satisfies

 $\|((A - \sigma M)^{-1}MV_m s - \eta_m^{(1)}V_m s) - r_m\| \le \varepsilon$

- [1] P. ARBENZ AND R. GEUS, A comparison of solvers for large eigenvalue problems occuring in the design of resonant cavities, Numer. Linear Alg. with Appl., 6 (1999), pp. 3–16.
- [2] P. ARBENZ, R. GEUS, AND S. ADAM, Solving Maxwell eigenvalue problems for accelerating cavities, Physical Review special Topics - Accelerators and Beams, 4 (2001), pp. 1–10.
- [3] A. N. BESPALOV, Finite element method for the eigenmode problem of a rf cavity resonator, Sov. J. Numer. Anal. Math. Mod., 3 (1988), pp. 163–178.
- [4] F. KIKUCHI, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism, Computer Methods in Appl. Mech. Eng., 64 (1987), pp. 509–521.
- [5] V. SIMONCINI, Algebraic formulations for the solution of the nullspace-free eigenvalue problem using the inexact Shift-and-Invert Lanczos method, Numerical Linear Algebra w/Appl, 2003.
- [6] V. SIMONCINI, Variable accuracy of matrix-vector products in projection methods for eigencomputation. March 2004. To appear in SIAM J. Numerical Analysis.

http://www.dm.unibo.it/~simoncin e-mail: valeria@dm.unibo.it