On the numerical solution of large-scale linear matrix equations

V. Simoncini
Dipartimento di Matematica, Università di Bologna (Italy) valeria.simoncini@unibo.it

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Algebraic Riccati equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+D=0, \quad D=D^{\top}
$$

Lancaster-Rodman '95, Konstantinov-Gu-Mehrmann-Petkov, '02,
Bini-lannazzo-Meini '12

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Algebraic Riccati equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+D=0, \quad D=D^{\top}
$$

Lancaster-Rodman '95, Konstantinov-Gu-Mehrmann-Petkov, '02,
Bini-lannazzo-Meini '12
Focus: All or some of the matrices are large (and possibly sparse)

Solving the Lyapunov equation. The problem
Approximate X in:

$$
\begin{aligned}
& A X+X A^{\top}+B B^{\top}=0 \\
& A \in \mathbb{R}^{n \times n} \text { neg.real } \quad B \in \mathbb{R}^{n \times p}, \quad 1 \leq p \ll n
\end{aligned}
$$

Solving the Lyapunov equation. The problem
Approximate X in:

$$
A X+X A^{\top}+B B^{\top}=0
$$

$A \in \mathbb{R}^{n \times n}$ neg.real $\quad B \in \mathbb{R}^{n \times p}, \quad 1 \leq p \ll n$

Time-invariant linear system:

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+B \mathbf{u}(t), \quad \mathbf{x}(0)=x_{0}
$$

Closed form solution:

$$
X=\int_{0}^{\infty} e^{-t A} B B^{\top} e^{-t A^{\top}} d t
$$

$\Rightarrow \quad X$ symmetric semidef.
see, e.g., Antoulas '05, Benner '06

Linear systems vs linear matrix equations
Large linear systems:

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$
A P^{-1} \widetilde{x}=b \quad x=P^{-1} \widetilde{x}
$$

is easier and fast to solve

Linear systems vs linear matrix equations
Large linear systems:

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$
A P^{-1} \widetilde{x}=b \quad x=P^{-1} \widetilde{x}
$$

is easier and fast to solve
Large linear matrix equations:

$$
A X+X A^{\top}+B B^{\top}=0
$$

- No preconditioning - to preserve symmetry
- X is a large, dense matrix \Rightarrow low rank approximation

$$
X \approx \widetilde{X}=Z Z^{\top}, \quad Z \text { tall }
$$

Linear systems vs linear matrix equations
Large linear systems:

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$
A P^{-1} \widetilde{x}=b \quad x=P^{-1} \widetilde{x}
$$

is easier and fast to solve
Large linear matrix equations:

$$
A X+X A^{\top}+B B^{\top}=0
$$

Kronecker formulation:

$$
(A \otimes I+I \otimes A) x=b \quad x=\operatorname{vec}(X)
$$

Projection-type methods

Given an approximation space \mathcal{K},

$$
X \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \quad \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Projection-type methods

Given an approximation space \mathcal{K},

$$
X \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Assume $V_{m}^{\top} V_{m}=I_{m}$ and let $X_{m}:=V_{m} Y_{m} V_{m}^{\top}$.
Projected Lyapunov equation:

$$
V_{m}^{\top}\left(A V_{m} Y_{m} V_{m}^{\top}+V_{m} Y_{m} V_{m}^{\top} A^{\top}+B B^{\top}\right) V_{m}=0
$$

Projection-type methods

Given an approximation space \mathcal{K},

$$
X \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Assume $V_{m}^{\top} V_{m}=I_{m}$ and let $X_{m}:=V_{m} Y_{m} V_{m}^{\top}$.
Projected Lyapunov equation:

$$
\begin{aligned}
V_{m}^{\top}\left(A V_{m} Y_{m} V_{m}^{\top}+V_{m} Y_{m} V_{m}^{\top} A^{\top}+B B^{\top}\right) V_{m} & =0 \\
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} B B^{\top} V_{m} & =0
\end{aligned}
$$

Early contributions: Saad '90, Jaimoukha \& Kasenally '94, for
$\mathcal{K}=\mathcal{K}_{m}(A, B)=\operatorname{Range}\left(\left[B, A B, \ldots, A^{m-1} B\right]\right)$

More recent options as approximation space
Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2}, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

More recent options as approximation space
Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2}, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

- Rational Krylov subspace

$$
\mathcal{K}=\operatorname{Range}\left(\left[B,\left(A-s_{1} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

usually, $\left\{s_{1}, \ldots, s_{m}\right\} \subset \mathbb{C}^{+}$chosen a-priori

More recent options as approximation space
Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2}, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

- Rational Krylov subspace

$$
\mathcal{K}=\text { Range }\left(\left[B,\left(A-s_{1} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

usually, $\left\{s_{1}, \ldots, s_{m}\right\} \subset \mathbb{C}^{+}$chosen a-priori
In both cases, for Range $\left(V_{m}\right)=\mathcal{K}$, projected Lyapunov equation:

$$
\begin{aligned}
& \left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} B B^{\top} V_{m}=0 \\
X_{m}= & V_{m} Y_{m} V_{m}^{\top}
\end{aligned}
$$

Rational Krylov Subspaces. A long tradition...

In general,

$$
K_{m}(A, B, \mathbf{s})=\operatorname{Range}\left(\left[\left(A-s_{1} I\right)^{-1} B,\left(A-s_{2} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

- Eigenvalue problems (Ruhe, 1984)
- Model Order Reduction (transfer function evaluation)
- In Alternating Direction Implicit iteration (ADI) for linear matrix equations

Rational Krylov Subspaces in MOR. Choice of poles.
$K_{m}(A, B, \mathbf{s})=\operatorname{Range}\left(\left[\left(A-s_{1} I\right)^{-1} B,\left(A-s_{2} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)$
cf. General discussion in Antoulas, 2005.
Many contributions:

- Gallivan, Grimme, Van Dooren (1996-, ad-hoc poles)
- Penzl (1999-2000, ADI shifts - preprocessing, Ritz values)
- Sabino (2006-tuning within preprocessing)
- IRKA - Gugercin, Antoulas, Beattie (2008)
- Druskin, Lieberman, Simoncini, Zaslavski (adaptive greedy procedure)
- Güttel, Knizhnerman (black-box for matrix functions)
-

Alternating Direction Implicit iteration (ADI) - Wachspress (see, e.g., Li 2000, Penzl 2000)

$$
\begin{aligned}
X_{0}=0, X_{j}= & -2 p_{j}\left(A+p_{j} I\right)^{-1} B B^{\top}\left(A+p_{j} I\right)^{-\top} \quad j=1, \ldots, \ell \\
& +\left(A+p_{j} I\right)^{-1}\left(A-p_{j} I\right) X_{j-1}\left(A-p_{j} I\right)^{\top}\left(A+p_{j} I\right)^{-\top}
\end{aligned}
$$

with

$$
\phi_{\ell}(t)=\prod_{j=1}^{\ell}\left(t-p_{j}\right), \quad\left\{p_{1}, \ldots, p_{\ell}\right\}=\operatorname{argmin} \max _{t \in \Lambda(A)}\left|\frac{\phi_{\ell}(t)}{\phi_{\ell}(-t)}\right|
$$

Implementation aspects: Benner, Saak, Quintana-Ortì ${ }^{2}, \ldots$

Convergence depends on choice of poles $\left\{p_{j}\right\}$
More advanced approach: Galerkin-Projection Accelerated ADI (Benner, Saak, tr 2010)

ADI and Rational Krylov subspaces

Let $B=b$ (vector). Main consideration (see, e.g., Li, Wright 2000)

$$
\operatorname{col}\left(X_{m}^{(A D I)}\right) \in K_{m}(A, b, \mathbf{s})
$$

and also, for $U_{m}=\left[\left(A-s_{1} I\right)^{-1} b, \ldots,\left(A-s_{m} I\right)^{-1} b\right]$,

$$
X_{m}^{(A D I)}=U_{m} \boldsymbol{\alpha}^{-1} U_{m}^{*}
$$

with α Cauchy matrix

ADI and Rational Krylov subspaces

Let $B=b$ (vector). Main consideration (see, e.g., Li, Wright 2000)

$$
\operatorname{col}\left(X_{m}^{(A D I)}\right) \in K_{m}(A, b, \mathbf{s})
$$

and also, for $U_{m}=\left[\left(A-s_{1} I\right)^{-1} b, \ldots,\left(A-s_{m} I\right)^{-1} b\right]$,

$$
X_{m}^{(A D I)}=U_{m} \boldsymbol{\alpha}^{-1} U_{m}^{*}
$$

with α Cauchy matrix
Equivalence between ADI and RKSM:
ADI coincides with the Galerkin solution X_{m} in Rational Krylov space if and only if

$$
s_{j}=-\bar{\lambda}_{j}
$$

where $\lambda_{j}=\operatorname{eigs}\left(V_{m}^{*} A V_{m}\right)$ Ritz values (suitably ordered)
Druskin, Knizhnerman, S. '11, Beckermann '11, Flagg '09, Gugercin, Flagg '12

Typical behavior of ADI and generic RKSM for the same poles

Operator: $L(u)=-\Delta u+\left(50 x u_{x}\right)_{x}+\left(50 y u_{y}\right)_{y}$ on $[0,1]^{2}$

Same non-optimal 20 poles, repeated cyclically.

Expected performance (from Oberwolfach Collection)

Left: rail problem, A symmetric.
Right: flow_meter_model_v0.5 problem, A nonsymmetric.
ADI and RKSM use 10 non-optimal poles cyclically (computed a-priori with lyapack, Penzl 2000)

Multiterm linear matrix equation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=C
$$

Applications:

- Matrix least squares
- Control
- Stochastic PDEs

Multiterm linear matrix equation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=C
$$

Applications:

- Matrix least squares
- Control
- Stochastic PDEs

Main device: Kronecker formulation

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) x=c
$$

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, ...)

Other related matrix equations

More "exotic" linear matrix equations

- Sylvester-like

$$
B X+f(X) A=C
$$

typically (but not only!)

$$
f(X)=\bar{X}, \quad f(X)=X^{\top}, \quad \text { or } \quad f(X)=X^{*}
$$

(Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov, Watkins, Wu, ...)

The T-Sylvester matrix equations

Solve for X :

$$
\begin{equation*}
A X+X^{\top} B=C \tag{*}
\end{equation*}
$$

\Rightarrow A unique solution exists for any $C \in \mathbb{R}^{n \times n}$ iff $A-\lambda B^{\top}$ is regular and $\operatorname{spec}\left(A, B^{\top}\right) \backslash\{1\}$ is reciprocal free (with 1 having at most algebraic multiplicity 1)
\Rightarrow Small scale: Bartel-Stewart type algorithm
(De Teran, Dopico, 2011)
\Rightarrow If X_{0} is the unique solution to the Sylvester eqn

$$
A X A^{\top}-B^{\top} X B=C-C^{\top} A^{-1} B
$$

then X_{0} is the unique solution to $(*)$

The large scale T-Sylvester matrix equations

$$
A X+X^{\top} B=C_{1} C_{2}^{\top}, \quad C_{1}, C_{2} \in \mathbb{R}^{n \times r}, r \ll n
$$

Find:

$$
X \approx X_{m}=\mathcal{V}_{m} Y_{m} \mathcal{W}_{m}^{\top} \in \mathbb{R}^{n \times n}
$$

Orthogonality (Petrov-Galerkin) condition:

$$
\mathcal{W}_{m}^{\top}\left(A X_{m}+X_{m}^{\top} B-C_{1} C_{2}^{\top}\right) \mathcal{W}_{m}=0
$$

(the orthogonality space is different from the approximation space)
Reduced T-Sylvester equation:

$$
\left(\mathcal{W}_{m}^{\top} A \mathcal{V}_{m}\right) Y_{m}+Y_{m}^{\top}\left(\mathcal{V}_{m}^{\top} B \mathcal{W}_{m}\right)=\left(\mathcal{W}_{m}^{\top} C_{1}\right)\left(\mathcal{W}_{m}^{\top} C_{2}\right)^{\top}
$$

Key issue: Choice of $\mathcal{V}_{m}, \mathcal{W}_{m}$

The selection of $\mathcal{V}_{m}, \mathcal{W}_{m}$
Exploit the generalized Schur decomposition:

$$
A=W T_{A} V^{\top} \quad \text { and } \quad B^{\top}=W T_{B} V^{\top}
$$

(W, V orthogonal) from which

$$
\begin{gathered}
B^{-\top} A=V T_{B}^{-1} T_{A} V^{\top} \quad \text { and } \quad B^{\top} V=W T_{B} \\
B^{-\top} A V=V T_{B}^{-1} T_{A} \quad \text { and } \quad B^{\top} V=W T_{B}
\end{gathered}
$$

Therefore:
Range $\left(\mathcal{V}_{m}\right) \quad \leftarrow$ good approx to invariant subspaces of $B^{-\top} A$
$\operatorname{Range}\left(\mathcal{W}_{m}\right)=B^{\top} \operatorname{Range}\left(\mathcal{V}_{m}\right)$

The selection of $\mathcal{V}_{m}, \mathcal{W}_{m}$
Exploit the generalized Schur decomposition:

$$
A=W T_{A} V^{\top} \quad \text { and } \quad B^{\top}=W T_{B} V^{\top}
$$

(W, V orthogonal) from which

$$
\begin{gathered}
B^{-\top} A=V T_{B}^{-1} T_{A} V^{\top} \quad \text { and } \quad B^{\top} V=W T_{B} \\
B^{-\top} A V=V T_{B}^{-1} T_{A} \quad \text { and } \quad B^{\top} V=W T_{B}
\end{gathered}
$$

Therefore:
Range $\left(\mathcal{V}_{m}\right) \quad \leftarrow$ good approx to invariant subspaces of $B^{-\top} A$
Range $\left(\mathcal{W}_{m}\right)=B^{\top}$ Range $\left(\mathcal{V}_{m}\right)$

$$
\operatorname{Range}\left(\mathcal{V}_{m}\right)=\mathcal{K}_{m}\left(B^{-\top^{\top}} A, B^{-\top}\left[C_{1}, C_{2}\right]\right), \quad \text { Range }\left(\mathcal{W}_{m}\right)=B^{\top} \operatorname{Range}\left(\mathcal{V}_{m}\right)
$$

The selection of $\mathcal{V}_{m}, \mathcal{W}_{m}$

$$
\operatorname{Range}\left(\mathcal{V}_{m}\right)=\mathcal{K}_{m}\left(B^{-\top} A, B^{-\top}\left[C_{1}, C_{2}\right]\right), \quad \operatorname{Range}\left(\mathcal{W}_{m}\right)=B^{\top} \operatorname{Range}\left(\mathcal{V}_{m}\right)
$$

Algorithmic considerations:

- Range $\left(\mathcal{W}_{m}\right)=\mathcal{K}_{m}\left(A B^{-\top},\left[C_{1}, C_{2}\right]\right)$ so that

$$
\text { Range }\left(C_{1}\right) \cup \text { Range }\left(C_{2}\right) \subset \text { Range }\left(\mathcal{W}_{m}\right)
$$

- If $C_{1}=C_{2}$ then

$$
\operatorname{Range}\left(\mathcal{V}_{m}\right)=\mathcal{K}_{m}\left(B^{-\top} A, B^{-\top} C_{1}\right)
$$

- The role of A and B can be reversed

$$
\left(A \rightarrow B^{\top}, B \rightarrow A^{\top}, C_{1} \leftrightarrow C_{2}\right)
$$

Remark: Enriched spaces can be used...

Computational considerations
$n=10^{4} . A$ and B : finite difference discretizations in $[0,1]^{2}$ of

$$
\begin{aligned}
& a(u)=\left(-\exp (-x y) u_{x}\right)_{x}+\left(-\exp (x y) u_{y}\right)_{y}+100 x u_{x}+\gamma u \\
& b(u)=-u_{x x}-u_{y y}, \quad \gamma=5 \cdot 10^{4}
\end{aligned}
$$

tol $=10^{-10}$	EK	BK	BK-TR	EK-SYLV
iterations	8	83	8	8
dim. approx. space	32	166	16	32
time (seconds)	1.7	58.1	0.7	2.4

BK-TR: Standard Krylov subspace, roles of A and B reversed All eigenvalues of $B^{-\top} A$ are well outside the unit circle

Computational considerations

$n=10^{4} . A$ and B : finite difference discretizations in $[0,1]^{2}$ of

$$
\begin{aligned}
& a(u)=\left(-\exp (-x y) u_{x}\right)_{x}+\left(-\exp (x y) u_{y}\right)_{y}+100 x u_{x}+\gamma u, \\
& b(u)=-u_{x x}-u_{y y}+100 x u_{x}, \quad \gamma=5 \cdot 10^{4}
\end{aligned}
$$

tol $=10^{-10}$	EK	BK*	BK-TR*	EK-SYLV*
iterations	29	100	100	100
dim. approx. space	116	200	200	400
time (seconds)	10.9	70.7	63.8	521.2

eigenvalues of $B^{-\top} A$ are now located inside and outside the unit circle

Conclusions

- Large advances in solving really large linear matrix equations
- Matrix equation challenges rely on strength and maturity of linear system solvers

Some references

* V. S.,

Computational methods for linear matrix equations
SIAM Review, v.58, n.3, 2016

* Froilan Dopico , Javier Gonzalez, Daniel Kressner and V. S.

Projection methods for large T-Sylvester equations
Mathematics of Computations, v.85, n.301, 2016

* Stephen D. Shank , V. S. and Daniel B. Szyld

Efficient low-rank solutions of Generalized Lyapunov equations
Numerische Mathematik, v.134, n.2, 2016

