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valeria@dm.unibo.it

1



The Problem

Approximation to the solution x∗ of

Ax = b

with

⋆ A ∈ R
n×m, n ≤ m

⋆ b ∈ range(A)

Given x(0), generate sequence

{x(0),x(1),x(2), . . .}, x(k) → x∗

• We start with n = m (A square)

• The solution of Ax ≤ b will also be considered
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Projection Methods

Ax = b

Choose K such that

x(k) ∈ K, x(k) ≈ x∗

Various alternatives for K:

Generate sequence of Kk ⊂ Kk+1 and impose a global optimality

condition. E.g.

r(k) = b − Ax(k) ⊥ Kk, k = 1, 2, . . .

(Krylov subspace methods...)

Fix large space K with x∗ ∈ K and select sequence of x(k) satisfying

a local optimality condition.

(Stationary iterative methods...)
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Geometric derivation. I

A simplified case. n = 2

Ax = b





a1,1x1 + a1,2x2 = b1

a2,1x1 + a2,2x2 = b2

S1 = {x ∈ R
2 : a1,1x1 + a1,2x2 = b1}

S2 = {x ∈ R
2 : a2,1x1 + a2,2x2 = b2}

⇒ x = S1 ∩ S2
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Geometric derivation. II

Initial guess x(0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(0)

S
2

S
1

x*

7



Geometric derivation. II
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Convergence
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Linear Convergence. But

The more orthogonal the rows of A, the faster
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Convergence
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Note: Convergence depends on spectral radius of sum of scaled proj’s.
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Family of Methods

• Kaczmarz method (1937)

• Row Projection Methods (see, e.g., R.Bramley)

• ART (Algebraic reconstruction techniques)

• POCS (Projection onto convex sets)

T. Nikazad, Ph.D. Thesis (2008) - cf. T. Elfving.
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Algebraic derivation. I

For simplicity of exposition (no loss of generality):

A =





aT
1

aT
2

. . .



 rows have unit length

⇒ aia
T
i = Pi Orthogonal Projector

Given initial guess x(0), r(0) = Ax(0) − b,

yi = x(0) − 2Pix
(0)

x(k+1) = ω1y1 + ω2y2

= x(k) − 2P1ω1(x
(k) − x∗) − 2P2ω2(x

(k) − x∗)

with ω1 + ω2 = 1.
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Algebraic derivation. II

Assume ω1 = ω2 ≡ ω:

x(k+1) = x(k) − 2P1ω1(x
(k) − x∗) − 2P2ω2(x

(k) − x∗)

= x(k) − 2ωa1a
T
1 (x(k) − x∗) − 2ωa2a

T
2 (x(k) − x∗)

= x(k) − 2ω(a1,a2)



 aT
1 (x(k) − x∗)

aT
2 (x(k) − x∗)





= x(k) − 2ωAT A(x(k) − x∗)︸ ︷︷ ︸
Ax(k)

−b

= x(k) − 2ωAT r(k)

17



A Projection method

x(k+1) = x(k) − 2ωAT r(k), k = 0, 1, 2, . . .

r(k+1) = Ax(k+1) − b

⇒ x(k+1) − x(k) ∈ range(AT )

• range(AT ) contains the exact solution x∗

• But: No global constraint imposed ⇒ iterative process
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Features and Accelerations

• Linear convergence (with no further hypotheses)

Block version: Projection onto groups of rows
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⇒ Reordering strategies particularly good for A of small bandwidth

Acceleration Procedures acting on λk, Ω = diag(ω1, . . . , ωn)

x(k+1) = x(k) − 2λkA
T Ω−1r(k), k = 0, 1, 2, . . .

0 < ǫ1 ≤ λk ≤ 2 − ǫ2

Acceleration Procedures: Conjugate Gradient iteration within the

block method
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Important generalizations

⋆ Rectangular case: Ax = b, A ∈ R
n×m, n < m

⋆ Nonlinear equations: F (x) = 0

⋆ Inequalities: Ax ≤ b, x ≥ 0, A ∈ R
n×m, n < m

⋆ Singular (semidefinite) system: convergence to a weighted

least-squares solution that minimizes the weighted sum of the

squares distances to the hyperplanes)

⋆ Ill-posed Problems
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A popular application field

e.g., Censor etal (1980’s and later). Jiang & Wang (2001 and later)

Application. radiation therapy treatment planning

Math. Problem. Inverse radiation scattering / Image reconstruction:

Find x s.t. b̂ ≤ Ax ≤ b, x ≥ 0

where

n no. 2D grid points; m no. basis radiation intensity grid points

A = (ai,j) ∈ R
n×m, dose of radiation at the jth grid point for the ith

intensity distribution grid point

b, b̂ permitted and required doses in the patient’s cross section

x acceptable radiation intensity (the feasible solution

→ Convex Feasibility Problem)
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A popular application field

e.g., Censor etal (1980’s and later). Jiang & Wang (2001 and later)

Application. radiation therapy treatment planning

Math. Problem. Inverse radiation scattering / Image reconstruction:

Find x s.t. b̂ ≤ Ax ≤ b, x ≥ 0

Features:

• A ∈ R
n×m, n ≫ m

• Not all rows of A available at the same time

• A with small bandwidth

(only neighboring rays intersect the same pixels)
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Perspectives

• Combination of Optimal Projection methods and Geometric

approaches

Some examples in literature. Connection to normal equation

AT Ax = AT b

• Acceleration techniques for inequalities

• Strategies for cases of rows of A’s upgrading

26


