Cimmino's method and the next generation of iterative solvers

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it

The Problem

Approximation to the solution x^{*} of

$$
A x=b
$$

with
$\star \mathbf{A} \in \mathbb{R}^{n \times m}, n \leq m$
$\star \mathbf{b} \in \operatorname{range}(\mathbf{A})$

Given $\mathbf{x}^{(0)}$, generate sequence

$$
\left\{\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots\right\}, \quad \mathbf{x}^{(k)} \rightarrow \mathbf{x}^{*}
$$

- We start with $n=m$ (\mathbf{A} square)
- The solution of $\mathbf{A x} \leq \mathbf{b}$ will also be considered

Projection Methods

$$
\mathrm{Ax}=\mathrm{b}
$$

Choose \mathcal{K} such that

$$
\mathbf{x}^{(k)} \in \mathcal{K}, \quad \mathbf{x}^{(k)} \approx \mathrm{x}^{*}
$$

Projection Methods

$$
\mathbf{A} \mathbf{x}=\mathbf{b}
$$

Choose \mathcal{K} such that

$$
\mathbf{x}^{(k)} \in \mathcal{K}, \quad \mathbf{x}^{(k)} \approx \mathbf{x}^{*}
$$

Various alternatives for \mathcal{K} :

- Generate sequence of $\mathcal{K}_{k} \subset \mathcal{K}_{k+1}$ and impose a global optimality condition. E.g.

$$
\mathbf{r}^{(k)}=\mathbf{b}-\mathbf{A} \mathbf{x}^{(k)} \perp \mathcal{K}_{k}, \quad k=1,2, \ldots
$$

(Krylov subspace methods...)

Projection Methods

$$
\mathbf{A x}=\mathbf{b}
$$

Choose \mathcal{K} such that

$$
\mathbf{x}^{(k)} \in \mathcal{K}, \quad \mathbf{x}^{(k)} \approx \mathbf{x}^{*}
$$

Various alternatives for \mathcal{K} :

- Generate sequence of $\mathcal{K}_{k} \subset \mathcal{K}_{k+1}$ and impose a global optimality condition. E.g.

$$
\mathbf{r}^{(k)}=\mathbf{b}-\mathbf{A} \mathbf{x}^{(k)} \perp \mathcal{K}_{k}, \quad k=1,2, \ldots
$$

(Krylov subspace methods...)

- Fix large space \mathcal{K} with $\mathbf{x}^{*} \in \mathcal{K}$ and select sequence of $\mathbf{x}^{(k)}$ satisfying a local optimality condition.
(Stationary iterative methods...)

Geometric derivation. I

A simplified case. $n=2$

$$
\mathbf{A x}=\mathbf{b} \quad\left\{\begin{array}{l}
a_{1,1} x_{1}+a_{1,2} x_{2}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}=b_{2}
\end{array}\right.
$$

$\mathcal{S}_{1}=\left\{\mathbf{x} \in \mathbb{R}^{2}: a_{1,1} x_{1}+a_{1,2} x_{2}=b_{1}\right\}$
$\mathcal{S}_{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: a_{2,1} x_{1}+a_{2,2} x_{2}=b_{2}\right\}$

$$
\Rightarrow \quad \mathrm{x}=\mathcal{S}_{1} \cap \mathcal{S}_{2}
$$

Geometric derivation. II
Initial guess $\mathbf{x}^{(0)}$

Convergence

Convergence

Convergence

Linear Convergence. But
The more orthogonal the rows of \mathbf{A}, the faster
Note: Convergence depends on spectral radius of sum of scaled proj's.

Family of Methods

- Kaczmarz method (1937)
- Row Projection Methods (see, e.g., R.Bramley)
- ART (Algebraic reconstruction techniques)
- POCS (Projection onto convex sets)
T. Nikazad, Ph.D. Thesis (2008) - cf. T. Elfving.

Algebraic derivation. I

For simplicity of exposition (no loss of generality):
$\mathbf{A}=\left(\begin{array}{c}\mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \cdots\end{array}\right)$ rows have unit length
$\Rightarrow \mathbf{a}_{i} \mathbf{a}_{i}^{T}=\mathcal{P}_{i} \quad$ Orthogonal Projector

Algebraic derivation. I

For simplicity of exposition (no loss of generality):

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\mathbf{a}_{2}^{T} \\
\ldots
\end{array}\right) \text { rows have unit length }
$$

$\Rightarrow \mathbf{a}_{i} \mathbf{a}_{i}^{T}=\mathcal{P}_{i} \quad$ Orthogonal Projector
Given initial guess $\mathbf{x}^{(0)}, \mathbf{r}^{(0)}=A \mathbf{x}^{(0)}-\mathbf{b}$,

$$
\begin{gathered}
\mathbf{y}_{i}=\mathbf{x}^{(0)}-2 \mathcal{P}_{i} \mathbf{x}^{(0)} \\
\mathbf{x}^{(k+1)}=\omega_{1} \mathbf{y}_{1}+\omega_{2} \mathbf{y}_{2} \\
=\mathbf{x}^{(k)}-2 \mathcal{P}_{1} \omega_{1}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)-2 \mathcal{P}_{2} \omega_{2}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)
\end{gathered}
$$

with $\omega_{1}+\omega_{2}=1$.

Algebraic derivation. II
Assume $\omega_{1}=\omega_{2} \equiv \omega$:

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{x}^{(k)}-2 \mathcal{P}_{1} \omega_{1}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)-2 \mathcal{P}_{2} \omega_{2}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right) \\
& =\mathbf{x}^{(k)}-2 \omega \mathbf{a}_{1} \mathbf{a}_{1}^{T}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)-2 \omega \mathbf{a}_{2} \mathbf{a}_{2}^{T}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right) \\
& =\mathbf{x}^{(k)}-2 \omega\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)\binom{\mathbf{a}_{1}^{T}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)}{\mathbf{a}_{2}^{T}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)} \\
& =\mathbf{x}^{(k)}-2 \omega \mathbf{A}^{T} \underbrace{\mathbf{A}\left(\mathbf{x}^{(k)}-\mathbf{x}^{*}\right)}_{\mathbf{A x}(k)-\mathbf{b}}=\mathbf{x}^{(k)}-2 \omega \mathbf{A}^{T} \mathbf{r}^{(k)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A Projection method } \\
& \mathbf{x}^{(k+1)}= \mathbf{x}^{(k)}-2 \omega \mathbf{A}^{T} \mathbf{r}^{(k)}, \quad k=0,1,2, \ldots \\
& \mathbf{r}^{(k+1)}= \mathbf{A} \mathbf{x}^{(k+1)}-\mathbf{b} \\
& \Rightarrow \quad \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)} \in \operatorname{range}\left(\mathbf{A}^{T}\right)
\end{aligned}
$$

- range $\left(\mathbf{A}^{T}\right)$ contains the exact solution \mathbf{x}^{*}
- But: No global constraint imposed \Rightarrow iterative process

Features and Accelerations

- Linear convergence (with no further hypotheses)

Features and Accelerations

- Linear convergence (with no further hypotheses)
- Block version: Projection onto groups of rows
$\mathbf{A}=\left(\begin{array}{l}\mathbf{A}_{1}^{T} \\ \mathbf{A}_{2}^{T} \\ \vdots \\ \mathbf{A}_{j}^{T}\end{array}\right) \quad$ (parallelism, data locality)
\Rightarrow Reordering strategies particularly good for \mathbf{A} of small bandwidth

Features and Accelerations

- Linear convergence (with no further hypotheses)
- Block version: Projection onto groups of rows

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{A}_{1}^{T} \\
\mathbf{A}_{2}^{T} \\
:
\end{array}\right) \quad \text { (parallelism, data locality) }
$$

\Rightarrow Reordering strategies particularly good for A of small bandwidth

- Acceleration Procedures acting on $\lambda_{k}, \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right)$

$$
\begin{aligned}
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-2 \lambda_{k} \mathbf{A}^{T} \Omega^{-1} \mathbf{r}^{(k)}, \quad k=0,1,2, \ldots \\
0<\epsilon_{1} \leq \lambda_{k} \leq 2-\epsilon_{2}
\end{aligned}
$$

Features and Accelerations

- Linear convergence (with no further hypotheses)
- Block version: Projection onto groups of rows

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{A}_{1}^{T} \\
\mathbf{A}_{2}^{T} \\
:
\end{array}\right) \quad \text { (parallelism, data locality) }
$$

\Rightarrow Reordering strategies particularly good for \mathbf{A} of small bandwidth

- Acceleration Procedures acting on $\lambda_{k}, \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right)$

$$
\begin{aligned}
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-2 \lambda_{k} \mathbf{A}^{T} \Omega^{-1} \mathbf{r}^{(k)}, \quad k=0,1,2, \ldots \\
0<\epsilon_{1} \leq \lambda_{k} \leq 2-\epsilon_{2}
\end{aligned}
$$

- Acceleration Procedures: Conjugate Gradient iteration within the block method

Important generalizations

\star Rectangular case: $\quad \mathbf{A x}=\mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{n \times m}, n<m$

* Nonlinear equations: $\quad F(\mathbf{x})=\mathbf{0}$

夫 Inequalities: $\quad \mathbf{A x} \leq \mathbf{b}, \quad \mathbf{x} \geq 0, \quad \mathbf{A} \in \mathbb{R}^{n \times m}, n<m$

* Singular (semidefinite) system: convergence to a weighted least-squares solution that minimizes the weighted sum of the squares distances to the hyperplanes)
* III-posed Problems

A popular application field
e.g., Censor etal (1980's and later). Jiang \& Wang (2001 and later) Application. radiation therapy treatment planning Math. Problem. Inverse radiation scattering / Image reconstruction:

$$
\text { Find } \mathbf{x} \text { s.t. } \quad \widehat{\mathbf{b}} \leq \mathbf{A} \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq 0
$$

where
n no. 2D grid points; m no. basis radiation intensity grid points $\mathbf{A}=\left(a_{i, j}\right) \in \mathbb{R}^{n \times m}$, dose of radiation at the j th grid point for the i th intensity distribution grid point
$\mathbf{b}, \widehat{\mathbf{b}}$ permitted and required doses in the patient's cross section
\mathbf{x} acceptable radiation intensity (the feasible solution
\rightarrow Convex Feasibility Problem)

A popular application field
e.g., Censor etal (1980's and later). Jiang \& Wang (2001 and later) Application. radiation therapy treatment planning
Math. Problem. Inverse radiation scattering / Image reconstruction:

$$
\text { Find } \mathbf{x} \text { s.t. } \quad \widehat{\mathbf{b}} \leq \mathbf{A} \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq 0
$$

Features:

- $\mathbf{A} \in \mathbb{R}^{n \times m}, n \gg m$
- Not all rows of \mathbf{A} available at the same time
- A with small bandwidth
(only neighboring rays intersect the same pixels)

Perspectives

- Combination of Optimal Projection methods and Geometric approaches

Some examples in literature. Connection to normal equation $\mathbf{A}^{T} \mathbf{A x}=\mathbf{A}^{T} \mathbf{b}$

- Acceleration techniques for inequalities
- Strategies for cases of rows of A's upgrading

