On the numerical solution of certain linear multiterm matrix equations

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

The matrix equation problem

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix
Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

The matrix equation problem

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

Multiterm linear matrix equation. Classical device

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Kronecker formulation

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \quad \Leftrightarrow \quad \mathcal{A} \boldsymbol{x}=c
$$

with $c=\operatorname{vec}(C), \boldsymbol{x}=\operatorname{vec}(\boldsymbol{X})$.
Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : $M \otimes P=\left[\begin{array}{ccc}m_{11} P & \ldots & m_{1 n} P \\ \vdots & \ddots & \vdots \\ m_{n 1} P & \ldots & m_{n n} P\end{array}\right]$ and $\operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)$

Multiterm linear matrix equation. Classical device

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Kronecker formulation

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \quad \Leftrightarrow \quad \mathcal{A} \boldsymbol{x}=c
$$

with $c=\operatorname{vec}(C), \boldsymbol{x}=\operatorname{vec}(\boldsymbol{X})$.

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

$$
\text { Kronecker product : } \quad M \otimes P=\left[\begin{array}{ccc}
m_{11} P & \ldots & m_{1 n} P \\
\vdots & \ddots & \vdots \\
m_{n 1} P & \ldots & m_{n n} P
\end{array}\right] \text { and } \operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)
$$

Applications:
Control
Deterministic and stochastic, and time dependent PDEs
Inverse problems and optimization

Multiterm linear matrix equation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Alternative approaches to the Kronecker form:

- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

A sample of these methodologies on different problems:
\& Stochastic PDE
\& PDEs on polygonal domains
\& All-at-once PDE-constrained optimization problem
\& Bilinear control problems

Multiterm linear matrix equation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Alternative approaches to the Kronecker form:

- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

A sample of these methodologies on different problems:
\& Stochastic PDE
\& PDEs on polygonal domains
\& All-at-once PDE-constrained optimization problem
\& Bilinear control problems
of

Some elementary cases

We consider

$$
A \boldsymbol{X}+\boldsymbol{X} B+\sigma_{j} \boldsymbol{X}=C, \quad j=1, \ldots, s
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$
Solution strategies

Some elementary cases

We consider

$$
A \boldsymbol{X}+\boldsymbol{X} B+\sigma_{j} \boldsymbol{X}=C, \quad j=1, \ldots, s
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$

Solution strategies

Consider, e.g., $\left(A+\sigma_{j} l\right) \boldsymbol{X}+\boldsymbol{X} B=C$

- Small scale:
(Bartels-Stewart method)
- Schur decompositions: $A=Q R Q^{*}, B^{*}=U S U^{*}$
- For each j, solve $\left.\left(R+\sigma_{j} I\right)\left(Q^{*} \boldsymbol{X} U\right)+Q^{*} \boldsymbol{X} U\right) S^{*}=Q^{*} C U$
- Large scale: with $m \approx n$
- Construct approximation spaces with A and B - Solve a distinct projected problem for each σ_{j}

Some elementary cases

We consider

$$
A \boldsymbol{X}+\boldsymbol{X} B+\sigma_{j} \boldsymbol{X}=C, \quad j=1, \ldots, s
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$

Solution strategies

Consider, e.g., $\left(A+\sigma_{j} l\right) \boldsymbol{X}+\boldsymbol{X} B=C$

- Small scale:
(Bartels-Stewart method)
- Schur decompositions: $A=Q R Q^{*}, B^{*}=U S U^{*}$
- For each j, solve $\left.\left(R+\sigma_{j} I\right)\left(Q^{*} \boldsymbol{X} U\right)+Q^{*} \boldsymbol{X} U\right) S^{*}=Q^{*} C U$
- Large scale: with $m \approx n$
- Construct approximation spaces with A and B
- Solve a distinct projected problem for each σ_{j}

A special multiterm problem. 1

Let

$$
A \boldsymbol{X}+\boldsymbol{X} B+f(\boldsymbol{X}) M=C
$$

with $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ a linear function
Closed form solution
Let Z_{1}, Z_{2} be the solutions to the Sylvester equations $A Z+Z B=C$ and $A Z+Z B=M$, respectively. Assume that $1+f\left(Z_{2}\right) \neq 0$. Then the solution to (\bullet) is given by

$$
\boldsymbol{X}=Z_{1}-\alpha Z_{2}, \quad \alpha=\frac{f\left(Z_{1}\right)}{1+f\left(Z_{2}\right)}
$$

A special multiterm problem. 1

Let

$$
A \boldsymbol{X}+\boldsymbol{X} B+f(\boldsymbol{X}) M=C
$$

with $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ a linear function

Closed form solution:

Let Z_{1}, Z_{2} be the solutions to the Sylvester equations $A Z+Z B=C$ and $A Z+Z B=M$, respectively. Assume that $1+f\left(Z_{2}\right) \neq 0$. Then the solution to (\bullet) is given by

$$
\boldsymbol{X}=Z_{1}-\alpha Z_{2}, \quad \alpha=\frac{f\left(Z_{1}\right)}{1+f\left(Z_{2}\right)}
$$

A special multiterm problem. 2

Some samples:

1. $\boldsymbol{A} \boldsymbol{X}+\boldsymbol{X} B+\operatorname{trace}(\boldsymbol{X}) M=\boldsymbol{C}$. Then

$$
\boldsymbol{X}=Z_{1}-\alpha Z_{2}, \quad \alpha=\frac{\operatorname{trace}\left(Z_{1}\right)}{1+\operatorname{trace}\left(Z_{2}\right)}
$$

2. $A \boldsymbol{X}+\boldsymbol{X} B+\left(v^{\top} \boldsymbol{X} u\right) M=\boldsymbol{C}$. Then

A special multiterm problem. 2

Some samples:

1. $\boldsymbol{A} \boldsymbol{X}+\boldsymbol{X} B+\operatorname{trace}(\boldsymbol{X}) M=\boldsymbol{C}$. Then

$$
\boldsymbol{X}=Z_{1}-\alpha Z_{2}, \quad \alpha=\frac{\operatorname{trace}\left(Z_{1}\right)}{1+\operatorname{trace}\left(Z_{2}\right)}
$$

2. $A \boldsymbol{X}+\boldsymbol{X} B+\left(v^{\top} \boldsymbol{X} u\right) M=C$. Then

$$
\boldsymbol{X}=Z_{1}-\alpha Z_{2}, \quad \alpha=\frac{v^{\top} Z_{1} u}{1+v^{\top} Z_{2} u}
$$

A special multiterm problem. 3

\Rightarrow The approach solves a seemingly unrelated problem
Let

$$
A \boldsymbol{X}+\boldsymbol{X} B+M_{1} \boldsymbol{X} M_{2}=C, \quad M_{1}, M_{2} \text { rank-one matrices }
$$

Letting $M_{i}=u_{i} v_{i}{ }^{T}, i=1,2$, then

$$
M_{1} \boldsymbol{X} M_{2}=u_{1} v_{1}^{T} \boldsymbol{X} u_{2} v_{2}^{T}=\left(v_{1}^{T} \boldsymbol{X} u_{2}\right) u_{1} v_{2}^{T} \equiv f(\boldsymbol{X}) M
$$

\& The closed form is just the (vector) Sherman-Morrison formula in disguise

Current generalizations

- Multiterm case

$$
A \boldsymbol{X}+\boldsymbol{X} B+f_{1}(\boldsymbol{X}) M_{1}+\ldots+f_{\ell}(\boldsymbol{X}) M_{\ell}=C
$$

with $f_{j}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}, j=1, \ldots, \ell$ linear functions

Nonlinear case

$$
A \boldsymbol{X}+\boldsymbol{X} B+f(\boldsymbol{X}) M=C
$$

with $f(\boldsymbol{X})=g(\phi(\boldsymbol{X}))$, where ϕ is a real valued linear function, and g real function. (work in progress)

Current generalizations

- Multiterm case

$$
A \boldsymbol{X}+\boldsymbol{X} B+f_{1}(\boldsymbol{X}) M_{1}+\ldots+f_{\ell}(\boldsymbol{X}) M_{\ell}=C
$$

with $f_{j}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}, j=1, \ldots, \ell$ linear functions

- Nonlinear case

$$
A \boldsymbol{X}+\boldsymbol{X} B+f(\boldsymbol{X}) M=C
$$

with $f(\boldsymbol{X})=g(\phi(\boldsymbol{X}))$, where ϕ is a real valued linear function, and g real function. (work in progress)
(joint work with Margherita Porcelli, Università di Bologna)

Multiterm low-rank linear matrix equation

Consider

$$
A \boldsymbol{X}+\boldsymbol{X} A^{T}+M \boldsymbol{X} M^{T}=C, \quad M=U V^{T}
$$

$U, V \in \mathbb{R}^{n \times s}$ (without loss of generality, we consider this simplified form)
Let $\mathcal{U}=U \otimes U, \mathcal{V}=V \otimes V$. Then

$$
M X M^{T}=U V^{T} X V U^{T}
$$

\qquad

Multiterm low-rank linear matrix equation

Consider

$$
A \boldsymbol{X}+\boldsymbol{X} A^{T}+M \boldsymbol{X} M^{T}=C, \quad M=U V^{T}
$$

$U, V \in \mathbb{R}^{n \times s}$ (without loss of generality, we consider this simplified form)
Let $\mathcal{U}=U \otimes U, \mathcal{V}=V \otimes V$. Then

$$
M X M^{T}=U V^{\top} \boldsymbol{X} V U^{T} \quad \rightarrow \mathcal{U} \mathcal{V}^{\top} \boldsymbol{x}
$$

Setting $\mathcal{A}=A \otimes I+I \otimes A$, then (\bullet) becomes

$$
\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right) \boldsymbol{x}=c, \quad c=\operatorname{vec}(C)
$$

Sherman-Morrison-Woodbury (vector) formula:
(joint work with Yue Hao, Lanzhou University, China)

Multiterm low-rank linear matrix equation

Consider

$$
A \boldsymbol{X}+\boldsymbol{X} A^{T}+M \boldsymbol{X} M^{T}=C, \quad M=U V^{T}
$$

$U, V \in \mathbb{R}^{n \times s}$ (without loss of generality, we consider this simplified form)
Let $\mathcal{U}=U \otimes U, \mathcal{V}=V \otimes V$. Then

$$
M X M^{T}=U V^{\top} \boldsymbol{X} V U^{T} \quad \rightarrow \mathcal{U} \mathcal{V}^{T} \boldsymbol{x}
$$

Setting $\mathcal{A}=A \otimes I+I \otimes A$, then (\bullet) becomes

$$
\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right) \boldsymbol{x}=c, \quad c=\operatorname{vec}(C)
$$

Sherman-Morrison-Woodbury (vector) formula:

$$
\boldsymbol{x}=\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right)^{-1} c=\mathcal{A}^{-1} c-\mathcal{A}^{-1} \mathcal{U}\left(I+\mathcal{V}^{\top} \mathcal{A}^{-1} \mathcal{U}\right)^{-1} \mathcal{V}^{\top} \mathcal{A}^{-1} c
$$

(joint work with Yue Hao, Lanzhou University, China)

Sherman-Morrison-Woodbury (vector) formula

$$
\boldsymbol{x}=\mathcal{A}^{-1} c-\mathcal{A}^{-1} \mathcal{U}\left(I+\mathcal{V}^{T} \mathcal{A}^{-1} \mathcal{U}\right)^{-1} \mathcal{V}^{T} \mathcal{A}^{-1} c
$$

Algorithm 0.

1. Solve $\mathcal{A} w=c$
2. Solve $\mathcal{A} p_{j}=u_{j}$ where $\mathcal{U}=\left[\mathrm{u}_{1}, \ldots, \mathrm{u}_{s^{2}}\right]$ to give $\mathcal{P}=\left[\mathrm{p}_{1}, \ldots, \mathrm{p}_{s^{2}}\right]$;
3. Compute $H=I+\mathcal{V}^{T} \mathcal{P} \in \mathbb{R}^{s^{2} \times s^{2}}$
4. Solve $H g=\mathcal{V}^{T} w$
5. Compute $x=w-\mathcal{P g}$

Transforming into matrix-matrix operations:

- Step 1: $w=\mathcal{A}^{-1} c \quad \Leftrightarrow \quad A W+W A^{T}=C$ with $w=\operatorname{vec}(W)$
- Step 2: $\mathcal{U}=\left[\mathrm{u}_{1}, \ldots, \mathrm{u}_{s^{2}}\right]$ with $\mathrm{u}_{t}=u_{k} \otimes u_{i}$ where $t=(k-1) s+i$, hence

$$
\mathrm{p}_{j}=\mathcal{A}^{-1} \mathrm{u}_{j} \quad \Leftrightarrow \quad A P_{j}+P_{j} A^{T}=u_{i} u_{k}^{T}, \quad \mathrm{p}_{j}=\operatorname{vec}\left(P_{j}\right) .
$$

- Step 3: $H=I+\mathcal{V}^{T}\left[p_{1}, \ldots, p_{s^{2}}\right]$ can be written by using

$$
\mathrm{v}_{j}^{\top} \mathcal{A}^{-1} \mathrm{u}_{t}=v_{i}^{\top} P_{t} v_{k}, \quad j=(k-1) s+i
$$

- Step 4:

$$
\mathcal{V}^{T} \mathcal{A}^{-1} c=\left[\begin{array}{c}
v_{1}^{\top} W v_{1} \\
v_{2}^{\top} W v_{1} \\
\vdots \\
v_{s}^{T} W v_{s}
\end{array}\right] .
$$

Generalizations to multiterm low-rank equations

$$
A \boldsymbol{X}+\boldsymbol{X} A^{T}+U_{1} V_{1}^{T} \boldsymbol{x}\left(U_{2} V_{2}^{T}\right)^{T}+U_{3} V_{3}^{T} \boldsymbol{X}\left(U_{4} V_{4}^{T}\right)^{T}=C
$$

With $U_{i}, V_{i}, i=1, \ldots, 4$ low rank (not necessarily the same)
Setting

$$
\mathcal{U}=\left[U_{2} \otimes U_{1}, U_{4} \otimes U_{3}\right] \quad \text { and } \quad \mathcal{V}=\left[V_{2} \otimes V_{1}, V_{4} \otimes V_{3}\right],
$$

we obtain again

$$
\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right) \boldsymbol{x}=c
$$

An experiment with A symmetric and dense

"Direct": Solve $\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right) \boldsymbol{x}=c$ using \backslash
"Matrix form": Use the matrix-oriented Sherman-Morrison formula
"Vectorized form": Use the Kronecker form of the Sherman-Morrison formula

		Direct				Matrix form				Vectorized Form		
n	s_{1} / s_{3}	CPU	Res	Err	CPU	Res	Err	CPU	Res	Err		
40	$3 / 5$	0.08	$1.2 \mathrm{e}-15$	$3.7 \mathrm{e}-12$	0.02	$1.2 \mathrm{e}-14$	$2.1 \mathrm{e}-11$	0.23	$1.2 \mathrm{e}-13$	$3.5 \mathrm{e}-11$		
	$4 / 6$	0.08	$2.2 \mathrm{e}-15$	$5.2 \mathrm{e}-12$	0.02	$6.5 \mathrm{e}-15$	$1.8 \mathrm{e}-11$	0.29	$1.0 \mathrm{e}-12$	$4.8 \mathrm{e}-11$		
	$5 / 7$	0.10	$1.1 \mathrm{e}-15$	$5.7 \mathrm{e}-11$	0.02	$1.1 \mathrm{e}-14$	$1.2 \mathrm{e}-10$	0.37	$4.9 \mathrm{e}-12$	$2.2 \mathrm{e}-10$		
80	$3 / 5$	2.01	$3.4 \mathrm{e}-15$	$3.3 \mathrm{e}-11$	0.02	$5.7 \mathrm{e}-15$	$4.6 \mathrm{e}-11$	6.14	$8.3 \mathrm{e}-13$	$9.4 \mathrm{e}-10$		
	$4 / 6$	2.05	$2.3 \mathrm{e}-15$	$2.8 \mathrm{e}-10$	0.02	$3.3 \mathrm{e}-15$	$1.4 \mathrm{e}-10$	8.19	$3.9 \mathrm{e}-12$	$6.6 \mathrm{e}-10$		
	$5 / 7$	2.00	$2.7 \mathrm{e}-15$	$7.2 \mathrm{e}-11$	0.03	$5.7 \mathrm{e}-14$	$2.0 \mathrm{e}-10$	10.6	$1.5 \mathrm{e}-12$	$1.8 \mathrm{e}-09$		
160	$3 / 5$	85.6	$9.2 \mathrm{e}-15$	$1.5 \mathrm{e}-10$	0.04	$2.4 \mathrm{e}-14$	$3.9 \mathrm{e}-10$	168	$1.6 \mathrm{e}-13$	$9.6 \mathrm{e}-09$		
	$4 / 6$	86.4	$9.0 \mathrm{e}-15$	$1.4 \mathrm{e}-09$	0.05	$7.4 \mathrm{e}-14$	$5.3 \mathrm{e}-09$	211	$3.1 \mathrm{e}-11$	$7.9 \mathrm{e}-08$		
	$5 / 7$	86.9	$6.4 \mathrm{e}-15$	$3.0 \mathrm{e}-10$	0.08	$8.6 \mathrm{e}-14$	$2.3 \mathrm{e}-09$	257	$2.7 \mathrm{e}-12$	$2.0 \mathrm{e}-07$		

An experiment with A symmetric and pentadiagonal

"Direct": Solve $\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right) \boldsymbol{x}=c$ using \backslash
"Matrix form": Use the matrix-oriented Sherman-Morrison formula
"Vectorized form": Use the Kronecker form of the Sherman-Morrison formula

		Direct				Matrix form				Vectorized Form		
U_{1}, U_{3}	n	CPU	Res	Err	CPU	Res	Err	CPU	Res	Err		
non-	40	0.08	$9.1 \mathrm{e}-16$	$3.8 \mathrm{e}-12$	0.02	$4.8 \mathrm{e}-14$	$1.9 \mathrm{e}-11$	0.04	$1.5 \mathrm{e}-12$	$1.1 \mathrm{e}-10$		
orth	80	1.94	$1.1 \mathrm{e}-15$	$5.8 \mathrm{e}-10$	0.02	$3.0 \mathrm{e}-14$	$2.3 \mathrm{e}-10$	0.22	$1.7 \mathrm{e}-11$	$2.6 \mathrm{e}-09$		
	160	85.1	$5.9 \mathrm{e}-15$	$9.2 \mathrm{e}-09$	0.04	$2.5 \mathrm{e}-13$	$1.9 \mathrm{e}-08$	1.24	$1.5 \mathrm{e}-10$	$7.4 \mathrm{e}-08$		
	320	-	-	-	0.08	$1.4 \mathrm{e}-12$	$5.0 \mathrm{e}-08$	6.64	$8.3 \mathrm{e}-11$	$4.8 \mathrm{e}-06$		
orth	40	0.08	$3.2 \mathrm{e}-15$	$8.9 \mathrm{e}-14$	0.02	$1.8 \mathrm{e}-15$	$1.1 \mathrm{e}-14$	0.04	$2.6 \mathrm{e}-16$	$9.9 \mathrm{e}-15$		
	80	1.88	$6.0 \mathrm{e}-15$	$3.2 \mathrm{e}-13$	0.02	$1.7 \mathrm{e}-15$	$2.1 \mathrm{e}-14$	0.18	$1.8 \mathrm{e}-16$	$2.2 \mathrm{e}-14$		
	160	84.8	$1.7 \mathrm{e}-14$	$2.7 \mathrm{e}-12$	0.03	$1.7 \mathrm{e}-15$	$1.6 \mathrm{e}-13$	1.32	$2.5 \mathrm{e}-15$	$3.2 \mathrm{e}-12$		
	320	-	-	-	0.07	$2.0 \mathrm{e}-15$	$3.9 \mathrm{e}-13$	6.81	$1.6 \mathrm{e}-15$	$1.3 \mathrm{e}-12$		

More generalizations

$$
A X+X A^{T}+M \circ X=C, \quad M=U V^{T}
$$

with $U=\left[u_{1}, \ldots, u_{s}\right], V=\left[v_{1}, \ldots, v_{s}\right]$ sparse, ० Hadamard (element-wise) product
\& Using the property:

we obtain

with $\operatorname{diag}\left(u_{i}\right)$, diag $\left(v_{i}\right)$ low rank. The previous procedures can be applied

More generalizations

$$
A X+X A^{T}+M \circ X=C, \quad M=U V^{T}
$$

with $U=\left[u_{1}, \ldots, u_{s}\right], V=\left[v_{1}, \ldots, v_{s}\right]$ sparse, \circ Hadamard (element-wise) product
4. Using the property: $\left(U V^{T}\right) \circ X=\sum_{i=1}^{s} \operatorname{diag}\left(u_{i}\right) X \operatorname{diag}\left(v_{i}\right)$
we obtain

$$
A X+X A^{T}+\sum_{i=1}^{s} \operatorname{diag}\left(u_{i}\right) X \operatorname{diag}\left(v_{i}\right)=C
$$

with $\operatorname{diag}\left(u_{i}\right), \operatorname{diag}\left(v_{i}\right)$ low rank. The previous procedures can be applied

Considerations and conclusions

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

- Many scientific applications now lead to multiterm linear matrix equations
- Multiterm equations give new challenges and are a rich source of solution-brainstorming
- Small scale and large scale require different perspectives, though "small" has a different scale than in the past

REFERENCE

Yue Hao and V. Simoncini, The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications, To appear in Numer. Linear Algebra w/Appl. DOI: 10.1002/nla. 2384

