Universita di Bologna

Convergence properties of preconditioned iterative solvers for saddle point linear systems

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it

Collaboration with D. Szyld, Temple University

The Problem

Given

$$
A x=b
$$

$A \in \mathbb{R}^{n \times n}$ nonsymmetric (in general, already preconditioned)

Derive sufficient conditions for non-stagnation of GMRES-type solvers

That is, whether we can predict that

does not occur!
(31×31 matrix)

Motivation

Complete stagnation is a very unfortunate but rare event Other reasons for studying this problem:

Motivation

Complete stagnation is a very unfortunate but rare event
Other reasons for studying this problem:
Let x_{k} be an approximate solution, and $r_{k}=b-A x_{k}$.

- Partial stagnation phases occur more frequently (staircase slope)
- Bounds of the type

$$
\left\|r_{k+1}\right\| \leq c\left\|r_{k}\right\|, \quad 0<c<1
$$

important whenever c independent of problem parameters
\Rightarrow convergence behavior is not influenced by other model components: $\quad\left\|r_{k}\right\| \leq c^{k}\left\|r_{0}\right\|$
\Rightarrow Crucial to design preconditioning techniques

Elman bound (PhD thesis, 1982)
Let $H=\left(A+A^{T}\right) / 2$

If H is positive definite (i.e. $\lambda_{\min }(H)>0$), then

$$
\left\|r_{k}\right\| \leq\left(1-\frac{\lambda_{\min }^{2}(H)}{\|A\|^{2}}\right)^{\frac{1}{2}}\left\|r_{k-1}\right\|<\left\|r_{k-1}\right\|
$$

so that

$$
\left\|r_{k}\right\| \leq\left(1-\frac{\lambda_{\min }^{2}(H)}{\|A\|^{2}}\right)^{\frac{k}{2}}\left\|r_{0}\right\|
$$

Non-Stagnation and Parameter independence

$$
\left\|r_{k}\right\| \leq\left(1-\frac{\lambda_{\min }^{2}(H)}{\|A\|^{2}}\right)^{\frac{k}{2}}\left\|r_{0}\right\|
$$

If $\lambda_{\min }(H),\|A\|$ independent of parameters (viscosity, meshsize, etc.):

Number of iterations to converge is independent of parameters

- Bound per se is not sharp
- Very much used in certain contexts
(e.g. Domain Decomposition methods, cf. Toselli \& Widlund 2005)

Related and unrelated bounds

After one iteration of a minimal residual method:

$$
\left\|r_{1}\right\|=\sqrt{1-\frac{\left(r_{0}^{T} A r_{0}\right)^{2}}{\left\|A r_{0}\right\|^{2}\left\|r_{0}\right\|^{2}}}\left\|r_{0}\right\|
$$

...true stagnation is very unlikely !

Related and unrelated bounds

After one iteration of a minimal residual method:

$$
\left\|r_{1}\right\|=\sqrt{1-\frac{\left(r_{0}^{T} A r_{0}\right)^{2}}{\left\|A r_{0}\right\|^{2}\left\|r_{0}\right\|^{2}}}\left\|r_{0}\right\|
$$

...true stagnation is very unlikely!

- Characterization of matrices which lead to complete stagnation (Zavorin etal. 2003)
- Some improvements over this bound for diag.ble/nondiag.ble matrices
(Eisenstat etal. '83, Greenbaum '97, Saad '03, Liesen '00, Freund '90, ...)
- Different bounds, using $\mathcal{F}(A) \subset \mathbb{C}^{+}$
(Eiermann \& Ernst '01, Greenbaum '97, Starke '97)
- Additional results for A normal (s.t. $A A^{T}=A^{T} A$)

The new non-stagnation condition

Grcar tr' 89 :

Let q_{k} be polynomial with $q_{k}(0)=0$. If $\frac{1}{2}\left(q_{k}(A)+q_{k}(A)^{T}\right)>0$ then

$$
\left\|r_{k}\right\| \leq\left(1-\frac{\theta_{\min }^{2}}{\left\|q_{k}(A)\right\|^{2}}\right)^{\frac{1}{2}}\left\|r_{0}\right\| \quad \theta_{\min }=\lambda_{\min }\left(\frac{1}{2}\left(q_{k}(A)+q_{k}(A)^{T}\right)\right)
$$

Finding such a q_{k} is not simple!

The new non-stagnation condition

Grcar tr'89:

Let q_{k} be polynomial with $q_{k}(0)=0$. If $\frac{1}{2}\left(q_{k}(A)+q_{k}(A)^{T}\right)>0$ then

$$
\left\|r_{k}\right\| \leq\left(1-\frac{\theta_{\min }^{2}}{\left\|q_{k}(A)\right\|^{2}}\right)^{\frac{1}{2}}\left\|r_{0}\right\| \quad \theta_{\min }=\lambda_{\min }\left(\frac{1}{2}\left(q_{k}(A)+q_{k}(A)^{T}\right)\right)
$$

Finding such a q_{k} is not simple!

We reverse the problem:

We fix $q_{k}(t)=t^{k}, k=2,4$ and determine conditions on A such that Grcar's result can be applied

Sufficient condition

For $q_{k}(t)=t^{k}, k=2$:
If A is such that Grcar's result holds, then GMRES cannot stagnate for more than $k-1=1$ consecutive iterations
(Similar for $k=4$)

Note: Also relevant for restarted GMRES

DEF. M is positive definite if $\frac{1}{2}\left(M+M^{T}\right)>0$

Restatement of the problem:
Find conditions on A so that $q_{2}(A)=A^{2}$ is positive definite

The new conditions

Let $H=\frac{1}{2}\left(A+A^{T}\right), S=\frac{1}{2}\left(A-A^{T}\right)$.

1. If H is nonsingular, then A^{2} is positive definite if and only if

$$
\left\|S H^{-1}\right\|<1
$$

2. If S is nonsingular, then A^{2} is negative definite if and only if

$$
\left\|H S^{-1}\right\|<1
$$

The new conditions

Let $H=\frac{1}{2}\left(A+A^{T}\right), S=\frac{1}{2}\left(A-A^{T}\right)$.

1. If H is nonsingular, then A^{2} is positive definite if and only if

$$
\left\|S H^{-1}\right\|<1
$$

2. If S is nonsingular, then A^{2} is negative definite if and only if

$$
\left\|H S^{-1}\right\|<1
$$

$$
\left\|r_{2}\right\| \leq\left(1-\frac{\theta_{\min }^{2}}{\left\|A^{2}\right\|^{2}}\right)^{\frac{1}{2}}\left\|r_{0}\right\| \quad \theta_{\min }=\lambda_{\min }\left(\frac{1}{2}\left(A^{2}+\left(A^{2}\right)^{T}\right)\right)>0
$$

The same relation holds at every other iteration

A simple Sufficient condition

H "dominates" S :

If $\min _{i}\left|\lambda_{i}(H)\right|>\max _{j}\left|\lambda_{j}(S)\right|$, then A^{2} is positive definite
(A corresponding result for A^{2} negative definite)

The $k=4$ case
Let $H=\frac{1}{2}\left(A+A^{T}\right), S=\frac{1}{2}\left(A-A^{T}\right)$.

1. If $H^{2}+S^{2}$ is nonsingular, then A^{4} is positive definite if and only if

$$
\left\|(H S+S H)\left(H^{2}+S^{2}\right)^{-1}\right\|<1
$$

2. If $H S+S H$ is nonsingular, then A^{4} is negative definite if and only if

$$
\left\|\left(H^{2}+S^{2}\right)(H S+S H)^{-1}\right\|<1
$$

* One could continue with higher powers, but
\star There may be other polynomials $q_{k}(t)$ such that Grcar's result applies

Some Examples

FD discretization of:

$$
L(u)=-\left(\alpha u_{x_{1}}\right)_{x_{1}}-\left(\beta u_{x_{2}}\right)_{x_{2}}+\gamma u_{x_{1}}+\delta u_{x_{2}}-\eta u
$$

$\operatorname{size}(A)=1600 . \quad \eta=100$.

α	β	γ	δ	$\lambda_{\min }(H)$	$\left\\|S H^{-1}\right\\|$
$\exp \left(-x_{1} x_{2}\right)$	$\exp \left(x_{1} x_{2}\right)$	-1	-1	-0.04719	0.6194
1	1	$-1 /\left(.1 x_{1}+100 x_{2}\right)$	0	-0.04775	0.1577
1	1	$1 / 10\left(x_{1}-x_{2}\right)$	0	-0.04772	0.1838
1	1	$1 / 10\left(x_{1}+x_{2}\right)$	0	-0.04772	0.5819
1	1	0.2	0	-0.04781	0.5811

Navier-Stokes problem. Flow over a backward facing step
IFISS Package (Elman, Ramage, Silvester)
Oseen Problem. Uniform grid, Q1-P0 elements, F nonsymmetric

Augmentation block diagonal preconditioning:

$$
\mathcal{A}=\left[\begin{array}{cc}
F & B^{T} \\
B & -\beta C
\end{array}\right] \quad \mathcal{P}=\left[\begin{array}{ll}
F+B^{T} \tilde{C}^{-1} B & \\
& \tilde{C}
\end{array}\right]
$$

Spectrum of $\mathcal{A} \mathcal{P}^{-1}$ tends to cluster around $\lambda=1, \lambda=-1$ (Cao, 2008)

Spectrum and condition

$$
\begin{aligned}
& n=418, m=176,\left\|S H^{-1}\right\|=0.99856<1 \\
& n=1538, m=704,\left\|S H^{-1}\right\|=0.99568<1
\end{aligned}
$$

Stokes Problem. Channel domain
IFISS Package (Elman, Ramage, Silvester)
uniform grid, Q1-P0 elements, M symmetric

Nonsymmetric Preconditioning (cf. Elman, Silvester \& Wathen '05):

$$
\mathcal{A}=\left[\begin{array}{cc}
M & B^{T} \\
B &
\end{array}\right], \quad \mathcal{P}=\left[\begin{array}{cc}
M & B^{T} \\
& G
\end{array}\right], \quad G \approx B M^{-1} B
$$

Spectrum of $\mathcal{A P}^{-1}$ tends to cluster around $\lambda=1,-1$

Symmetric Saddle-Point type Problem

Nonsymmetric version (cf. survey: Benzi, Golub \& Liesen '05):

$$
\mathcal{A}_{-}=\left[\begin{array}{cc}
\mu I & B^{T} \\
-B & 0
\end{array}\right], \quad \mu>0
$$

Spectrum of \mathcal{A}_{-}is in \mathbb{C}^{+}, but $\frac{1}{2}\left(\mathcal{A}_{-}+\mathcal{A}_{-}^{T}\right) \geq 0$

Spectrum and condition

$\mu=1 \quad \Lambda(H)=[0,1]$
$n=1272, m=816,\left\|(H S+S H)\left(H^{2}+S^{2}\right)^{-1}\right\|=0.7856<1$

Conclusions

- New conditions for non-stagnation:

Useful to establish parameter independence

- Possibility to extend the result

Reference
V. Simoncini and Daniel B. Szyld

New conditions for non-stagnation of minimal residual methods
Numerische Mathematik, v. 109, n. 3 (2008), pp. 477-487

