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The Problem

Given

Ax = b

A ∈ R
n×n nonsymmetric (in general, already preconditioned)

Derive sufficient conditions for non-stagnation of GMRES-type solvers

That is, whether we can predict that
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does not occur! (31 × 31 matrix)

3



Motivation

Complete stagnation is a very unfortunate but rare event

Other reasons for studying this problem:

Let xk be an approximate solution, and rk = b − Axk.

• Partial stagnation phases occur more frequently (staircase slope)

• Bounds of the type

‖rk+1‖ ≤ c‖rk‖, 0 < c < 1

important whenever c independent of problem parameters

⇒ convergence behavior is not influenced by other model

components

⇒ Crucial to design preconditioning techniques
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‖rk+1‖ ≤ c‖rk‖, 0 < c < 1
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Elman bound (PhD thesis, 1982)

Let H = (A + AT )/2

If H is positive definite (i.e. λmin(H) > 0), then

‖rk‖ ≤

(
1 −

λ2
min(H)

‖A‖2

) 1

2

‖rk−1‖< ‖rk−1‖

so that

‖rk‖ ≤

(
1 −

λ2
min(H)

‖A‖2

) k

2

‖r0‖
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Non-Stagnation and Parameter independence

‖rk‖ ≤

(
1 −

λ2
min(H)

‖A‖2

) k

2

‖r0‖

If λmin(H), ‖A‖ independent of parameters (viscosity, meshsize, etc.):

Number of iterations to converge is independent of parameters

• Bound per se is not sharp

• Very much used in certain contexts

(e.g. Domain Decomposition methods, cf. Toselli & Widlund 2005)
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Related and unrelated bounds

After one iteration of a minimal residual method:

‖r1‖ =

√
1 −

(rT
0 Ar0)2

‖Ar0‖2 ‖r0‖2
‖r0‖

...true stagnation is very unlikely !

• Characterization of matrices which lead to complete stagnation

(Zavorin etal. 2003)

• Some improvements over this bound for diag.ble/nondiag.ble

matrices

(Eisenstat etal. ’83, Freund ’90, Greenbaum ’97, Liesen ’00, Saad ’03, ...)

• Different bounds, using F(A) ⊂ C
+

(Greenbaum ’97, Starke ’97, Eiermann & Ernst ’01)

• Additional results for A normal (s.t. AAT = AT A)
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The new non-stagnation condition

Grcar tr’89:

Let qk be polynomial with qk(0) = 0. If 1

2
(qk(A) + qk(A)T ) > 0 then

‖rk‖ ≤

(
1 −

θ2
min

‖qk(A)‖2

) 1

2

‖r0‖ θmin = λmin(
1

2
(qk(A) + qk(A)T ))

Finding such a qk is not simple!

———————–

We reverse the problem:

We fix qk(t) = tk, k = 2, 4 and determine conditions on A such that

Grcar’s result can be applied
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Sufficient condition

For qk(t) = tk, k = 2:

If A is such that Grcar’s result holds, then GMRES cannot stagnate for

more than k − 1 = 1 consecutive iterations

(Similar for k = 4)

Note: Also relevant for restarted GMRES

def. M is positive definite if 1

2
(M + MT ) > 0

Restatement of the problem:

Find conditions on A so that q2(A) = A2 is positive definite
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The new conditions

Let H = 1

2
(A + AT ), S = 1

2
(A − AT ).

1. If H is nonsingular, then A2 is positive definite if and only if

‖SH−1‖ < 1

2. If S is nonsingular, then A2 is negative definite if and only if

‖HS−1‖ < 1

‖r2‖ ≤

(
1 −

θ2
min

‖A2‖2

) k

2

‖r0‖ θmin = λmin(
1

2
(A2 + (A2)T )) > 0

The same relation holds at every other iteration
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A simple Sufficient condition

H “dominates” S:

If mini |λi(H)| > maxj |λj(S)|, then A2 is positive definite

(A corresponding result for A2 negative definite)
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The k = 4 case

Let H = 1

2
(A + AT ), S = 1

2
(A − AT ).

1. If H2 + S2 is nonsingular, then A4 is positive definite if and only if

‖(HS + SH)(H2 + S2)−1‖ < 1

2. If HS + SH is nonsingular, then A4 is negative definite if and

only if

‖(H2 + S2)(HS + SH)−1‖ < 1

⋆ One could continue with higher powers, but ....

⋆ There may be other polynomials qk(t) such that Grcar’s result

applies
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Some Examples

FD discretization of:

L(u) = −(αux1
)x1

− (βux2
)x2

+ γux1
+ δux2

− ηu

size(A) =1600. η = 100.

α β γ δ λmin(H) ‖SH−1‖

exp(−x1x2) exp(x1x2) −1 −1 -0.04719 0.6194

1 1 −1/(.1x1 + 100x2) 0 -0.04775 0.1577

1 1 1/10(x1 − x2) 0 -0.04772 0.1838

1 1 1/10(x1 + x2) 0 -0.04772 0.5819

1 1 0.2 0 -0.04781 0.5811
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Navier-Stokes problem. Flow over a backward facing step

IFISS Package (Elman, Ramage, Silvester)

Oseen Problem. Uniform grid, Q1-P0 elements, F nonsymmetric

Augmentation block diagonal preconditioning:

A =


F BT

B −βC


 P =


F + BT C̃−1B

C̃




Spectrum of AP−1 tends to cluster around λ = 1, λ = −1 (Cao, 2008)
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Spectrum and condition

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

n = 418, m = 176, ‖SH−1‖ = 0.99856< 1
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19



Stokes Problem. Channel domain

IFISS Package (Elman, Ramage, Silvester)

uniform grid, Q1-P0 elements, M symmetric

Nonsymmetric Preconditioning (cf. Elman, Silvester & Wathen ’05):

A =


M BT

B


 , P =


M BT

G


 , G ≈ BM−1B

Spectrum of AP−1 tends to cluster around λ = 1,−1
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Spectrum and condition
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Symmetric Saddle-Point type Problem

Nonsymmetric version (cf. survey: Benzi, Golub & Liesen ’05):

A− =


 µI BT

−B 0


 , µ > 0

Spectrum of A− is in C
+, but 1

2
(A− + AT

−
)≥ 0
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Spectrum and condition
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Conclusions

• New conditions for non-stagnation:

Useful to establish parameter independence

• Possibility to extend the result
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