

Solution of structured algebraic linear systems in PDE-constrained optimization problems

V. Simoncini

Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it

The problem

$$\begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix} \qquad \mathcal{M}x = b$$

- Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Image restoration and registration
- ... Survey: Benzi, Golub and Liesen, Acta Num 2005

The problem

$$\begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix} \qquad \mathcal{M}x = b$$

Hypotheses:

- $\star \ A \in \mathbb{R}^{n \times n}$ symmetric
- $\star~B^{\top} \in \mathbb{R}^{n \times m}$ tall, $m \leq n$
- \star C symmetric positive (semi)definite

More hypotheses later on specific problems...

Application problems for PDE-constrained optimization

Three representative driving settings:

- Constrained magnetostatic problem
- Simplified Optimal Control Problem
- Optimal transport problem

Computational Algebraic Aspects: Battermann, Benzi, Biros, Dollar, Ghattas, Gould, Haber, Heinkenschloss, Herzog, Sachs, Schöberl, Stoll, Wathen, Zulehner, ...

The Magnetostatic problem

(3D) Maxwell equations: $\operatorname{div} \mathbf{B} = 0$ $\operatorname{curl} \mathbf{H} = \mathbf{J}$

Constitutive law: $\mathbf{B} = \mu \mathbf{H}$

(**B** displ. field; **H** magn. field; μ magn. perm.; **J** current dens.)

The Magnetostatic problem

(3D) Maxwell equations: $\operatorname{div} \mathbf{B} = 0$ $\operatorname{curl} \mathbf{H} = \mathbf{J}$

Constitutive law: $\mathbf{B} = \mu \mathbf{H}$

(B displ. field; H magn. field; μ magn. perm.; J current dens.)

Constrained quadratic programming formulation:

$$\min \frac{1}{2} \int_{\Omega} \mu^{-1} |\mathbf{B} - \mu \mathbf{H}|^2 \, dx$$

with $\begin{array}{ll} \mathbf{B} \cdot \mathbf{n} = f_B & \text{on } \Gamma_B & \text{div } \mathbf{B} = 0 \\ \mathbf{H} \wedge \mathbf{n} = \mathbf{f}_H & \text{on } \Gamma_H & \text{curl } \mathbf{H} = \mathbf{J} \end{array}$

boundary conditions are enforced constraints: Lagrange multipliers 3D magnetic field-based mixed formulation

 $\begin{aligned} a(\mathbf{u}, \mathbf{v}) &= (\mathbf{u}, \mathbf{v})_{\mu} \quad \forall \mathbf{u}, \mathbf{v} \in V \\ b(\mathbf{u}, \mathbf{p}) &= (\operatorname{curl} \mathbf{u}, \mathbf{p})_{\mu} \quad \forall \mathbf{u} \in V, \ \forall \mathbf{p} \in Q \ (V \text{ and } Q \text{ properly chosen}) \end{aligned}$

$$a(\mathbf{u}, \mathbf{u}^*) + b(\mathbf{u}^*, \mathbf{p}) = 0 \qquad \qquad \forall \mathbf{u}^* \in V$$

$$b(\mathbf{u}, \mathbf{p}^*) - c(\mathbf{p}, \mathbf{q}) = (\mathbf{g}, \mathbf{p}^*) \quad \forall \mathbf{p}^* \in Q$$

Stabilization term: $c(\mathbf{p}, \mathbf{q}) = (\operatorname{div} \mathbf{p}, \operatorname{div} \mathbf{q})_{\mu} \quad \forall \mathbf{p}, \mathbf{q} \in Q$ (cf. Arioli, Simoncini, Perugia, '99) Magnetostatic problem: Algebraic Saddle-Point problem

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

2D: A pos.def. on Ker(B)B full row rank, C = 0

3D: *B* rank deficient *C* semidefinite matrix Range(*C*), Range(*B*) complementary spaces $BB^T + C$ sym. positive definite

Constrained Optimal Control Problem

Let $\Omega \subset \mathbb{R}^d$, d = 2, 3.

Given \hat{u} (desired state) defined in $\hat{\Omega} \subseteq \Omega$, find u:

$$\begin{split} \min_{u,f} \frac{1}{2} \|u - \hat{u}\|_{L_2(\hat{\Omega})}^2 + \beta \|f\|_{L_2(\Omega)}^2 \\ \text{s.t.} \quad -\nabla^2 u = f \quad in \quad \Omega \\ u = \hat{u} \quad on \quad \partial\Omega \end{split}$$

- β : regularization parameter
- Typical extra condition: box constraints for f
- Alternative PDE constraints
- Alternative PDE boundary conditions

Constrained Optimal Control Problem. Discretization.

Discrete cost functional

$$\min_{u_h, f_h} \frac{1}{2} \|u_h - \hat{u}\|_2^2 + \beta \|f_h\|_2^2 = \min_{\mathbf{u}, \mathbf{f}} \frac{1}{2} \mathbf{u}^T \bar{M} \mathbf{u} - \mathbf{u}^T \mathbf{u} + \alpha + \beta \mathbf{f}^T M \mathbf{f}$$

with $\alpha = \|\hat{u}\|_2^2$, M mass matrix, \bar{M} portion of mass matrix

Constraint:

$$-\nabla^2 u = f \quad in \quad \Omega \Rightarrow K\mathbf{u} = M\mathbf{f} + \mathbf{d}$$

K stiffness matrix (discrete Laplacian)

Solution via Lagrangian:

$$\mathcal{L}(\mathbf{f}, \mathbf{u}, \lambda) = \frac{1}{2} \mathbf{u}^T \bar{M} \mathbf{u} - \mathbf{u}^T \mathbf{b} + \alpha + \beta \mathbf{f}^T M \mathbf{f} + \lambda^T (K \mathbf{u} - M \mathbf{f} - \mathbf{d})$$

The resulting saddle point problem

$$\mathcal{L}(\mathbf{f}, \mathbf{u}, \lambda) = \frac{1}{2} \mathbf{u}^T \bar{M} \mathbf{u} - \mathbf{u}^T \mathbf{b} + \alpha + \beta \mathbf{f}^T M \mathbf{f} + \lambda^T (K \mathbf{u} - M \mathbf{f} - \mathbf{d})$$

First order condition on Lagrangian yields:

$$\begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \begin{bmatrix} \mathbf{f} \\ \mathbf{u} \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

 \overline{M} could be singular (depends on where \hat{u} is defined)

Parameter identification problem

Model for groundflow: $\mathcal{A}(q)u \equiv -\nabla \cdot (\sigma \nabla u) = f(x)$, with $x \in \Omega$ u: fluid pressure $\sigma(x)$: (spatially dep.) hydraulic conductivity f(x): in-going or outgoing fluid (incompressible flows)

Parameter of interest: $q(x) = \log(\sigma(x))$ for given $u_{obs} = Cu$ Set $F(q) = C\mathcal{A}(q)^{-1}f$ (non-linear function) then

$$\min_{q} \frac{1}{2} ||F(q) - z||^2 + \alpha \mathcal{J}_{reg}(q)$$

where \mathcal{J}_{reg} regularization functional (e.g. total variation)

PDE-constrained formulation

$$\min_{q,u} \frac{1}{2} ||Cu - z||^2 + \alpha \mathcal{J}_{reg}(q)$$
$$\mathcal{A}(q)u - f = 0.$$

Space discretization + inexact Newton method provide linear systems:

$$\begin{bmatrix} H & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} v \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} -L_v \\ -L_{\boldsymbol{\lambda}} \end{bmatrix}$$

- H: Hessian of the operator
- $B{:}\ {\sf Jacobian}\ {\sf of}\ {\sf the}\ {\sf constraint}$
- v = [q, u] variables, λ : Lagrange multiplier

A similar setting: Monge-Kantorovich mass transfer problem

Pb: Given two density functions u_0 and u_T on the set Ω , find an "optimal" mapping from u_0 to u_T

Formulation (time in [0, T]):

$$\min_{u,m} \frac{1}{2} \|u(T, \mathbf{x}) - u_T(\mathbf{x})\|^2 + \frac{1}{2} \alpha T \int_{\Omega} \int_0^T u \|m\|^2 dt d\mathbf{x}$$

s.t. $u_t + \nabla \cdot (um) = 0, \quad u(0, \mathbf{x}) = u_0$

 $u(t, \mathbf{x})$: density field; $m(t, \mathbf{x})$: velocity field

Time and space discretiz. + Gauss-Newton approx on the Lagrangian $\mathcal{L}(u,m,p) = \frac{1}{2} \|Qu - u_T\|^2 + \frac{1}{2} \alpha T h_t h_x^2 u^T L \operatorname{diag}(m)m + p^T V(A(m)u - q)$ *A preconditioning technique for a class of PDE-constrained optimization problems,* M. BENZI, E. HABER AND L. TARALLI, Adv. in Comput. Math. '10 A similar setting: Monge-Kantorovich mass transfer problem

$$\mathcal{L}(u, m, p) = \frac{1}{2} \|Qu - u_T\|^2 + \frac{1}{2} \alpha T h_t h_x^2 u^T L \operatorname{diag}(m) m + p^T V(A(m)u - q)$$

Time and space discretization + Gauss-Newton approximation provide linear systems:

$$\begin{bmatrix} Q^T Q & 0 & B_1^T \\ 0 & D & B_2^T \\ B_1 & B_2 & 0 \end{bmatrix} \begin{bmatrix} \widetilde{u}_k \\ \widetilde{m}_k \\ \widetilde{p}_k \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

with $Q^T Q > 0$ diagonal, D diagonal and highly singular

Solution. CG for $\mathcal{M}x = b$ CG: minimum error method (in energy norm). For \mathcal{M} spd $(x_0 = 0)$ $\min_{x \in K_k(\mathcal{M}, b)} \|x_{\star} - x\|_{\mathcal{M}} \leq 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x_{\star}\|_{\mathcal{M}}$ with $\kappa = \lambda_{\max}(\mathcal{M})/\lambda_{\min}(\mathcal{M})$

Symmetry wrto Euclidean inner product

$$\mathcal{M}x = b, \qquad \mathcal{M} \text{ spd}$$

Classical CG:
$$(u, v) = u^T v$$

Given x_0
 $r_0 = b - \mathcal{M}x_0, p_0 = r_0$
for $i = 0, 1, ...$
 $\alpha_i = \frac{(r_i, r_i)}{(p_i, \mathcal{M}p_i)}$
 $x_{i+1} = x_i + p_i \alpha_i$
 $r_{i+1} = r_i - \mathcal{M}p_i \alpha_i$
 $\beta_{i+1} = \frac{(r_{i+1}, \mathcal{M}p_i)}{(p_i, \mathcal{M}p_i)}$
 $p_{i+1} = r_i + p_i \beta_{i+1}$

Symmetry wrto H-inner product (H spd)

 $\mathcal{M}x = b$

Assume there exists H spd such that $H\mathcal{M}$ is also spd

H-sym CG: $(u, v)_H = u^T H v$ Given x_0 $r_0 = b - \mathcal{M} x_0$, $p_0 = r_0$ for i = 0, 1, ... $\alpha_i = \frac{(r_i, r_i)_H}{(p_i, \mathcal{M} p_i)_H}$ $x_{i+1} = x_i + p_i \alpha_i$ $r_{i+1} = r_i - \mathcal{M} p_i \alpha_i$ $\beta_{i+1} = \frac{(r_{i+1}, \mathcal{M}p_i)_H}{(p_i, \mathcal{M}p_i)_H}$ $p_{i+1} = r_i + p_i \beta_{i+1}$

Iterative solver. Convergence considerations.

 $\mathcal{M}x = b$

 $\mathcal{M} \text{ is symmetric and indefinite } \rightarrow \text{MINRES}$

Iterative solver. Convergence considerations.

$$\mathcal{M}x = b$$

 \mathcal{M} is symmetric and indefinite \rightarrow MINRES

$$x_k \in x_0 + K_k(\mathcal{M}, r_0), \quad \text{s.t.} \quad \min \|b - \mathcal{M} x_k\|$$

 $r_k = b - \mathcal{M} x_k, \ k = 0, 1, \dots, \ x_0 \text{ starting guess}$

If $\mu(\mathcal{M}) \subset [-a, -b] \cup [c, d]$, with |b - a| = |d - c|, then

$$\|b - \mathcal{M}x_{2k}\| \le 2\left(\frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}\right)^k \|b - \mathcal{M}x_0\|$$

Note: more general but less tractable bounds available

General preconditioning strategy

 $\bullet~\mbox{Find}~\mathcal{P}~\mbox{such that}$

$$\mathcal{MP}^{-1}\hat{u} = b \qquad \hat{u} = \mathcal{P}u$$

is easier (faster) to solve than $\mathcal{M}u = b$

- A look at efficiency:
 - Dealing with ${\mathcal P}$ should be cheap
 - Storage requirements for $\ensuremath{\mathcal{P}}$ should be low

Possibly zero storage

- Properties (algebraic/functional) should be exploited *Mesh/parameter independence*

Structure preserving preconditioners

Spectral properties

\boldsymbol{A} symmetric positive definite

$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & O \end{bmatrix} \qquad \begin{array}{c} \mathbf{0} < \boldsymbol{\lambda}_n \leq \cdots \leq \boldsymbol{\lambda}_1 & \text{eigs of } A \\ 0 < \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \end{array}$$

 $\sigma(\mathcal{M}) \text{ subset of} \qquad (\text{Rusten \& Winther 1992})$ $\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\frac{\lambda_n}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$

$$\begin{split} & \mathcal{S} \text{pectral properties} \\ \mathcal{M} = \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} & 0 < \lambda_n \leq \cdots \leq \lambda_1 \quad \text{eigs of } A \\ & 0 = \sigma_m \leq \cdots \leq \sigma_1 \quad \text{sing. vals of } B \\ \\ & \sigma(\mathcal{M}) \text{ subset of} \\ & \left[\frac{1}{2} (-\gamma_1 + \lambda_n - \sqrt{(\gamma_1 + \lambda_n)^2 + 4\sigma_1^2}), \frac{1}{2} (\lambda_1 - \sqrt{\lambda_1^2 + 4\theta}) \right] \cup \left[\lambda_n, \frac{1}{2} (\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2}) \right] \\ & B \text{ rank deficient, but} \quad \theta = \lambda_{\min} (BB^T + C) \text{ full rank} \end{split}$$

 $\gamma_1 = \lambda_{\max}(C)$

Block diagonal Preconditioner
* A nonsing.,
$$C = 0$$
:

$$\mathcal{P}_0 = \begin{bmatrix} A & 0 \\ 0 & BA^{-1}B^T \end{bmatrix}$$

$$\Rightarrow \quad \mathcal{P}_0^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_0^{-\frac{1}{2}} = \begin{bmatrix} I & A^{-\frac{1}{2}}B^T(BA^{-1}B^T)^{-\frac{1}{2}} \\ (BA^{-1}B^T)^{-\frac{1}{2}}BA^{-\frac{1}{2}} & 0 \end{bmatrix}$$
MINRES converges in at most 3 iterations. $\sigma(\mathcal{P}_0^{-\frac{1}{2}}\mathcal{M}\mathcal{P}_0^{-\frac{1}{2}}) = \{1, 1/2 \pm \sqrt{5}/2\}$
A more practical choice:
 $\mathcal{P} = \begin{bmatrix} \tilde{A} & 0 \\ 0 & \tilde{S} \end{bmatrix}$ spd. $\tilde{A} \approx A \quad \tilde{S} \approx BA^{-1}B^T$
eigs in $[-a, -b] \cup [c, d], \quad a, b, c, d > 0$
Still an Indefinite Problem

Constraint (Indefinite) Preconditioner

$$\mathcal{P} = \begin{bmatrix} \tilde{A} & B^T \\ B & -C \end{bmatrix} \qquad \mathcal{MP}^{-1} = \begin{bmatrix} A\tilde{A}^{-1}(I - \Pi) + \Pi & \star \\ O & I \end{bmatrix}$$
with $\Pi = B(B\tilde{A}^{-1}B^T + C)^{-1}B\tilde{A}^{-1}$

• If C nonsing \Rightarrow all eigs real and positive

• If $B^T C = 0$ and $BB^T + C > 0 \Rightarrow$ all eigs real and positive

Special case: $C = 0 \implies$ at most 2m unit eigs with Jordan blocks

Constraint (Indefinite) Preconditioner. Generalizations

$$\mathcal{P} = \left[\begin{array}{cc} \widetilde{A} & B^T \\ B & -\widetilde{C} \end{array} \right]$$

Primal-based: $\widetilde{C} \approx C$ nonsing, $\widetilde{A} \approx A + B^T \widetilde{C}^{-1} B$

• If $A + B^T \widetilde{C}^{-1}B > \widetilde{A}$ and $\widetilde{C} > C \Rightarrow$ all eigs real and positive

Constraint (Indefinite) Preconditioner. Generalizations

$$\mathcal{P} = \left[\begin{array}{cc} \widetilde{A} & B^T \\ B & -\widetilde{C} \end{array} \right]$$

Primal-based: $\widetilde{C} \approx C$ nonsing, $\widetilde{A} \approx A + B^T \widetilde{C}^{-1} B$

• If $A + B^T \widetilde{C}^{-1}B > \widetilde{A}$ and $\widetilde{C} > C \Rightarrow$ all eigs real and positive

Dual-based: (C = O) $\widetilde{A} \approx A$, $\widetilde{C} = S - B\widetilde{A}^{-1}B^T$ for some S

$$\mathcal{P} = \begin{bmatrix} I & 0 \\ B\widetilde{A}^{-1} & I \end{bmatrix} \begin{bmatrix} \widetilde{A} & 0 \\ 0 & -S \end{bmatrix} \begin{bmatrix} I & \widetilde{A}^{-1}B \\ 0 & I \end{bmatrix}$$

Constraint (Indefinite) Preconditioner. Generalizations

$$\mathcal{P} = \left[\begin{array}{cc} \widetilde{A} & B^T \\ B & -\widetilde{C} \end{array} \right]$$

Primal-based: $\widetilde{C} \approx C$ nonsing, $\widetilde{A} \approx A + B^T \widetilde{C}^{-1} B$

• If $A + B^T \widetilde{C}^{-1}B > \widetilde{A}$ and $\widetilde{C} > C \Rightarrow$ all eigs real and positive

 $\mbox{Dual-based:} \ (C=O) \ \ \ \widetilde{A}\approx A, \ \ \ \widetilde{C}=S-B\widetilde{A}^{-1}B^T \mbox{ for some } S$

• If $\widetilde{A} > A$ and $\widetilde{C} < 0 \Rightarrow$ all eigs real and positive \mathcal{MP}^{-1} is H-symmetric with $H = \text{blkdiag}(\widetilde{A} - A, B\widetilde{A}^{-1}B^T - S)$

Symmetric and indefinite \boldsymbol{A}

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} \lambda_{n} \leq \cdots \leq \lambda_{1} & \text{eigs of } A \\ 0 < \sigma_{m} \leq \cdots \leq \sigma_{1} & \text{sing. vals of } B \\ A \text{ pos.def. on } \operatorname{Ker}(B) \end{array}$$

 $\mu(\mathcal{M})$ subset of

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\Gamma, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$$

If m = n, $\Gamma = \frac{1}{2}(\lambda_n + \sqrt{\lambda_n^2 + 4\sigma_m^2})$

Gould & Simoncini, '09

$$\begin{split} & \left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\Gamma, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right] \\ & \text{Letting } \alpha_0 > 0 \text{ be s.t. } \frac{u^\top A u}{u^\top u} > \alpha_0, \ u \in \operatorname{Ker}(B) \\ & \Gamma \geq \begin{cases} \frac{\alpha_0 \sigma_m^2}{|\alpha_0 \lambda_n - ||A||^2 - \sigma_m^2|} & \text{if } \alpha_0 + \lambda_n \leq 0 \\ \\ \frac{\alpha_0 \lambda_n - ||A||^2 - \sigma_m^2}{2(\alpha_0 + \lambda_n)} + \sqrt{\left(\frac{\alpha_0 \lambda_n - ||A||^2 - \sigma_m^2}{2(\alpha_0 + \lambda_n)}\right)^2 + \frac{\alpha_0 \sigma_m^2}{\alpha_0 + \lambda_n}}{\text{otherwise.}} \end{split}$$

Augmenting the (1,1) block

A sym and indefinite. Equivalent formulation (C = 0):

$$\begin{bmatrix} A + \tau B^{\top} B & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f + \tau B^{\top} g \\ g \end{bmatrix}, \quad \tau \in \mathbb{R}$$

coefficient matrix: $\mathcal{M}(\tau)$

Augmenting the (1,1) block

A sym and indefinite. Equivalent formulation (C = 0):

$$\begin{bmatrix} A + \tau B^{\top} B & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f + \tau B^{\top} g \\ g \end{bmatrix}, \quad \tau \in \mathbb{R}$$

coefficient matrix: $\mathcal{M}(\tau)$

Condition on τ for definiteness of $A + \tau B^{\top}B$:

$$\tau > \frac{1}{\sigma_m^2} \left(\frac{\|A\|^2}{\alpha_0} - \lambda_n \right)$$

$$\begin{split} \mathbf{Ex.2.} \ A &= \begin{bmatrix} 0.01 & 3 \\ 3 & -0.01 \end{bmatrix}, \ \mu(\mathcal{M}) = \{-4.2452, 5.0 \cdot 10^{-3}, 4.2402\} \\ \frac{1}{\sigma_m^2} \left(\frac{\|A\|^2}{\alpha_0} - \lambda_n\right) &= 100.33 \\ \text{for } \tau &= 100 \to A + \tau B^\top B \text{ is indefinite} \end{split}$$

Application to practical block diagonal preconditioners

Indefinite A (and C = 0). Indefinite preconditioner:

Let
$$\mathcal{P}_{\pm} = \text{blkdiag}(A, \pm \widetilde{S})$$
 with A, \widetilde{S} nonsingular. Then

$$\mu(\mathcal{P}_{\pm}^{-1}\mathcal{M}) \subset \left\{1, \frac{1}{2}(1 + \sqrt{1 + 4\xi}), \frac{1}{2}(1 - \sqrt{1 + 4\xi})\right\} \subset \mathbb{C},$$

 ξ : (possibly complex) eigenvalues of $(BA^{-1}B^{\top},\pm\widetilde{S})$

Application to ideal block diagonal preconditioners

Indefinite A, $C \neq 0$. Indefinite preconditioner:

Let
$$\mathcal{P}_{+} = \text{blkdiag}(A, C + BA^{-1}B^{\top})$$
. Then

$$\mu(\mathcal{P}_{+}^{-1}\mathcal{M}) \subset \left\{1, \frac{1}{2}(1 \pm \sqrt{5}), \frac{1}{2\theta}(\theta - 1 \pm \sqrt{(1 - \theta)^{2} + 4\theta^{2}})\right\} \subset \mathbb{R}.$$
 θ finite eigs of $(C + BA^{-1}B^{\top}, C)$

Similar (but complex) results for $\mathcal{P}_{-} = \text{blkdiag}(A, -C - BA^{-1}B^{\top})$

Application to ideal block diagonal preconditioners

Indefinite A, Definite preconditioner, C = 0:

$$\mathcal{P}(\tau) = \begin{bmatrix} P_A & \\ & P_C \end{bmatrix}, \quad \begin{array}{c} P_A \approx P_A(\tau) = A + \tau B^\top B \\ & P_C \approx P_C(\tau) = B(A + \tau B^\top B)^{-1} B^\top \end{array}$$

• Definite preconditioner on definite problem:

 $\mathcal{P}(\tau)^{-1}\mathcal{M}(\tau)$ has eigenvalues

1,
$$\frac{1}{2}(1+\sqrt{5})$$
, $\frac{1}{2}(1-\sqrt{5})$

with multiplicity n - m, m and m, respectively.

Magnetostatic problem: Algebraic Saddle-Point problem

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

2D: A pos.def. on Ker(B)B full row rank, C = 0

3D: *B* rank deficient *C* semidefinite matrix Range(*C*), Range(*B*) complementary spaces $BB^T + C$ sym. positive definite Magnetostic problem: solution strategies $D D^T + C = C$

 $BB^T + C \approx C_0$

Geometric/Algebraic Multigrid, Incomplete Fact., Inner-Outer, etc.

$$P_d = \left[\begin{array}{rrr} I & 0 \\ 0 & C_0 \end{array} \right]$$

$$P_{in} = \begin{bmatrix} I & 0 \\ B & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & -C_0 \end{bmatrix} \begin{bmatrix} I & B^T \\ 0 & I \end{bmatrix}$$

 $A \approx I$ (or its diagonal)

Magnetostic problem: Numerical example

Computational cost3D Magnetostatic problem C_0 : Incomplete Cholesky fact. (ICT package, Saad & Chow)

Elapsed Time

Size	MA27	QMI	QMR	
		$P_d(it)$	$P_{in}(it)$	ILDLT(10)
2208	2.3	4.9 (53)	3.1 (18)	1.5
4371	10.2	11.0(67)	8.4(20)	5.2
8622	83.4	24.3(86)	18.3 (29)	31.0
22675	753.5	128.2(179)	63.2 (45)	246.0

(Old results)

Constrained Optimal Control Problem The resulting saddle point problem

$$\mathcal{L}(\mathbf{f}, \mathbf{u}, \lambda) = \frac{1}{2} \mathbf{u}^T \bar{M} \mathbf{u} - \mathbf{u}^T \mathbf{b} + \alpha + \beta \mathbf{f}^T M \mathbf{f} + \lambda^T (K \mathbf{u} - M \mathbf{f} - \mathbf{d})$$

First order condition on Lagrangian yields:

$$\begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \begin{bmatrix} \mathbf{f} \\ \mathbf{u} \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

 \overline{M} could be singular (this depends on where \hat{u} is defined)

Dimension reduction

$$\begin{bmatrix} \mathbf{2}\boldsymbol{\beta}\boldsymbol{M} & 0 & -\boldsymbol{M} \\ 0 & \boldsymbol{M} & \boldsymbol{K}^T \\ -\boldsymbol{M} & \boldsymbol{K} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{f} \\ \mathbf{u} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

that is, $2\beta \mathbf{f} = \lambda$. Therefore

$$\begin{bmatrix} \bar{M} & K^T \\ K & -\frac{1}{2\beta}M \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

Solution strategies

Ideal cases:

$$P_d = \begin{bmatrix} KD^{-1}K^T & 0\\ 0 & D \end{bmatrix}, \qquad D = \frac{1}{2\beta}M$$

$$P_{in} = \begin{bmatrix} I & -K^T D^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} K D^{-1} K^T & 0 \\ 0 & -D \end{bmatrix} \begin{bmatrix} I & 0 \\ -D^{-1} K & I \end{bmatrix}$$

Practical cases:

 $\widetilde{K} \approx K$, e.g., (algebraic) multigrid method $\widetilde{D} \approx D$, e.g., $\widetilde{D} = \text{diag}(\frac{1}{2\beta}M)$

Numerical results. Minimal Residual method. No of iterations.

 \bar{M} singular, $K \in \mathbb{R}^{n \times n}$ Laplace operator

2D:

	$\beta = 10^{-5}$		$\beta =$	10^{-2}
n	P_d	P_{in}	P_d	P_{in}
225	47	17	36	6
3969	43	17	33	6
65025	40	17	33	6

Numerical results. Minimal Residual method. No of iterations.

 \bar{M} singular, $K \in \mathbb{R}^{n \times n}$ Laplace operator

\mathbf{c}	n	
Ζ	$\boldsymbol{\nu}$	•

-	
·2	I)•
J	レ .
-	

	$\beta = 10^{-5}$		$\beta = 10^{-1}$		$\beta =$	10^{-2}
n	P_d	P_{in}	P_d	P_{in}		
225	47	17	36	6		
3969	43	17	33	6		
65025	40	17	33	6		

	$\beta = 10^{-5}$		$\beta =$	10^{-2}
n	P_d	P_{in}	P_d	P_{in}
343	60	16	65	5
3375	62	16	71	5
29791	62	16	72	5

mesh independence can be proved

Conclusions

- Solution to Saddle Point systems largely expanding topic (also: block triangular, augmented, projected CG, etc...)
- Structured preconditioning allows one to attack very large dimension pbs
- Practical solution optimality is very problem dependent
- Interplay between Solvers and Preconditioners is crucial