Large-scale Lyapunov matrix equation with banded data

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna

Joint work with Davide Palitta, UniBO

$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$

A banded, sym pos.def. D banded sym. Large dimensions

▶ If *D* is low rank, then large body of literature/algorithms

$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$

A banded, sym pos.def. D banded sym. Large dimensions

- ▶ If *D* is low rank, then large body of literature/algorithms
- ▶ Difficulties arise for general sym. *D*; but see, e.g.,
 - * Grasedyck, Hackbusch & Khoromskij, 2003
 - * Haber & Verhaegen, 2016

$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$

A banded, sym pos.def. D banded sym. Large dimensions

- ▶ If *D* is low rank, then large body of literature/algorithms
- ▶ Difficulties arise for general sym. *D*; but see, e.g.,
 - * Grasedyck, Hackbusch & Khoromskij, 2003
 - * Haber & Verhaegen, 2016

We address the case of *D* banded

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

A banded, sym pos.def. D banded sym.

$$AX + XA = D, \quad A, D \in \mathbb{R}^{n \times n}$$

A banded, sym pos.def. D banded sym.

Key fact: even if A, D are sparse, **X** is full.

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

A banded, sym pos.def. D banded sym.

Key fact: even if A, D are sparse, **X** is full.

An example: D = I, $A = \operatorname{tridiag}(-1, \underline{2}, -1)$, $\Rightarrow \mathbf{X} = \frac{1}{2}A^{-1}$

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

A banded, sym pos.def. D banded sym.

Key fact: even if A, D are sparse, **X** is full.

An example: D = I, $A = \operatorname{tridiag}(-1, \underline{4}, -1)$, $\Rightarrow \mathbf{X} = \frac{1}{2}A^{-1}$

Relevance of conditioning for A banded

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

D diagonal with random entries.

Lyapunov Solution X (log-scale):

cond(A)=3 $cond(A)=510^3$

Banded and well conditioned A

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

Use formal equivalence with

$$(A \otimes I + I \otimes A)x = d \qquad (**)$$

Banded and well conditioned A

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

Use formal equivalence with

$$(A \otimes I + I \otimes A)x = d$$
 (**)

 \Rightarrow Matrix-oriented CG applied to (**)

Banded and well conditioned A

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

Use formal equivalence with

$$(A \otimes I + I \otimes A)x = d \qquad (**)$$

 \Rightarrow Matrix-oriented CG applied to (**)

After k iterations the approximate matrix solution is banded (w/bandwidth depending on k and bandwidth of A, D)

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}, \qquad \mathbf{X} = \int_0^\infty e^{-tA} D e^{-tA} dt$$

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}, \qquad \mathbf{X} = \int_0^\infty e^{-tA} D e^{-tA} dt$$

Let $X(\tau) = \int_0^\tau e^{-tA} D e^{-tA} dt$, so that $\mathbf{X} = X(\infty)$.

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}, \qquad \mathbf{X} = \int_0^\infty e^{-tA} D e^{-tA} dt$$

Let $X(\tau) = \int_0^\tau e^{-tA} D e^{-tA} dt$, so that $\mathbf{X} = X(\infty)$.
For any $\tau > 0$, $\mathbf{X} = X(\tau) + e^{-\tau A} \mathbf{X} e^{-\tau A}$

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}, \qquad \mathbf{X} = \int_0^\infty e^{-tA} D e^{-tA} dt$$

Let $X(\tau) = \int_0^\tau e^{-tA} D e^{-tA} dt$, so that $\mathbf{X} = X(\infty)$.

For any $\tau > 0$, $\mathbf{X} = X(\tau) + e^{-\tau A} \mathbf{X} e^{-\tau A}$

 $X(\tau)$:

I

$$au = \mathcal{O}(10^3) \qquad au = \mathcal{O}(10^4) \qquad au = \mathcal{O}(10^5)$$

Large-scale Lyapunov eqn w/ banded data

Splitting strategy for an approximate solution

For appropriate $\tau > 0$,

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

Splitting strategy for an approximate solution

For appropriate $\tau > 0$,

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

• $e^{-\tau A}$ low rank)

with Z_k tall

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

 $X(\tau) = \int_0^{\tau} e^{-tA} D e^{-tA} dt$

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

$$X(\tau) = \int_0^\tau e^{-tA} D e^{-tA} dt$$

$$> X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^\ell \omega_i e^{-t_i A} D e^{-t_i A}$$

(Gauss-Lobatto quadrature)

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

$$X(\tau) = \int_0^\tau e^{-tA} D e^{-tA} dt$$

$$\blacktriangleright X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^{\ell} \omega_i e^{-t_i A} D e^{-t_i A}$$

(Gauss-Lobatto quadrature)

• $e^{-t_i A} \approx \mathcal{R}_{\nu}(t_i A)$ (rational function approximation)

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

 $X(\tau) = \int_0^{\tau} e^{-tA} D e^{-tA} dt$

ν

•
$$X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^{\ell} \omega_i e^{-t_i A} D e^{-t_i A}$$
 (Gauss-Lobatto quadrature)
• $e^{-t_i A} \approx \mathcal{R}_{\nu}(t_i A)$ (rational function approximation)

•
$$\mathcal{R}_{\nu}(t_i A) = \sum_{j=1}^{n} \theta_j (t_i A - \xi_j I)^{-1}$$
 (partial fraction expansion)

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

 $X(\tau) = \int_0^{\tau} e^{-tA} D e^{-tA} dt$

0

►
$$\mathcal{R}_{\nu}(t_i A) = \sum_{j=1}^{\nu} \theta_j (t_i A - \xi_j I)^{-1}$$
 (partial fraction expansion)
► $(t_i A - \xi_j I)^{-1} \approx \operatorname{trunc}((t_i A - \xi_j I)^{-1})$

(banded truncation via sparse approx inverse)

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$

Let $\mathcal{V}_m = \operatorname{range}(V_m)$ be a space approximating the "smallest" invariant subspace of A so that

$$e^{- au A} \approx V_m e^{- au H_m} V_m^T \qquad H_m = V_m^T A V_m$$

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$ Let $\mathcal{V}_m = \text{range}(V_m)$ be a space approximating the "smallest" invariant subspace of A so that

$$e^{- au A} \approx V_m e^{- au H_m} V_m^T \qquad H_m = V_m^T A V_m$$

Then

• We write
$$X_m = V_m Y_m V_m^T$$
 for some $Y_m (V_m \text{ orthonormal columns})$

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$ Let $\mathcal{V}_m = \operatorname{range}(V_m)$ be a space approximating the "smallest" invariant subspace of A so that

$$e^{- au A} pprox V_m e^{- au H_m} V_m^T \qquad H_m = V_m^T A V_m$$

Then

• We write $X_m = V_m Y_m V_m^T$ for some $Y_m (V_m \text{ orthonormal columns})$

$$e^{-\tau A} \mathbf{X} e^{-\tau A} \approx V_m V_m^T e^{-\tau A} (V_m Y_m V_m^T) e^{-\tau A} V_m V_m^T$$
$$= V_m e^{-\tau H_m} Y_m e^{-\tau H_m} V_m^T$$

and Y_m solves the projected Lyapunov equation $H_mY + YH_m = V_m^T DV_m$

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$ Let $\mathcal{V}_m = \operatorname{range}(V_m)$ be a space approximating the "smallest" invariant subspace of A so that

$$e^{- au A} pprox V_m e^{- au H_m} V_m^T \qquad H_m = V_m^T A V_m$$

Then

• We write $X_m = V_m Y_m V_m^T$ for some $Y_m (V_m \text{ orthonormal columns})$

$$e^{-\tau A} \mathbf{X} e^{-\tau A} \approx V_m V_m^T e^{-\tau A} (V_m Y_m V_m^T) e^{-\tau A} V_m V_m^T$$
$$= V_m e^{-\tau H_m} Y_m e^{-\tau H_m} V_m^T$$

and Y_m solves the projected Lyapunov equation $H_mY + YH_m = V_m^T DV_m$

Remark: X_m itself is not (necessarily) a good approximation to **X** (only the portion on relevant invariant subspace matters)

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

$$\mathbf{X} = \underbrace{X(\tau)}_{num.banded} + \underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{low-rank}$$

► X(τ): approximation and truncation parameters (maximum bandwidth, approx inverse truncation, rational approximation)

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

$$\mathbf{X} = X(\tau) + e^{-\tau A} \mathbf{X} e^{-\tau A}$$

- X(\(\tau\)): approximation and truncation parameters (maximum bandwidth, approx inverse truncation, rational approximation)
- e^{-τA}Xe^{-τA}: stopping criteria (size of V_m) (cheap residual norm, difference in subsequent iterates)

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

$$\mathbf{X} = X(\tau) + e^{-\tau A} \mathbf{X} e^{-\tau A}$$

- X(\(\tau\)): approximation and truncation parameters (maximum bandwidth, approx inverse truncation, rational approximation)
- e^{-τA}Xe^{-τA}: stopping criteria (size of V_m) (cheap residual norm, difference in subsequent iterates)
- Choice of splitting parameter τ :
 - τ is related to bandwidth of $X(\tau)$ and magnitude of $e^{-\tau A} X e^{-\tau A}$

$$A\mathbf{X} + \mathbf{X}A = D, \quad A, D \in \mathbb{R}^{n \times n}$$

$$\mathbf{X} = X(\tau) + e^{-\tau A} \mathbf{X} e^{-\tau A}$$

- X(\(\tau\)): approximation and truncation parameters (maximum bandwidth, approx inverse truncation, rational approximation)
- e^{-τA}Xe^{-τA}: stopping criteria (size of V_m) (cheap residual norm, difference in subsequent iterates)
- Choice of splitting parameter τ :
 - τ is related to bandwidth of $X(\tau)$ and magnitude of $e^{-\tau A} \mathbf{X} e^{-\tau A}$
 - $\blacktriangleright \ \tau$ estimated automatically by using a-priori decay of matrix exponential

Numerical experiments

 $A \in \mathbb{R}^{n \times n}$: 3-point stencil discretization of $\mathcal{L}u = -\frac{1}{\gamma} (e^{x} u_{x})_{x} + \gamma u$ $x \in (0, 1)$, Dirichlet b.c. $\gamma > 0$, D sym tridiag. random

* Splitting τ : with $\beta_{exp} = 500$, $\epsilon_{exp} = 10^{-5}$ use theoretical bounds * Parameters for banded portion:

Deg. of Rational approx $\nu =$ 7, truncation threshold $\epsilon_{trunc} = 10^{-8}$

* Parameter for low rank portion: stopping threshold 10^{-3}

Numerical experiments

 $A \in \mathbb{R}^{n \times n}$: 3-point stencil discretization of $\mathcal{L}u = -\frac{1}{\gamma} (e^{x} u_{x})_{x} + \gamma u$ $x \in (0, 1)$, Dirichlet b.c. $\gamma > 0$, D sym tridiag. random

* Splitting τ : with $\beta_{exp} = 500$, $\epsilon_{exp} = 10^{-5}$ use theoretical bounds * Parameters for banded portion:

Deg. of Rational approx $\nu = 7$, truncation threshold $\epsilon_{trunc} = 10^{-8}$

* Parameter for low rank portion: stopping threshold 10^{-3}

n	$ \gamma$	$\kappa(A)$	τ	Time X _B	Time X _m	Time
				(β_{X_B})	$(\operatorname{rank}(X_m))$	tot.
40000	1000	6.61e+3	2.72	1.57e+3 (489)	3.49e+0 (7)	1.57e+3
	500	2.68e+4	0.56	1.55e+3 (579)	2.16e+2 (374)	1.77e+3
	200	1.72e+5	0.08	1.63e+3 (595)	2.43e+2 (408)	1.87e+3
70000	1800	6.19e+3	2.97	2.81e+3 (475)	5.31e+0 (7)	2.82e+3
	800	3.17e+4	0.47	2.87e+3 (583)	1.07e+3 (654)	3.94e+3
	200	5.27e+5	0.02	2.92e+3 (597)	1.15e+3 (693)	4.07e+3
100000	2500	6.53e+3	2.77	4.08e+3 (487)	9.07e+0 (7)	4.08e+3
	1500	1.82e+4	0.84	4.17e+3 (571)	2.77e+3 (879)	*6.95e+3
	500	1.67e+5	0.08	3.99e+3 (595)	2.78e+3 (916)	*6.78e+3

Conclusions and outlook

- Generally sparse large-scale Lyapunov problem provides significantly higher challenges than low rank case
- Splitting strategy makes it doable for banded data
- Further work to completely set some of the parameters

Conclusions and outlook

- Generally sparse large-scale Lyapunov problem provides significantly higher challenges than low rank case
- Splitting strategy makes it doable for banded data
- Further work to completely set some of the parameters

Further reading

* V. Simoncini, Computational methods for linear matrix equations, SIAM Review, v.58, Sept. 2016.

valeria.simoncini@unibo.it
www.dm.unibo.it/~simoncin