Large-scale Lyapunov matrix equation with banded data

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna

Joint work with Davide Palitta, UniBO

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym. Large dimensions

- If D is low rank, then large body of literature/algorithms

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym. Large dimensions

- If D is low rank, then large body of literature/algorithms
- Difficulties arise for general sym. D; but see, e.g.,
* Grasedyck, Hackbusch \& Khoromskij, 2003
* Haber \& Verhaegen, 2016

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym. Large dimensions

- If D is low rank, then large body of literature/algorithms
- Difficulties arise for general sym. D; but see, e.g.,
* Grasedyck, Hackbusch \& Khoromskij, 2003
* Haber \& Verhaegen, 2016

We address the case of D banded

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym.

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym.
Key fact: even if A, D are sparse, \mathbf{X} is full.

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym.
Key fact: even if A, D are sparse, \mathbf{X} is full.
An example: $\quad D=I, A=\operatorname{tridiag}(-1, \underline{2},-1), \quad \Rightarrow \mathbf{X}=\frac{1}{2} A^{-1}$

The problem

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

A banded, sym pos.def. D banded sym.
Key fact: even if A, D are sparse, \mathbf{X} is full.
An example: $\quad D=I, A=\operatorname{tridiag}(-1, \underline{4},-1), \quad \Rightarrow \mathbf{X}=\frac{1}{2} A^{-1}$

Relevance of conditioning for A banded

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

D diagonal with random entries.

Lyapunov Solution X (log-scale):

$\operatorname{cond}(A)=3$

$\operatorname{cond}(A)=510^{3}$

Banded and well conditioned A

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

Use formal equivalence with

$$
(A \otimes I+I \otimes A) x=d \quad(* *)
$$

Banded and well conditioned A

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

Use formal equivalence with

$$
\begin{aligned}
& (A \otimes I+I \otimes A) x=d \quad(* *) \\
\Rightarrow & \text { Matrix-oriented CG applied to }(* *)
\end{aligned}
$$

Banded and well conditioned A

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}
$$

Use formal equivalence with

$$
\begin{aligned}
& (A \otimes I+I \otimes A) x=d \quad(* *) \\
\Rightarrow & \text { Matrix-oriented CG applied to }(* *)
\end{aligned}
$$

After k iterations the approximate matrix solution is banded (w/bandwidth depending on k and bandwidth of A, D)

Banded and badly conditioned A

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}, \quad \mathbf{X}=\int_{0}^{\infty} e^{-t A} D e^{-t A} d t
$$

Banded and badly conditioned A

$$
\begin{aligned}
& \quad A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}, \quad \mathbf{X}=\int_{0}^{\infty} e^{-t A} D e^{-t A} d t \\
& \text { Let } X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t \text {, so that } \mathbf{X}=X(\infty) .
\end{aligned}
$$

Banded and badly conditioned A

$$
\begin{aligned}
& \qquad A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}, \quad \mathbf{X}=\int_{0}^{\infty} e^{-t A} D e^{-t A} d t \\
& \text { Let } X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t \text {, so that } \mathbf{X}=X(\infty) \\
& \text { For any } \tau>0, \quad \mathbf{X}=X(\tau)+e^{-\tau A} \mathbf{X} e^{-\tau A}
\end{aligned}
$$

Banded and badly conditioned A

$$
A \mathbf{X}+\mathbf{X} A=D, \quad A, D \in \mathbb{R}^{n \times n}, \quad \mathbf{X}=\int_{0}^{\infty} e^{-t A} D e^{-t A} d t
$$

Let $X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t$, so that $\mathbf{X}=X(\infty)$.
For any $\tau>0, \quad \mathbf{X}=X(\tau)+e^{-\tau A} \mathbf{X} e^{-\tau A}$

$$
X(\tau)
$$

$\tau=\mathcal{O}\left(10^{3}\right)$

$\tau=\mathcal{O}\left(10^{4}\right)$

$\tau=\mathcal{O}\left(10^{5}\right)$

Splitting strategy for an approximate solution

For appropriate $\tau>0$,

$$
\mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
$$

(\% $\quad e^{-\tau A}$ low rank)

Splitting strategy for an approximate solution

For appropriate $\tau>0$,

$$
\mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low }- \text { rank }}
$$

(\% $\quad e^{-\tau A}$ low rank)

$$
\mathbf{X} \approx\left[\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & \ddots & \ddots & \ddots & \\
& & & * & * & * \\
& & & & * & *
\end{array}\right]+Z_{k} Z_{k}^{T}
$$

Approximating the banded term $X(\tau)$

$$
\mathbf{X}=\underset{\text { num.banded }}{X(\tau)}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
$$

$$
X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t
$$

Approximating the banded term $X(\tau)$

$$
\mathbf{X}=\underset{\text { num.banded }}{X(\tau)}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
$$

$X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t$

- $X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^{\ell} \omega_{i} e^{-t_{i} A} D e^{-t_{i} A} \quad$ (Gauss-Lobatto quadrature)

Approximating the banded term $X(\tau)$

$$
\mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low }- \text { rank }}
$$

$$
X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t
$$

- $X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^{\ell} \omega_{i} e^{-t_{i} A} D e^{-t_{i} A} \quad$ (Gauss-Lobatto quadrature)
- $e^{-t_{i} A} \approx \mathcal{R}_{\nu}\left(t_{i} A\right) \quad$ (rational function approximation)

Approximating the banded term $X(\tau)$

$$
\mathbf{X}=\underset{\text { num.banded }}{X(\tau)}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
$$

$$
X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t
$$

- $X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^{\ell} \omega_{i} e^{-t_{i} A} D e^{-t_{i} A} \quad$ (Gauss-Lobatto quadrature)
- $e^{-t_{i} A} \approx \mathcal{R}_{\nu}\left(t_{i} A\right) \quad$ (rational function approximation)
- $\mathcal{R}_{\nu}\left(t_{i} A\right)=\sum_{j=1}^{\nu} \theta_{j}\left(t_{i} A-\xi_{j} l\right)^{-1} \quad$ (partial fraction expansion)

Approximating the banded term $X(\tau)$

$$
\mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
$$

$$
X(\tau)=\int_{0}^{\tau} e^{-t A} D e^{-t A} d t
$$

- $X(\tau) \approx \frac{\tau}{2} \sum_{i=1}^{\ell} \omega_{i} e^{-t_{i} A} D e^{-t_{i} A} \quad$ (Gauss-Lobatto quadrature)
- $e^{-t_{i} A} \approx \mathcal{R}_{\nu}\left(t_{i} A\right) \quad$ (rational function approximation)
- $\mathcal{R}_{\nu}\left(t_{i} A\right)=\sum_{j=1}^{\nu} \theta_{j}\left(t_{i} A-\xi_{j} I\right)^{-1} \quad$ (partial fraction expansion)
- $\left(t_{i} A-\xi_{j} I\right)^{-1} \approx \operatorname{trunc}\left(\left(t_{i} A-\xi_{j} I\right)^{-1}\right)$
(banded truncation via sparse approx inverse)

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$
Let $\mathcal{V}_{m}=$ range $\left(V_{m}\right)$ be a space approximating the "smallest" invariant subspace of A so that

$$
e^{-\tau A} \approx V_{m} e^{-\tau H_{m}} V_{m}^{T} \quad H_{m}=V_{m}^{T} A V_{m}
$$

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$
Let $\mathcal{V}_{m}=\operatorname{range}\left(V_{m}\right)$ be a space approximating the "smallest" invariant subspace of A so that

$$
e^{-\tau A} \approx V_{m} e^{-\tau H_{m}} V_{m}^{T} \quad H_{m}=V_{m}^{T} A V_{m}
$$

Then

- We write $X_{m}=V_{m} Y_{m} V_{m}^{T}$ for some Y_{m} (V_{m} orthonormal columns)

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$

Let $\mathcal{V}_{m}=\operatorname{range}\left(V_{m}\right)$ be a space approximating the "smallest" invariant subspace of A so that

$$
e^{-\tau A} \approx V_{m} e^{-\tau H_{m}} V_{m}^{T} \quad H_{m}=V_{m}^{T} A V_{m}
$$

Then

- We write $X_{m}=V_{m} Y_{m} V_{m}^{T}$ for some Y_{m} (V_{m} orthonormal columns)

$$
\begin{aligned}
e^{-\tau A} \mathbf{X} e^{-\tau A} & \approx V_{m} V_{m}^{T} e^{-\tau A}\left(V_{m} Y_{m} V_{m}^{T}\right) e^{-\tau A} V_{m} V_{m}^{T} \\
& =V_{m} e^{-\tau H_{m}} Y_{m} e^{-\tau H_{m}} V_{m}^{T}
\end{aligned}
$$

and Y_{m} solves the projected Lyapunov equation
$H_{m} Y+Y H_{m}=V_{m}^{T} D V_{m}$

Approximating the low-rank term $e^{-\tau A} \mathbf{X} e^{-\tau A}$

Let $\mathcal{V}_{m}=\operatorname{range}\left(V_{m}\right)$ be a space approximating the "smallest" invariant subspace of A so that

$$
e^{-\tau A} \approx V_{m} e^{-\tau H_{m}} V_{m}^{T} \quad H_{m}=V_{m}^{T} A V_{m}
$$

Then

- We write $X_{m}=V_{m} Y_{m} V_{m}^{T}$ for some Y_{m} (V_{m} orthonormal columns)

$$
\begin{aligned}
e^{-\tau A} \mathbf{X} e^{-\tau A} & \approx V_{m} V_{m}^{T} e^{-\tau A}\left(V_{m} Y_{m} V_{m}^{T}\right) e^{-\tau A} V_{m} V_{m}^{T} \\
& =V_{m} e^{-\tau H_{m}} Y_{m} e^{-\tau H_{m}} V_{m}^{T}
\end{aligned}
$$

and Y_{m} solves the projected Lyapunov equation

$$
H_{m} Y+Y H_{m}=V_{m}^{T} D V_{m}
$$

Remark: X_{m} itself is not (necessarily) a good approximation to \mathbf{X} (only the portion on relevant invariant subspace matters)

Implementation issues

$$
\begin{aligned}
& A \mathbf{X}+\mathbf{X A}=D, \quad A, D \in \mathbb{R}^{n \times n} \\
& \mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
\end{aligned}
$$

- $X(\tau)$: approximation and truncation parameters (maximum bandwidth, approx inverse truncation, rational approximation)

Implementation issues

$$
\begin{aligned}
& A \mathbf{X}+\mathbf{X A}=D, \quad A, D \in \mathbb{R}^{n \times n} \\
& \mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
\end{aligned}
$$

- $X(\tau)$: approximation and truncation parameters
(maximum bandwidth, approx inverse truncation, rational approximation)
- $e^{-\tau A} \mathbf{X} e^{-\tau A}$: stopping criteria (size of \mathcal{V}_{m})
(cheap residual norm, difference in subsequent iterates)

Implementation issues

$$
\begin{aligned}
& A \mathbf{X}+\mathbf{X A}=D, \quad A, D \in \mathbb{R}^{n \times n} \\
& \mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
\end{aligned}
$$

- $X(\tau)$: approximation and truncation parameters
(maximum bandwidth, approx inverse truncation, rational approximation)
- $e^{-\tau A} \mathbf{X} e^{-\tau A}$: stopping criteria (size of \mathcal{V}_{m})
(cheap residual norm, difference in subsequent iterates)
- Choice of splitting parameter τ :
- τ is related to bandwidth of $X(\tau)$ and magnitude of $e^{-\tau A} \mathbf{X} e^{-\tau A}$

Implementation issues

$$
\begin{aligned}
& A \mathbf{X}+\mathbf{X A}=D, \quad A, D \in \mathbb{R}^{n \times n} \\
& \mathbf{X}=\underbrace{X(\tau)}_{\text {num.banded }}+\underbrace{e^{-\tau A} \mathbf{X} e^{-\tau A}}_{\text {low-rank }}
\end{aligned}
$$

- $X(\tau)$: approximation and truncation parameters
(maximum bandwidth, approx inverse truncation, rational approximation)
- $e^{-\tau A} \mathbf{X} e^{-\tau A}$: stopping criteria (size of \mathcal{V}_{m})
(cheap residual norm, difference in subsequent iterates)
- Choice of splitting parameter τ :
- τ is related to bandwidth of $X(\tau)$ and magnitude of $e^{-\tau A} \mathbf{X} e^{-\tau A}$
- τ estimated automatically by using a-priori decay of matrix exponential

Numerical experiments

$A \in \mathbb{R}^{n \times n}: \quad$ 3-point stencil discretization of $\mathcal{L} u=-\frac{1}{\gamma}\left(e^{\times} u_{x}\right)_{x}+\gamma u$ $x \in(0,1)$, Dirichlet b.c. $\gamma>0, D$ sym tridiag. random

* Splitting τ : with $\beta_{\exp }=500, \epsilon_{\exp }=10^{-5}$ use theoretical bounds
* Parameters for banded portion:

Deg. of Rational approx $\nu=7$, truncation threshold $\epsilon_{\text {trunc }}=10^{-8}$

* Parameter for low rank portion: stopping threshold 10^{-3}

Numerical experiments

$A \in \mathbb{R}^{n \times n}: \quad$ 3-point stencil discretization of $\mathcal{L} u=-\frac{1}{\gamma}\left(e^{x} u_{x}\right)_{x}+\gamma u$ $x \in(0,1)$, Dirichlet b.c. $\gamma>0, D$ sym tridiag. random

* Splitting τ : with $\beta_{\exp }=500, \epsilon_{\exp }=10^{-5}$ use theoretical bounds * Parameters for banded portion:

Deg. of Rational approx $\nu=7$, truncation threshold $\epsilon_{\text {trunc }}=10^{-8}$

* Parameter for low rank portion: stopping threshold 10^{-3}

n	γ	$\kappa(A)$	τ	Time X_{B} $\left(\beta X_{B}\right)$	Time X_{m} $\left(\operatorname{rank}\left(X_{m}\right)\right.$	Time tot.
40000	1000	$6.61 \mathrm{e}+3$	2.72	$1.57 \mathrm{e}+3(489)$	$3.49 \mathrm{e}+0(7)$	$1.57 \mathrm{e}+3$
	500	$2.68 \mathrm{e}+4$	0.56	$1.55 \mathrm{e}+3(579)$	$2.16 \mathrm{e}+2(374)$	$1.77 \mathrm{e}+3$
	200	$1.72 \mathrm{e}+5$	0.08	$1.63 \mathrm{e}+3(595)$	$2.43 \mathrm{e}+2(408)$	$1.87 \mathrm{e}+3$
70000	1800	$6.19 \mathrm{e}+3$	2.97	$2.81 \mathrm{e}+3(475)$	$5.31 \mathrm{e}+0(7)$	$2.82 \mathrm{e}+3$
	800	$3.17 \mathrm{e}+4$	0.47	$2.87 \mathrm{e}+3(583)$	$1.07 \mathrm{e}+3(654)$	$3.94 \mathrm{e}+3$
	200	$5.27 \mathrm{e}+5$	0.02	$2.92 \mathrm{e}+3(597)$	$1.15 \mathrm{e}+3(693)$	$4.07 \mathrm{e}+3$
100000	2500	$6.53 \mathrm{e}+3$	2.77	$4.08 \mathrm{e}+3(487)$	$9.07 \mathrm{e}+0(7)$	$4.08 \mathrm{e}+3$
	1500	$1.82 \mathrm{e}+4$	0.84	$4.17 \mathrm{e}+3(571)$	$2.77 \mathrm{e}+3(879)$	$* 6.95 \mathrm{e}+3$
	500	$1.67 \mathrm{e}+5$	0.08	$3.99 \mathrm{e}+3(595)$	$2.78 \mathrm{e}+3(916)$	$* 6.78 \mathrm{e}+3$

Conclusions and outlook

- Generally sparse large-scale Lyapunov problem provides significantly higher challenges than low rank case
- Splitting strategy makes it doable for banded data
- Further work to completely set some of the parameters

Conclusions and outlook

- Generally sparse large-scale Lyapunov problem provides significantly higher challenges than low rank case
- Splitting strategy makes it doable for banded data
- Further work to completely set some of the parameters

Further reading
\star V. Simoncini,
Computational methods for linear matrix equations, SIAM Review, v.58, Sept. 2016.
valeria.simoncini@unibo.it
www.dm.unibo.it/~simoncin

