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Some matrix equations

• Sylvester matrix equation

AX+XB +D = 0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

AX+XA⊤ +D = 0, D = D⊤

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

Multiterm matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

(Stochastic) PDEs

Focus: All or some of the matrices are large (and possibly sparse)
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The Lyapunov equation.

AX+XA⊤ +D = 0, A stable

A X + X A⊤ + D = 0

A = sparse, but ... X dense

Example: For D = I and A symmetric, it holds that X = − 1

2
A−1
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The Lyapunov equation. Some characterizations

AX +XA⊤ +BB⊤ = 0, A ∈ R
n×n stable

• The Applied Mathematician perspective

X holds stability information of time-invariant dynamical system:

x′(t) = Ax(t) +Bu(t), x(0) = x0

• The Analyst perspective. Closed form solution:

X = −
1

2π

∫ ∞

−∞

(ıωI −A)−1BB⊤(ıωI −A)−∗dω =

∫ 0

−∞

eAtBB⊤eAtdt

• The Algebraist perspective. Kronecker formulation:

(A⊗ I + I ⊗A)x = b x = vec(X), b = vec(BBT )

with S := A⊗ I + I ⊗A ∈ R
n2

×n2
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Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equation:

AX+XA⊤ +BB⊤ = 0

No preconditioning to preserve symmetry

X is a large, dense matrix ⇒ low rank approximation

X ≈ X̃ = ZZ⊤, Z tall
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Projection-type methods

Given an approximation space K,

X ≈ Xm col(Xm) ∈ K

Galerkin condition: R := AXm +XmA⊤ +BB⊤ ⊥ K

V ⊤

mRVm = 0 K = Range(Vm)

————————————

Assume V ⊤
m Vm = Im and let Xm := VmYmV ⊤

m .

Projected Lyapunov equation:

V ⊤

m (AVmYmV ⊤

m + VmYmV ⊤

mA⊤ + BB⊤)Vm = 0

(V ⊤

mAVm)Ym + Ym(V ⊤

mA⊤Vm) + V ⊤

mBB⊤Vm = 0

Early contributions: Saad ’90, Jaimoukha & Kasenally ’94, for

K = Km(A,B) = Range([B,AB, . . . , Am−1B])
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More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

K = Km(A,B) +Km(A−1, A−1B),

that is, K = Range([B,A−1B,AB,A−2B,A2B,A−3B, . . . , ])

(Druskin & Knizhnerman ’98, Simoncini ’07)

• Rational Krylov subspace

K = K := Range([B, (A− s1I)
−1B, . . . , (A− smI)−1B])

usually, {s1, . . . , sm} ⊂ C
+ chosen a-priori

In both cases, for Range(Vm) = K, projected Lyapunov equation:

(V⊤

mAVm)Ym + Ym(V⊤

mA⊤Vm) + V⊤

mBB⊤Vm = 0

Xm = VmYmV⊤
m
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Applications:

• Matrix least squares

• Control

• (Stochastic) PDEs

• ...

Main device: Kronecker formulation
(
B⊤

1 ⊗A1 + . . .+B⊤

ℓ ⊗Aℓ

)
x = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Applications:

• Matrix least squares

• Control

• (Stochastic) PDEs

• ...

Alternative approaches:

low-rank approx in the problem space. Some examples:

- Control problem

- PDEs on uniform discretizations

- Stochastic PDE
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A class of generalized Lyapunov equations

AX +XAT +

m∑

j=1

NjXNT
j +BBT = 0

* A ∈ R
n×n nonsing

* Nj ∈ R
n×n low rank

* B ∈ R
n×ℓ, ℓ ≪ n

Typical applications:

- Model order reduction of bilinear control systems

- Linear parameter-varying systems

- Stability analysis of linear stochastic differential equations
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Stationary iterative methods by splitting

AX +XAT +
m∑

j=1

NjXN
T
j +BBT = 0

M(X)−N (X) +BBT = 0,

where M(X) = AX +XAT (Lyapunov operator)

−N (X) =

m∑

i=1

NjXNT
j

Assuming that (A,B) is controllable and X sym positive semi-def then

spec(A) ⊂ C
−, ρ(M−1N ) < 1

Stationary iteration:

M(Xk) = N (Xk−1)−BBT , k = 1, 2, . . . .

(Shank & Simoncini & Szyld, 2016)
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Stationary iterative methods by splitting. Cont’d

AX +XAT +

m∑

j=1

NjXNT
j +BBT = 0

Stationary iteration:

M(Xk) = N (Xk−1)−BBT , k = 1, 2, . . . .

In practice:

Approximately Solve AX +XAT +BBT = 0 for X1 = Z1Z
T
1

for k = 2, 3, . . .

Set Bk = [N1Zk−1, · · · , NmZk−1, B]

Approximately Solve AX +XAT +BkB
T
k

= 0 for Xk = ZkZ
T
k

If sufficiently accurate then stop
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Stationary iterative methods by splitting. Cont’d

Approximately Solve AX +XAT +BBT = 0 for X1 = Z1Z
T
1

for k = 2, 3, . . .

Set Bk = [N1Zk−1, · · · , NmZk−1, B]

Approximately Solve AX +XAT +BkB
T
k

= 0 for Xk = ZkZ
T
k

If sufficiently accurate then stop

Challenges:

• Inexact solves of Lyapunov equation at each step k

• Increase of Bk’s rank

• Computational cost of Lyapunov solves

• Memory effective stopping criterion
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Matrix equations in PDEs

The Poisson equation - revisited

−uxx − uyy = f, in Ω = (0, 1)2

+ Dirichlet b.c. (zero b.c. for simplicity)

Usual discretization ⇒ Au = b (with A = T ⊗ I + I ⊗ T )

Discretization: Ui,j ≈ uxi,yj , with (xi, yj) interior nodes, so that h: meshsize

uxx(xi, yj) ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
=

1

h2
[1,−2, 1]




Ui−1,j

Ui,j

Ui+1,j




uyy(xi, yj) ≈
Ui,j−1 − 2Ui,j + Ui,j+1

h2
=

1

h2
[Ui,j−1, Ui,j , Ui,j+1]




1

−2

1




TU+UT = F, b = vec(F )
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−∆u = 1, Ω = (0, 1)3 ⇒ A = (T ⊗I⊗I+I⊗T ⊗I+I⊗I⊗T )

CG for Ax = b vs Iterative solver for (I ⊗ T + T ⊗ I)U + UT = F

T ∈ R
n×n, A ∈ R

n3
×n3

, n = 50

CG PCG Matrix Eqn solver

Elapsed Time 2.91 0.56 0.08
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A 3D convection-diffusion equation

−ǫ∆u+w · ∇u = 1, in Ω = (0, 1)3, with convection term

w = (x sinx, y cos y, ez
2−1)

Sylvester equation:

[I ⊗ (T1 +Φ1B1) + (T2 +Ψ2B2)
⊤ ⊗ I] U+U (T3 +B3Υ3) = 11⊤

ǫ nx FGMRES+AGMG GMRES+MI20 Sylv Solver

cpu time (# its) cpu time (# its) cpu time (# its)

0.0050 100 8.0207 (15) 9.7207 ( 7) 0.5677 (22)

0.0010 100 7.6815 (14) 9.4935 ( 7) 0.5446 (22)

0.0005 100 7.3914 (14) 9.6274 ( 7) 0.5927 (24)

• Also for more general, separable coeff., operators on uniform grids

• If not separable coeff., use as preconditioner

(Palitta & Simoncini 2016)
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... A classical approach

Matrix formulation is not new...

• Bickley & McNamee, 1960: Early literature on difference equations

• Wachspress, 1963: Model problem for ADI algorithm

• Ellner & Wachspress (1980’s): interplay between the matrix and

vector formulations (via preconditioning)

Novel solvers for matrix equations allow faster convergence
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u : D×Ω → R s.t. P-a.s.,




−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D

u(x, ω) = 0 on ∂D

f : deterministic;

a: random field, linear function of finite no. of real-valued random

variables ξr : Ω → Γr ⊂ R

Common choice: truncated Karhunen–Loève (KL) expansion,

a(x, ω) = µ(x) + σ

m∑

r=1

√
λrφr(x)ξr(ω),

µ(x): expected value of diffusion coef. σ: std dev.

(λr, φr(x)) eigs of the integral operator V wrto V (x,x′) = 1

σ2C(x,x′)

(λr ց C : D ×D → R covariance fun. )
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Discretization by stochastic Galerkin

Approx with space in tensor product forma Xh × Sp

Ax = b, A = G0 ⊗K0 +

m∑

r=1

Gr ⊗Kr, b = g0 ⊗ f0,

x: expansion coef. of approx to u in the tensor product basis {ϕiψk}

Kr ∈ Rnx×nx , FE matrices (sym)

Gr ∈ R
nξ×nξ , r = 0, 1, . . . ,m Galerkin matrices associated w/ Sp (sym.)

g0: first column of G0

f0: FE rhs of deterministic PDE

nξ = dim(Sp) =
(m+ p)!

m!p!
⇒ nx · nξ huge

aSp set of multivariate polyn of total degree ≤ p
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The matrix equation formulation

(G0 ⊗K0 +G1 ⊗K1 + . . .+Gm ⊗Km)x = g0 ⊗ f0

transforms into

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤

0

(G0 = I)

Solution strategy. Conjecture:

• {Kr} from trunc’d Karhunen–Loève (KL) expansion

⇓

X ≈ X̃ low rank, X̃ = X1X
T
2

(Possibly extending results of Gradesyk, 2004)
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Matrix Galerkin approximation of the deterministic part. 1

Approximation space Kk and basis matrix Vk: X ≈ Xk = VkY

V ⊤

k Rk = 0, Rk := K0Xk +K1XkG1 + . . .+KmXkGm − f0g
⊤

0

Computational challenges:

• Generation of Kk involved m+ 1 different matrices {Kr} !

• Matrices Kr have different spectral properties

• nx, nξ so large that Xk, Rk should not be formed !

Joint project with Catherine Powell, David Silvester, Univ. Manchester
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Example 2. −∇ · (a∇u) = 1, D = (−1, 1)2. KL expansion.

µ = 1, ξr ∼ U(−
√
3,

√
3) and C(~x1, ~x2) = σ2 exp

(
− ‖~x1−~x2‖1

2

)
, nx = 65, 025,

σ = 0.3

m p nξ k inner nk rank time CG

its Kk X̃ secs time (its)

2 45 17 9.8 128 45 32.1 13.4 (8)

8 3 165 21 12.2 160 129 41.4 56.6 (10)

87% 4 495 24 14.5 183 178 51.1 197.0 (12)

5 1,287 27 16.9 207 207 64.0 553.0 (13)

2 91 15 9.9 165 89 47.8 30.0 (8)

12 3 455 18 12.2 201 196 61.6 175.0 (10)

89% 4 1,820 21 15.0 236 236 86.4 821.0 (12)

5 6,188 25 18.6 281 281 188.0 3070.0 (13)

2 231 16 9.4 281 206 111.0 94.7 (8)

20 3 1,771 23 12.3 399 399 197.0 845.0 (10)

93% 4 10,626 26 15.4 454 454 556.0 Out of Mem

% of variance integral of a
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More applications. Using sparsity in solution strategies

MX +XM = BBT

M = tridiag(−1, 4,−1) ∈ R
n×n, n = 100 and B = [e50, . . . , e60]

Left: pattern of X with log scale, nnz(X) = 9724

Right: Sparsity pattern of truncated ver. of X: all entries below 10−5 are omitted
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Sparsity in solution strategies. Full rank rhs

MX +XM = D, D = diag(rand)

M = tridiag(−1, 2.1,−1) ∈ R
n×n, banded, diag.dominant
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40
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0 0

Entries of X: n = 100 n = 500
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Conclusions

Multiterm (Kron) linear equations is the new challenge

• Great advances in solving really large linear matrix equations

• Linear matrix equation challenges rely on strength and maturity of

linear system solvers

• Low-rank tensor formats is the new generation of approximations

• Sparsity properties a new exploration field

Reference for linear matrix equations:

⋆ V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.
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