

On the numerical solution of large-scale linear matrix equations

V. Simoncini

Dipartimento di Matematica, Università di Bologna (Italy) valeria.simoncini@unibo.it

Some matrix equations

• Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\top} + C = 0, \qquad C = C^{\top}$$

Stability analysis in Control and Dynamical systems, Signal processing

• Sylvester matrix equation

$$A\mathbf{X} + \mathbf{X}D + F = 0$$

Eigenvalue problems and tracking, Control, MOR, Assignment problems, Riccati equation

• Algebraic Riccati equation

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C = 0, \qquad C = C^{\top}$$

books: Lancaster, Rodman 1995, Bini, Iannazzo, Meini 2012

Focus: All or some of the matrices are large (and possibly sparse)

Solving the Lyapunov equation. The problem Approximate X in: $AX + XA^{\top} + BB^{\top} = 0$ $A \in \mathbb{R}^{n \times n} \text{ neg.real} \qquad B \in \mathbb{R}^{n \times p}, \qquad 1 \le p \ll n$ Solving the Lyapunov equation. The problem

Approximate X in:

$$AX + XA^{\top} + BB^{\top} = 0$$

 $A \in \mathbb{R}^{n \times n} \text{ neg.real} \qquad B \in \mathbb{R}^{n \times p}, \qquad 1 \le p \ll n$

Time-invariant linear system:

$$\mathbf{x}'(t) = A\mathbf{x}(t) + B\mathbf{u}(t), \qquad \mathbf{x}(0) = x_0$$

Closed form solution:

$$X = \int_0^\infty e^{-tA} B B^\top e^{-tA^\top} dt$$

 \Rightarrow X symmetric semidef.

see, e.g., Antoulas '05, Benner '06

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- \bullet Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b \qquad x = P^{-1}\widetilde{x}$$

is easier and fast to solve

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find \boldsymbol{P} such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Large linear matrix equations:

 $AX + XA^{\top} + BB^{\top} = 0$

- No preconditioning to preserve symmetry
- X is a large, dense matrix \Rightarrow low rank approximation

$$X \approx \widetilde{X} = Z Z^{\top}, \quad Z \text{ tall}$$

Assume $V_m^{\top}V_m = I_m$ and let $X_m := V_m Y_m V_m^{\top}$.

Projected Lyapunov equation:

$$V_m^{\top}(AV_mY_mV_m^{\top} + V_mY_mV_m^{\top}A^{\top} + BB^{\top})V_m = 0$$

Assume $V_m^{\top}V_m = I_m$ and let $X_m := V_m Y_m V_m^{\top}$.

Projected Lyapunov equation:

$$V_m^{\top} (AV_m Y_m V_m^{\top} + V_m Y_m V_m^{\top} A^{\top} + BB^{\top}) V_m = 0$$

$$(V_m^{\top} A V_m) Y_m + Y_m (V_m^{\top} A^{\top} V_m) + V_m^{\top} BB^{\top} V_m = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for $\mathcal{K} = \mathcal{K}_m(A, B) = \text{Range}([B, AB, \dots, A^{m-1}B])$ Standard Krylov projection. In quest of a-priori error bounds

$$AX + XA^{\top} + BB^{\top} = 0, \qquad X \approx X_m \in K_m(A, B), \ B \in \mathbb{R}^{n \times 1}$$

$$A < 0$$
 symmetric, $|\lambda_{\min}| \leq \ldots \leq |\lambda_{\max}|$ eigs of A $||B|| = 1$

Let
$$\hat{\kappa} := \frac{\lambda_{\min} + \lambda_{\max}}{2\lambda_{\min}}$$
. Then
 $\|X - X_m\| \leq \frac{\sqrt{\hat{\kappa}} + 1}{\hat{\lambda}_{\min}\sqrt{\hat{\kappa}}} \left(\frac{\sqrt{\hat{\kappa}} - 1}{\sqrt{\hat{\kappa}} + 1}\right)^m$

Note: same rate as CG for $(A + \lambda_{\min}I)z = b$

The case of Field of Values in an ellipse

Assume Field of Values of A in \mathbb{C}^-

(*E* ellipse of center (c, 0), foci $(c \pm d, 0)$ and major semi-axis a)

Then

$$\|X - X_m\| \le \frac{4}{\alpha_{\min}} \frac{r_2}{r_2 - r} \left(\frac{r}{r_2}\right)^m$$

where

$$r = \frac{a}{d} + \sqrt{\left(\frac{a}{d}\right)^2 - 1}, \quad r_2 = \frac{c + \alpha_{\min}}{d} + \sqrt{\left(\frac{c + \alpha_{\min}}{d}\right)^2 - 1}$$

 α_{\min} eig. of $\frac{1}{2}(A + A^{\top})$ closest to the origin

Note: same rate as FOM for $(A + \alpha_{\min}I)z = b$

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

$$\mathcal{K} = \mathcal{K}_m(A, B) + \mathcal{K}_m(A^{-1}, A^{-1}B),$$

that is, $\mathcal{K} = \text{Range}([B, A^{-1}B, AB, A^{-2}B, A^2, A^{-3}B, \dots,])$

(Druskin & Knizhnerman '98, Simoncini '07)

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

$$\mathcal{K} = \mathcal{K}_m(A, B) + \mathcal{K}_m(A^{-1}, A^{-1}B),$$

that is, $\mathcal{K} = \text{Range}([B, A^{-1}B, AB, A^{-2}B, A^2, A^{-3}B, \dots,])$ (Druskin & Knizhnerman '98, Simoncini '07)

• Rational Krylov subspace

$$\mathcal{K} = \text{Range}([B, (A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B])$$

usually, $\{s_1,\ldots,s_m\}\subset \mathbb{C}^+$ chosen a-priori

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

$$\mathcal{K} = \mathcal{K}_m(A, B) + \mathcal{K}_m(A^{-1}, A^{-1}B),$$

that is, $\mathcal{K} = \text{Range}([B, A^{-1}B, AB, A^{-2}B, A^2, A^{-3}B, \dots,])$ (Druskin & Knizhnerman '98, Simoncini '07)

• Rational Krylov subspace

$$\mathcal{K} = \text{Range}([B, (A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B])$$

usually, $\{s_1, \ldots, s_m\} \subset \mathbb{C}^+$ chosen a-priori

In both cases, for range(\mathcal{V}_m) = \mathcal{K} , projected Lyapunov equation:

$$(\mathcal{V}_m^{\top}A\mathcal{V}_m)Y_m + Y_m(\mathcal{V}_m^{\top}A^{\top}\mathcal{V}_m) + \mathcal{V}_m^{\top}BB^{\top}\mathcal{V}_m = 0$$

 $X_m = \mathcal{V}_m Y_m \mathcal{V}_m^\top$

Rational Krylov Subspaces. A long tradition...

In general,

$$K_m(A, B, \mathbf{s}) = \operatorname{span}\{(A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B\}$$

- Eigenvalue problems (Ruhe, 1984)
- Model Order Reduction (transfer function evaluation)
- In Alternating Direction Implicit iteration (ADI) for linear matrix equations

Rational Krylov Subspaces in MOR. Choice of poles.

 $K_m(A, B, \mathbf{s}) = \operatorname{span}\{(A - s_1 I)^{-1} B, (A - s_2 I)^{-1} B, \dots, (A - s_m I)^{-1} B\}$

cf. General discussion in Antoulas, 2005.

Various attempts:

- Gallivan, Grimme, Van Dooren (1996–, ad-hoc poles)
- Penzl (1999-2000, ADI shifts preprocessing, Ritz values)

•

- Sabino (2006 tuning within preprocessing)
- IRKA Gugercin, Antoulas, Beattie (2008)

Adaptive choice of poles for Rational Krylov space

$$K_m(A, b, \mathbf{s}) = \operatorname{span}\{(A - s_1 I)^{-1} b, \dots, (A - s_m I)^{-1} b\}, \quad B = b$$
$$\mathbf{s} = [s_1, \dots, s_m] \text{ to be chosen sequentially}$$

Greedy procedure. Define:

$$r_m(z) = \prod_{j=1}^m \frac{z - \lambda_j}{z - s_j}, \qquad \lambda_j = \operatorname{eigs}(\mathcal{V}_m^* A \mathcal{V}_m)$$

 $(r_m \text{ residual of a related linear system})$

Adaptive choice of poles for Rational Krylov space

$$K_m(A, b, \mathbf{s}) = \operatorname{span}\{(A - s_1 I)^{-1} b, \dots, (A - s_m I)^{-1} b\}, \quad B = b$$
$$\mathbf{s} = [s_1, \dots, s_m] \text{ to be chosen sequentially}$$

Greedy procedure. Define:

$$r_m(z) = \prod_{j=1}^m \frac{z - \lambda_j}{z - s_j}, \qquad \lambda_j = \operatorname{eigs}(\mathcal{V}_m^* A \mathcal{V}_m)$$

 $(r_m \text{ residual of a related linear system})$

$$s_{m+1} := \arg\left(\max_{s \in \partial \mathcal{S}_m} \frac{1}{|r_m(s)|}\right)$$

where $S_m \subset \mathbb{C}^+$ approximately encloses the eigenvalues of -A(Druskin, Lieberman, Zaslavski '10, Druskin, Simoncini '11)

Some numerical experiments

- Adaptive Rational Krylov Subspace method
- Extended Krylov Subspace method (Rational method with fixed poles)

$$\mathbf{EK}_{m}(A,b) = K_{m}(A,b) + K_{m}(A^{-1},A^{-1}b)$$

Comparison measures:

- Efficiency (CPU time)
- Memory (space dimension)
- Rank of solution

n		Rational	Extended	
		space	space	
		direct	direct	
1357	CPU time (s)	0.84	0.36	
	dim. Approx. Space	21	64	
	Rank of Solution	21	47	
20209	CPU time (s)	11.19	10.97	
	dim. Approx. Space	25	124	
	Rank of Solution	25	75	
79841	CPU time (s)	51.54	73.03	
	dim. Approx. Space	26	168	
	Rank of Solution	26	103	

The RAIL (symmetric) data set

		× -	· ·		
n		Rational	Extended	Rational	Extended
		space	space	space	space
		direct	direct	iterative	iterative
1357	CPU time (s)	0.84	0.36	0.96	1.60
	dim. Approx. Space	21	64	21	68
	Rank of Solution	21	47	21	45
20209	CPU time (s)	11.19	10.97	25.31	201.94
	dim. Approx. Space	25	124	25	126
	Rank of Solution	25	75	25	75
79841	CPU time (s)	51.54	73.03	189.48	2779.95
	dim. Approx. Space	26	168	26	170
	Rank of Solution	26	103	26	98

The RAIL (symmetric) data set

Inner solves: PCG with IC(10^{-2})

More Tests: two nonsymmetric problems

n		Rational	Extended	Rational	Extended
		space	space	space	space
		direct	direct	iterative	iterative
9669	CPU time (s)	3.16	3.06	3.01	9.95
	dim. Approx. Space	16	36	16	36
	Rank of Solution	16	24	16	24
20082	CPU time (s)	59.99	45.84	13.01	25.28
	dim. Approx. Space	15	26	15	26
	Rank of Solution	15	22	15	22

Convective thermal flow problems (FLOW, CHIP data sets)

 \star All real shifts used

Alternating Direction Implicit iteration (ADI) - Wachspress (see, e.g., Li 2000, Penzl 2000) $X_0 = 0, X_j = -2p_j(A + p_jI)^{-1}BB^{\top}(A + p_jI)^{-\top} \quad j = 1, \dots, \ell$ $+(A + p_jI)^{-1}(A - p_jI)X_{j-1}(A - p_jI)^{\top}(A + p_jI)^{-\top}$

with

$$\phi_{\ell}(t) = \prod_{j=1}^{\ell} (t - p_j), \quad \{p_1, \dots, p_{\ell}\} = \operatorname{argmin} \max_{t \in \Lambda(A)} \left| \frac{\phi_{\ell}(t)}{\phi_{\ell}(-t)} \right|$$

Implementation aspects: Benner, Saak, Quintana-Ortì²,

Convergence depends on choice of $\{p_j\}$. For A < 0 sym and one pole:

$$\|X - X_{\ell}\| \approx \left(\frac{\sqrt{\kappa_{adi}} - 2}{\sqrt{\kappa_{adi}} + 2}\right)^{\ell}, \qquad \kappa_{adi} = \frac{\lambda_{\max}}{\lambda_{\min}}$$

ADI and Rational Krylov subspaces

Main consideration (see, e.g., Li, Wright 2000)

 $X_m^{(ADI)} \in K_m(A, b, \mathbf{s})$

and also, for $U_m = [(A - s_1 I)^{-1} b, \dots, (A - s_m I)^{-1} b],$ $X_m^{(ADI)} = U_m \boldsymbol{\alpha}^{-1} U_m^*$

with α Cauchy matrix

ADI and Rational Krylov subspaces

Main consideration (see, e.g., Li, Wright 2000)

 $X_m^{(ADI)} \in K_m(A, b, \mathbf{s})$

and also, for $U_m = [(A - s_1 I)^{-1} b, \dots, (A - s_m I)^{-1} b]$, $X_m^{(ADI)} = U_m \boldsymbol{\alpha}^{-1} U_m^*$

with lpha Cauchy matrix

Equivalence of ADI with RKSM:

ADI coincides with the Galerkin solution X_m in Rational Krylov space if and only if

$$s_j = -\bar{\lambda}_j$$

where $\lambda_j = \operatorname{eigs}(\mathcal{V}_m^* A \mathcal{V}_m)$ Ritz values (suitably ordered)

Druskin, Knizhnerman, Simoncini '11, Beckermann '11 (and Flagg '09)

Typical behavior of ADI and generic RKSM for the same poles

Operator: $L(u) = -\Delta u + (50xu_x)_x + (50yu_y)_y$ on $[0, 1]^2$

ADI and RKSM use 10 non-optimal poles cyclically (computed a-priori with lyapack, Penzl 2000)

Other recent approaches and convergence results

- Kronecker Formulation
- Galerkin-Projection Accelerated ADI (Benner, Saak, tr 2010)

Different aims:

- IRKA (Gugercin, Antoulas, Beattie, 2008)
- Riemann optimization approach (Vandereycken, Vandewalle, 2010)

Other recent approaches and convergence results

- Kronecker Formulation
- Galerkin-Projection Accelerated ADI (Benner, Saak, tr 2010)

Different aims:

- IRKA (Gugercin, Antoulas, Beattie, 2008)
- Riemann optimization approach (Vandereycken, Vandewalle, 2010)

Further Convergence results:

- Extended Krylov for Lyapunov eqn (Knizhnerman, Simoncini 2011)
- Rational Krylov for Lyapunov eqn (Druskin, Knizhnerman, Simoncini '11)
- Improved, and for the Sylvester eqn (Beckermann 2011)

Conclusions

General Considerations:

- Large advances in solving really large linear matrix equations
- Second order difficulties exploit strength of linear system solvers

Conclusions

General Considerations:

- Large advances in solving really large linear matrix equations
- Second order difficulties exploit strength of linear system solvers

On-going projects:

- Tangential adapt. RKSM, $rank(B) \gg 1$ (Druskin, S., Zaslavsky, tr'12)
- Minimal residual methods by projection (Lin, S., tr 2012)

$$\min_{\widetilde{X}\in\mathcal{K}} \|A\widetilde{X} + \widetilde{X}A^{\top} + BB^{\top}\|_F$$

• Constrained Sylvester equations (Shank, S., in progress)

$$A\mathbf{X} + \mathbf{X}D = \mathbf{Y}L$$
 $\mathbf{X}B = 0$

• On Projection methods for (quadratic) Riccati equation (Heyouni, Jbilou, 2009, S., Szyld, Monsalve tr. 2012)

Some References

* V. S., A new iterative method for solving large-scale Lyapunov matrix equations. SISC (2007)

 \star V. S. and V. Druskin, Convergence analysis of projection methods for the numerical solution of large Lyapunov equations. SINUM (2009)

* L. Knizhnerman and V. S., Convergence analysis of the Extended Krylov Subspace Method for the Lyapunov equation. Numerische Mathematik (2011)

★ V. Druskin and V. S., Adaptive rational Krylov subspaces for large-scale dynamical systems. Systems & Control Letters (2011)

* V. Druskin, L. Knizhnerman and V. S., Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SINUM (2011)

* V. Druskin, V. S. and M. Zaslavsky, Adaptive tangential interpolation in rational Krylov subspaces for MIMO model reduction data pp. 1-22, Nov.'12.