

Rational Krylov subspace methods for large-scale Lyapunov equations

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it

joint work with Vladimir Druskin and Leonid Knizhnerman (Schlumberger-Doll Research)

Model Order Reduction

Given the continuous time-invariant linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t) + B\mathbf{u}(t), \qquad \mathbf{\Sigma} = \left(\begin{array}{c|c} A & B \\ \hline C & \end{array}\right), \ A \in \mathbb{C}^{n \times n}$$
$$\mathbf{y}(t) = C\mathbf{x}(t), \quad \mathbf{x}(0) = x_0$$

Analyse the construction of a reduced system

$$\hat{\boldsymbol{\Sigma}} = \left(\begin{array}{c|c} \tilde{A} & \tilde{B} \\ \hline \tilde{C} & \end{array} \right)$$

with \tilde{A} of size $m \ll n$

Projection methods and Linear Dynamical Systems

Time-invariant linear system:

$$\mathbf{x}'(t) = A\mathbf{x}(t) + B\mathbf{u}(t), \qquad \mathbf{x}(0) = x_0$$
$$\mathbf{y}(t) = C\mathbf{x}(t)$$

Emphasis: A large dimensions, $W(A) \subset \mathbb{C}^-$

Projection methods: the general idea

Given space $K \subset \mathbb{R}^n$ of size m and (orthonormal) basis V_m ,

$$A \to A_m = V_m^* A V_m, \quad B \to B_m = V_m^* B, \quad C \to C_m = C V_m$$

Reduced problem uses: A_m, B_m, C_m

The Lyapunov matrix equation

 $AX + XA^* + BB^* = 0$

Galerkin approximation by projection:

K of dim. m, V_m orthonormal basis. $X \approx X_m = V_m Y V_m^*$

 $R_m \perp K \qquad \Leftrightarrow \qquad V_m^* R_m V_m = 0$

that is,

$$V_m^* A V_m Y + Y V_m^* A^* V_m + V_m^* B B^* V_m = 0$$

Small size equation. Solved with dense methods.

Choices of K in the literature:

• Standard Krylov subspace: $K_m(A, B) = \operatorname{span}\{B, AB, \dots, A^{m-1}B\}$

Choices of K in the literature:

- Standard Krylov subspace: $K_m(A, B) = \operatorname{span}\{B, AB, \dots, A^{m-1}B\}$
- Shift-Invert Krylov subspace: $K_m((A - \sigma I)^{-1}, B) = \operatorname{span}\{B, (A - \sigma I)^{-1}B, \dots, (A - \sigma I)^{-(m-1)}B\};$ often $\sigma = 0$

Choices of K in the literature:

- Standard Krylov subspace: $K_m(A, B) = \operatorname{span}\{B, AB, \dots, A^{m-1}B\}$
- Shift-Invert Krylov subspace: $K_m((A - \sigma I)^{-1}, B) = \operatorname{span}\{B, (A - \sigma I)^{-1}B, \dots, (A - \sigma I)^{-(m-1)}B\};$ often $\sigma = 0$
- Extended Krylov subspace:

 $\mathbf{EK}_{m}(A,B) = K_{m}(A,B) + K_{m}(A^{-1},A^{-1}B)$

Choices of K in the literature:

- Standard Krylov subspace: $K_m(A, B) = \operatorname{span}\{B, AB, \dots, A^{m-1}B\}$
- Shift-Invert Krylov subspace: $K_m((A - \sigma I)^{-1}, B) = \operatorname{span}\{B, (A - \sigma I)^{-1}B, \dots, (A - \sigma I)^{-(m-1)}B\};$ often $\sigma = 0$
- Extended Krylov subspace: $\mathbf{EK}_m(A,B) = K_m(A,B) + K_m(A^{-1},A^{-1}B)$
- Rational Krylov subspace:

 $K_m(A, B, \mathbf{s}) = \text{span}\{(A - s_1 I)^{-1} B, (A - s_2 I)^{-1} B, \dots, (A - s_m I)^{-1} B\}$ usually $\mathbf{s} = [s_1, \dots, s_m]$ a-priori Rational Krylov Subspaces. A long tradition...

 $K_m(A, B, \mathbf{s}) = \operatorname{span}\{(A - s_1 I)^{-1} B, (A - s_2 I)^{-1} B, \dots, (A - s_m I)^{-1} B\}$

- Eigenvalue problems (Ruhe, 1984)
- Model Order Reduction (transfer function evaluation)
- ADI for linear matrix equations

Rational Krylov Subspaces in MOR. Choice of poles.

 $K_m(A, B, \mathbf{s}) = \operatorname{span}\{(A - s_1 I)^{-1} B, (A - s_2 I)^{-1} B, \dots, (A - s_m I)^{-1} B\}$

cf. General discussion in Antoulas, 2005.

Various attempts:

- Gallivan, Grimme, Van Dooren (1996–, ad-hoc poles)
- Penzl (1999-2000, ADI shifts preprocessing, Ritz values)

•

- Sabino (2006 tuning within preprocessing)
- IRKA Gugercin, Antoulas, Beattie (2008)

A new adaptive choice of poles for RKS. $B = b \in \mathbb{C}^n$ $K_m(A, b, \mathbf{s}) = \operatorname{span}\{(A - s_1I)^{-1}b, (A - s_2I)^{-1}b, \dots, (A - s_mI)^{-1}b\}$ $\mathbf{s} = [s_1, \dots, s_m]$ to be chosen sequentially

The fundamental idea: Assume you wish to solve

$$(A - sI)x = b$$

with a Galerkin procedure in $K_m(A, b, s)$. Let V_m be orth. basis. The residual satisfies:

$$b - (A - sI)x_m = \frac{r_m(A)b}{r_m(s)}, \qquad r_m(z) = \prod_{j=1}^m \frac{z - \lambda_j}{z - s_j}$$

with $\lambda_j = \operatorname{eigs}(V_m^*AV_m)$. Moreover,

$$||r_m(A)b|| = \min_{\theta_1,\dots,\theta_m} ||\prod_{j=1}^m (A - \theta_j I)(A - s_j I)^{-1}b|$$

A new adaptive choice of poles for RKS. Cont'd

$$r_m(z) = \prod_{j=1}^m \frac{z - \lambda_j}{z - s_j}, \qquad \lambda_j = \operatorname{eigs}(V_m^* A V_m)$$

For A symmetric:

$$s_{m+1} := \arg\left(\max_{s \in [-\lambda_{\max}, -\lambda_{\min}]} \frac{1}{|r_m(s)|}\right)$$

 $[\lambda_{\min}, \lambda_{\max}] \approx \operatorname{spec}(A)$ (Druskin, Lieberman, Zaslavski (SISC 2010))

For A nonsymmetric:

$$s_{m+1} := \arg\left(\max_{s \in \partial \mathcal{S}_m} \frac{1}{|r_m(s)|}\right)$$

where $\mathcal{S}_m \subset \mathbb{C}^+$ approximately encloses the eigenvalues of -A

Approximation by projection

 $X \approx X_m = V_m Y V_m^*$ with

 $(V_m^* A V_m)Y + Y(V_m^* A V_m)^* + (V_m^* b)(V_m^* b)^* = 0$

Some technical issues:

- $K_m(A, b, \mathbf{s}) = \operatorname{span}\{b, (A s_2 I)^{-1} b, \dots, \prod_{j=2}^m (A s_j I)^{-1} b\}$ (includes b)
- All real poles (all real arithmetic work)
- Cheap computation of V^{*}_mAV_m at each iteration m (K_m(A, b, s) ⊆ K_{m+1}(A, b, s))
- Cheap computation of the residual norm

$$||R_m|| = ||AX_m + X_m A^* + bb^*||$$

• Cheap factorized form of solution $X_m = X_{\hat{m}} := Z_{\hat{m}} Z_{\hat{m}}^*$, $\hat{m} \leq m$

Some numerical experiments

Closest competitors:

- ADI problem: computation of parameters
- Extended Krylov Subspace method outperforms ADI in general

$$\mathbf{EK}_{m}(A,b) = K_{m}(A,b) + K_{m}(A^{-1},A^{-1}b)$$

Comparison measures:

- Efficiency (CPU time)
- Memory (space dimension)
- Rank of solution

n		Rational	Extended	
		space	space	
		direct	direct	
1357	CPU time (s)	0.84	0.36	
	dim. Approx. Space	21	64	
	Rank of Solution	21	47	
20209	CPU time (s)	11.19	10.97	
	dim. Approx. Space	25	124	
	Rank of Solution	25	75	
79841	CPU time (s)	51.54	73.03	
	dim. Approx. Space	26	168	
	Rank of Solution	26	103	

The RAIL (symmetric) data set

	、 -	· ·		
	Rational	Extended	Rational	Extended
	space	space	space	space
	direct	direct	iterative	iterative
CPU time (s)	0.84	0.36	0.96	1.60
dim. Approx. Space	21	64	21	68
Rank of Solution	21	47	21	45
CPU time (s)	11.19	10.97	25.31	201.94
dim. Approx. Space	25	124	25	126
Rank of Solution	25	75	25	75
CPU time (s)	51.54	73.03	189.48	2779.95
dim. Approx. Space	26	168	26	170
Rank of Solution	26	103	26	98
	CPU time (s) dim. Approx. Space Rank of Solution CPU time (s) dim. Approx. Space Rank of Solution CPU time (s) dim. Approx. Space Rank of Solution	Rational space direct CPU time (s) 0.84 dim. Approx. Space 21 Rank of Solution 21 CPU time (s) 11.19 dim. Approx. Space 25 Rank of Solution 25 CPU time (s) 51.54 dim. Approx. Space 26 Rank of Solution 26	RationalExtendedspacespacedirectdirectCPU time (s)0.840.36dim. Approx. Space2164Rank of Solution2147CPU time (s)11.1910.97dim. Approx. Space25124Rank of Solution2575CPU time (s)51.5473.03dim. Approx. Space26168Rank of Solution26103	RationalExtendedRationalspacespacespacedirectdirectdirectCPU time (s)0.840.360.96dim. Approx. Space216421Rank of Solution214721CPU time (s)11.1910.9725.31dim. Approx. Space2512425Rank of Solution257525CPU time (s)51.5473.03189.48dim. Approx. Space2616826Rank of Solution2610326

The RAIL (symmetric) data set

Inner solves: PCG with IC(10^{-2})

More Tests: two nonsymmetric problems

n		Rational	Extended	Rational	Extended
		space	space	space	space
		direct	direct	iterative	iterative
9669	CPU time (s)	3.16	3.06	3.01	9.95
	dim. Approx. Space	16	36	16	36
	Rank of Solution	16	24	16	24
20082	CPU time (s)	59.99	45.84	13.01	25.28
	dim. Approx. Space	15	26	15	26
	Rank of Solution	15	22	15	22

Convective thermal flow problems (FLOW, CHIP data sets)

 \star All real shifts used

ADI and Rational Krylov subspaces

Main consideration (see, e.g., Li, Wright 2000)

 $X_m^{(ADI)} \in K_m(A, B, \mathbf{s})$

and also, for $U_m = [(A - s_1 I)^{-1} b, \dots, (A - s_m I)^{-1} b],$ $X_m^{(ADI)} = U_m \boldsymbol{\alpha}^{-1} U_m^*$

with α Cauchy matrix (Druskin, Knizhnerman, Simoncini 2010)

ADI and Rational Krylov subspaces

Main consideration (see, e.g., Li, Wright 2000)

 $X_m^{(ADI)} \in K_m(A, B, \mathbf{s})$

and also, for $U_m = [(A - s_1 I)^{-1} b, \dots, (A - s_m I)^{-1} b]$,

$$X_m^{(ADI)} = U_m \boldsymbol{\alpha}^{-1} U_m^*$$

with α Cauchy matrix (Druskin, Knizhnerman, Simoncini 2010)

Equivalence of ADI with generic RKSM:

ADI coincides with the Galerkin solution X_m in Rational Krylov space if and only if

$$s_j = -\bar{\lambda}_j$$

where $\lambda_j = \operatorname{eigs}(V_m^* A V_m)$ Ritz values (suitably ordered) Druskin, Knizhnerman, Simoncini 2010,

see also Flagg 2009 for \Leftarrow , and Beckermann 2011

Typical behavior of ADI and generic RKSM for the same poles Operator: $L(u) = -\Delta u + (50xu_x)_x + (50yu_y)_y$ on $[0, 1]^2$

Left: rail problem, A symmetric.

Right: flow_meter_model_v0.5 problem, A nonsymmetric. ADI and RKSM use 10 non-optimal poles cyclically (computed a-priori with lyapack, Penzl 2000) Other recent approaches and convergence results

• Galerkin-Projection Accelerated ADI (Benner, Saak, tr 2010)

Different aims:

- IRKA (Gugercin, Antoulas, Beattie, 2008)
- Riemann optimization approach (Vandereycken, Vandewalle, 2010)

Convergence analysis:

- For the Lyapunov equation (Knizhnerman 2010)
- Improved, and for the Sylvester equation (Beckermann 2011)

Conclusions and outlook

- Adaptive procedure makes Rational Krylov subspace appealing
- Competitive in terms of both reduction space and CPU time
- MOR: b = B? Balanced Truncation?

www.dm.unibo.it/~simoncin valeria@dm.unibo.it

References:

* V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Scient. Computing (2007)

* V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems. Systems & Control Letters, (2011)

* V. Druskin, L. Knizhnerman and V. Simoncini, Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. (tr 2010)