On the use of Minimal Residual methods for solving indefinite symmetric structured linear systems
V. Simoncini

Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it

The problem

$$
\mathcal{M} x=b
$$

with \mathcal{M} large, real indefinite symmetric matrix

A popular example:

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right] \quad A=A^{T}, C=C^{T} \geq 0
$$

... Survey: Benzi, Golub and Liesen, Acta Num 2005

Iterative solver. Convergence considerations.

$$
\mathcal{M} x=b
$$

\mathcal{M} is symmetric and indefinite \rightarrow MINRES

$$
x_{k} \in x_{0}+K_{k}\left(\mathcal{M}, r_{0}\right), \quad \text { s.t. } \quad \min \left\|b-\mathcal{M} x_{k}\right\|
$$

$r_{k}=b-\mathcal{M} x_{k}, k=0,1, \ldots, x_{0}$ starting guess

Iterative solver. Convergence considerations.

$$
\mathcal{M} x=b
$$

\mathcal{M} is symmetric and indefinite \rightarrow MINRES

$$
x_{k} \in x_{0}+K_{k}\left(\mathcal{M}, r_{0}\right), \quad \text { s.t. } \quad \min \left\|b-\mathcal{M} x_{k}\right\|
$$

$r_{k}=b-\mathcal{M} x_{k}, k=0,1, \ldots, x_{0}$ starting guess

If $\operatorname{spec}(\mathcal{M}) \subset[-a,-b] \cup[c, d]$, with $|b-a|=|d-c|$, then

$$
\left\|b-\mathcal{M} x_{2 k}\right\| \leq 2\left(\frac{\sqrt{a d}-\sqrt{b c}}{\sqrt{a d}+\sqrt{b c}}\right)^{k}\left\|b-\mathcal{M} x_{0}\right\|
$$

Note: more general but less tractable bounds available

Features ...
... of MINRES

- Residual minimizing solver for indefinite linear systems
- Short-term recurrence (possibly with Lanczos recurrence)
- Positive definite preconditioner, but not necessarily factorized (not as $L L^{T}$)

Features ...

... of MINRES

- Residual minimizing solver for indefinite linear systems
- Short-term recurrence (possibly with Lanczos recurrence)
- Positive definite preconditioner, but not necessarily factorized (not as $L L^{T}$)
... and of this talk
- Harmonic Ritz values and superlinear convergence
- Enhancing MINRES convergence
- Estimating the Saddle-point problem inf-sup constant

Harmonic Ritz values

$$
\begin{aligned}
& K_{k}\left(\mathcal{M}, r_{0}\right)=\operatorname{span}\left\{r_{0}, \mathcal{M} r_{0}, \ldots, \mathcal{M}^{m-1} r_{0}\right\} \quad\left(x_{0}=0\right) \\
& x_{m}=\phi_{m-1}(\mathcal{M}) r_{0} \in K_{k}\left(\mathcal{M}, r_{0}\right), \quad \phi_{m-1} \text { polyn. of deg } \leq m-1
\end{aligned}
$$

Therefore

$$
r_{m}=r_{0}-\mathcal{M} x_{m}=\varphi_{m}(\mathcal{M}) r_{0}, \quad \varphi_{m} \text { polyn. of deg } \leq m, \varphi_{m}(0)=1
$$

Harmonic Ritz values: roots of φ_{m} (residual polynomial)

Remark: Harmonic Ritz values approximate eigenvalues of \mathcal{M}
(Paige, Parlett \& van der Vorst, '95)

Typical convergence pattern

Harmonic Ritz values as iterations proceed

Superlinear convergence

Generalization of CG well-known result (van der Sluis \& van der Vorst '86)
MINRES: (van der Vorst and Vuik '93, van der Vorst '03)
$\left(\lambda_{i}, z_{i}\right)$ eigenpairs of \mathcal{M}
Assume $r_{m}=\bar{r}_{0}+s$ with $\bar{r}_{0} \perp z_{1}$
Let \bar{r}_{j} be the GMRES residual after j iterations with \bar{r}_{0}. Then

$$
\left\|r_{m+j}\right\| \leq F_{m}\left\|\bar{r}_{j}\right\|, \quad \text { where } \quad F_{m}=\max _{k \geq 2} \frac{\left|\theta_{1}^{(m)}\right|}{\left|\lambda_{1}\right|} \frac{\left|\theta_{1}^{(m)}-\lambda_{k}\right|}{\left|\lambda_{1}-\lambda_{k}\right|}
$$

and $\theta_{1}^{(m)}$ is the harmonic Ritz value closest to λ_{1} in $K_{m}\left(A, r_{0}\right)$.
(for a proof, Simoncini \& Szyld '11, unpublished)

Superlinear convergence. An experiment.

A_{1}, b_{1} data with negative eigenvalue closest to zero removed

Enhancing MINRES convergence for Saddle point problems

Spectral properties

$$
\mathcal{M}=\left[\begin{array}{cc}
A & B^{T} \\
B & O
\end{array}\right] \quad \begin{array}{ll}
0<\lambda_{n} \leq \cdots \leq \lambda_{1} & \text { eigs of } A \\
0<\sigma_{m} \leq \cdots \leq \sigma_{1} & \text { sing. vals of } B
\end{array}
$$

$\operatorname{spec}(\mathcal{M})$ subset of \quad (Rusten \& Winther 1992)

$$
\left[\frac{1}{2}\left(\lambda_{n}-\sqrt{\lambda_{n}^{2}+4 \sigma_{1}^{2}}\right), \frac{1}{2}\left(\lambda_{1}-\sqrt{\lambda_{1}^{2}+4 \sigma_{m}^{2}}\right)\right] \cup\left[\lambda_{n}, \frac{1}{2}\left(\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \sigma_{1}^{2}}\right)\right]
$$

More results under different hypotheses

Block diagonal Preconditioner
$\star \mathcal{P}_{\text {ideal }}=\left[\begin{array}{cc}A & 0 \\ 0 & B A^{-1} B^{T}\end{array}\right]$ MINRES converges in at most 3 its.

Block diagonal Preconditioner
$\star \mathcal{P}_{\text {ideal }}=\left[\begin{array}{cc}A & 0 \\ 0 & B A^{-1} B^{T}\end{array}\right]$ MINRES converges in at most 3 its.
A more practical choice:

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & \widetilde{S}
\end{array}\right] \quad \text { spd. } \quad \widetilde{A} \approx A \quad \widetilde{S} \approx B A^{-1} B^{T}
$$

spectrum in

$$
[-a,-b] \cup[c, d], \quad a, b, c, d>0
$$

A quasi-optimal approximate Schur complement

$$
\widetilde{S} \approx B A^{-1} B^{T}
$$

For certain operators, \widetilde{S} is quasi-optimal:
$\operatorname{spec}\left(B A^{-1} B^{T} \widetilde{S}^{-1}\right)$ well clustered except for few eigenvalues

A quasi-optimal approximate Schur complement

$$
\widetilde{S} \approx B A^{-1} B^{T}
$$

For certain operators, \widetilde{S} is quasi-optimal:
$\operatorname{spec}\left(B A^{-1} B^{T} \widetilde{S}^{-1}\right)$ well clustered except for few eigenvalues

Possibly: well clustered eigs also mesh-independent

The role of \widetilde{S}

Claim:
The presence of outliers in $B A^{-1} B^{T} \widetilde{S}^{-1}$ is accurately inherited by the preconditioned matrix $\mathcal{M} \mathcal{P}^{-1}$ so that $\kappa\left(\mathcal{M P}^{-1}\right) \gg 1$

(for a proof, see Olshanskii \& Simoncini, SIMAX '10)

Eliminating the stagnation phase: "Deflated" MINRES
$Y=\left[y_{1}, \ldots, y_{s}\right]:$ approximate eigenbasis of \mathcal{M}

* Approximation space: Augmented Lanczos sequence

$$
v_{j+1} \perp \operatorname{span}\left\{Y, v_{1}, v_{2}, \ldots, v_{j}\right\}, \quad\left\|v_{j+1}\right\|=1
$$

obtained by standard Lanczos method with coeff.matrix

$$
\mathcal{G}:=\mathcal{M}-\mathcal{M} Y\left(Y^{T} \mathcal{M} Y\right)^{-1} Y^{T} \mathcal{M}
$$

* MINRES method:

$$
r_{j}=\hat{b}-\mathcal{M} \hat{u}_{j} \perp \mathcal{G} K_{j}\left(\mathcal{G}, v_{1}\right)
$$

$\Rightarrow \quad \hat{u}_{j}$ obtained with a short-term recurrence

Stokes type problem with variable viscosity in $\Omega \subset \mathbb{R}^{d}$

$$
\begin{aligned}
-\operatorname{div} \nu(\mathbf{x}) \mathbf{D u}+\nabla p & =\mathbf{f} \quad
\end{aligned} \quad \text { in } \quad \Omega,
$$

with $0<\nu_{\min } \leq \nu(\mathbf{x}) \leq \nu_{\max }<\infty$. (Here, $\nu(\mathbf{x})=2 \mu+\frac{\tau_{s}}{\sqrt{\varepsilon^{2}+|\mathbf{D u}(\mathbf{x})|^{2}}}$)
\mathbf{u} : velocity vector field $\quad p$: pressure
$\mathbf{D u}=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}\right)$ rate of deformation tensor;

Prec. S : pressure mass matrix wrto weighted product $\left(\nu^{-1} \cdot, \cdot\right)_{L^{2}(\Omega)}$

Exact and approximate eigenvectors

$\widetilde{A}=\mathrm{IC}(A, \delta), \delta=10^{-2}$ poor approximation \Rightarrow one small positive eig
Bercovier-Engelman model of the Bingham viscoplastic fluid

A stopping criterion for Stokes mixed approximation

$$
\mathcal{M}=\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right], \quad \mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & \widetilde{S}
\end{array}\right] \quad \widetilde{A} \sim A, \quad \widetilde{S} \sim B A^{-1} B^{T}
$$

For stable discretization, heuristic relation between error and residual:

$$
\left\|x-x_{j}\right\|_{\mathcal{P}_{\text {ideal }}} \leq \frac{\sqrt{2}}{\gamma^{2}}\left\|b-\mathcal{M} x_{j}\right\|_{\mathcal{P}_{\text {ideal }}^{-1}} \sim \frac{\sqrt{2}}{\gamma^{2}}\left\|b-\mathcal{M} x_{j}\right\|_{\mathcal{P}^{-1}}<t o l
$$

γ inf-sup constant

Estimating the inf-sup constant

For the preconditioned problem (Elman etal, '05):

$$
\lambda_{-} \leq \frac{1}{2}\left(\delta-\sqrt{\delta^{2}+4 \delta \gamma^{2}}\right) \quad \delta \leq \lambda_{+}
$$

with $\delta=\lambda_{\text {min }}\left(A \widetilde{A}^{-1}\right)$
If these bounds are tight (equalities), then

$$
\gamma^{2}=\frac{\lambda_{-}^{2}-\lambda_{-} \lambda_{+}}{\lambda_{+}}
$$

In practice, adaptive estimate with Harmonic Ritz values:

$$
\gamma \approx \gamma_{j}^{2}=\frac{\left(\theta_{-}^{(j)}\right)^{2}-\theta_{-}^{(j)} \theta_{+}^{(j)}}{\theta_{+}^{(j)}}, \quad j t h \text { MINRES iteration }
$$

(Silvester \& Simoncini, '11)

An example

e_{k} : error at iteration $k \quad r_{k}$: residual at iteration k

$E=\mathcal{P}_{\text {ideal }}, \quad M_{*}=\mathcal{P}^{-1}$

Conclusions

- MINRES effective for preconditioned sym indefinite problems
- Rich in information to be exploited
- Adaptive problem-related stopping criteria available

References:

* Maxim A. Olshanskii and V. Simoncini Acquired clustering properties and solution of certain saddle point systems. SIMAX, 2010.
* David J. Silvester and V. Simoncini An Optimal Iterative Solver for Symmetric Indefinite Systems stemming from Mixed Approximation. ACM TOMS, 2011.
* V. Simoncini and Daniel B. Szyld, unpublished, 2011.

