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The problem

Solve the algebraic linear system

Ax = b

A ∈ C
n×n, large dimension (n À 1000)

——————————-

Approximation process: Given x0 and r0 = b − Ax0, then

xm ∈ x0 + Km(A, r0) = span{r0, Ar0, . . . , A
m−1r0}

Construct sequence of approximation spaces Km ⊂ Km+1 such that

x̃m ∈ Km and x̃m → x as m → ∞

(in some sense)
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Projection process

(x0 = 0 ⇒ r0 = b)

Let {v1, . . . , vm} be basis of Km(A, b), v1 = b. Then

x ≈ xm = Vmym Vm = [v1, . . . , vm]

What choice for ym?

Residual rm := b − AVmym satisfies

rm ⊥? Lm

Selection of Lm and of orthogonality constraint distinguish among
several different methods
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Typical (classical) approaches

? A Hermitian positive definite. Galerkin condition:

xm ∈ Km(A, b) and Lm = Km(A, b)

rm = b − AVmym ⊥ Lm ⇔ V ∗
mrm = 0

Conjugate Gradients (CG): sound implementation of Galerkin condition

(V ∗
mAVm)ym = V ∗

mb V ∗
mAVm Hermitian positive definite

If V ∗
mVm = I, then Tm := V ∗

mAVm tridiagonal

Moreover,
‖x − xm‖A = min

ex∈Km

!
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Typical (classical) approaches. II

? A non-Hermitian:

xm ∈ Km(A, b) and Lm = AKm(A, b)

rm = b − AVmym ⊥ Lm ⇔ (AVm)∗rm = 0

(V ∗
mA∗AVm)ym = V ∗

mA∗b V ∗
mA∗AVm Hermitian positive definite

‖b − AVmym‖2 = min
ey∈Cm

!

Arnoldi relation: (V ∗
mVm = I)

AVm = VmHm + vm+1hm+1e
∗
m Range(Vm) ⊂ Range(Vm+1)
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Other typical orthogonality properties

? em = x − xm ⊥ Km(A∗, A∗b)

? Given M Hermitian and positive definite,

rm ⊥M Lm

i.e., for Range(Lm)=Lm it holds L∗

mMrm = 0

? Or, in particular,

V ∗
mMVm = Im, M fixed

minimization of ‖rm‖M or ‖em‖M

- e.g. M = A∗A

- stemming from application

? M = M(m) varies with the subspace dimension
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An example with M hpd

A positive real,
A = S + K, S Hermitian part of A, S−1A = I + S−1K

M = S

⇓

- Generate Km(S−1A, S−1b)

- Create S-orthogonal Vm, i.e. V ∗
mSVm = I

S−1AVm = VmHm + vm+1hm+1,me∗m gives

V ∗
mSS−1AVm = V ∗

mSVmHm + V ∗
mSvm+1hm+1,me∗m

V ∗
mAVm = Hm tridiagonal Concus & Golub, Widlund,...

This is not the whole story!
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Motivations for an indefinite inner product

Exploit inherent properties of the problem. For instance,

A complex symmetric

Exploit matrix structure. E.g.,

A =

(
H B

B∗ 0

)

(but also A Hamiltonian, Symplectic, etc.)

... to gain in efficiency with (hopefully) no loss in reliability
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Indefinite inner products and J -symmetry

? Indefinite inner product ((x, y)) does not satisfy

((x, x)) > 0 ∀x

? Given J Hermitian and nonsingular,

A is J-Hermitian if A∗J = JA

J-inner product:
〈x, y〉J = x∗Jy

( 〈x, x〉J = 0 for some x )

Note:

If A∗J = JA and J hpd then A similar to Hermitian matrix
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Complex Symmetric matrices
Ax = b

A ∈ C
n×n complex symmetric, that is, A = AT (no conjugation)

Alternatives:

? A treated as complex non-Hermitian matrix

? Real formulation (twice the size) to exploit symmetry (maybe)

? “Natural” inner product for Krylov subspace methods:

((x, y)) := xT y no conjugation

♣ x 6= 0 isotropic: ((x, x)) = 0

? Other structure-preserving approaches (e.g., Bunse-Gerstner & Stöver, ’99)
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Krylov subspace methods using ((·, ·))

Galerkin condition with x∗y replaced by condition with ((x, y)) = xT y

Lm = Km and

rm = b − AVmym ⊥ Lm ⇔ V T
m rm = 0

If V T
m Vm = I then Tm := V T

m AVm tridiagonal

BUT

no minimization is carried out
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An example with A complex symmetric

A ∈ C
3627×3627 A = K + iCH

Stiffness (real) + hysteretic damping matrix
(Structural dynamic problem – ILU Preconditioner)
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A natural implementation: Two-sided Lanczos

Lanczos method for non-Hermitian matrices:

Km(A, b), Lm = Km(A∗, b̂), b̂ auxiliary vector

Vm, Lm s.t. L∗
mVm = Dm diagonal matrix

rm ⊥ Lm ⇒ (L∗
mAVm)ym = L∗

mb L∗
mAVm tridiagonal

In most implementations now:

Lm = Km(AT , b), s.t. LT
mVm = Dm

A complex symmetric ⇒ Km(A, b) = Lm, LT
mAVm symmetric

♣ Two-sided Lanczos provides the setting for convergence analysis
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Two-sided Lanczos and J -inner product

Km(A, b), Lm = Km(A∗, b̂), b̂ auxiliary vector

Vm, Lm s.t. L∗
mVm = Dm diagonal matrix

rm ⊥ Lm ⇒ (L∗
mAVm)ym = L∗

mb L∗
mAVm tridiagonal

Assume A is J-symmetric (or J-Hermitian). Then

for b̂ := Jb

it holds
Lm = JKm(A, b), Lm = JVmΣm

(Σm diagonal matrix)
⇓

No need to generate space Lm and its basis! (Simplified Lanczos)
Freund & Nachtigal 1995
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Disclaimers

Still in the two-sided Lanczos framework

Possible breakdown (L?
mVm singular, ? = T, ∗)

Stability issues

Specific convergence analysis: open problem
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An application

(A + σB)x = b

A, B symmetric, B nonsingular σ ∈ [α, β] ⊂ R

Problem: Solve for several (a few hundreds, say) values of σ

(AB−1 + σI)x̂ = b x = B−1x̂

Shift-invariance of Krylov space: Km(AB−1 + σI, b) = Km(AB−1, b)

? AB−1 is B−1-symmetric (that is, (AB−1)T B−1 = B−1(AB−1))

⇓

Simplified Lanczos method with J = B−1

(Perotti & Simoncini 2002)
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Application to Preconditioning

Saddle-point problem:

Ax = b ⇔

(
H B

B∗ −C

)(
x1

x2

)
=

(
b1

b2

)

H, C Hermitian pos. (semi-)definite ⇒ A Hermitian indef. (nonsing.)

Recent survey: Benzi & Golub & Liesen, 2005

————————–

? Preconditioning technique: Find nonsingular P s.t.

AP−1x̂ = b

“easier” to solve, with P cheap to invert (or, P−1

1
AP−1

2
bx = P−1

1
b)

Various successful choices, mostly problem dependent
For simplicity: C = 0
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Structured Preconditioners

A =

0
@ H B

B∗ 0

1
A

Block diagonal (AP−1 is P−1-Hermitian – minimization in the “correct” norm)

P =

(
H̃ 0

0∗ S

)
H̃ ≈ H, S ≈ B∗H−1B

Block indefinite (more in the next few slides)

P =

(
H̃ B

B∗ 0

)
H̃ ≈ H

Block triangular (AP−1 is similar to Hermitian, under conditions on eH, S)

P =

(
H̃ B

0∗ −S

)
S ≈ B∗H−1B
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Indefinite (Constraint) Preconditioners

P =

(
H̃ B

B∗ 0

)
AP−1x̂ = b

H̃ ≈ H, cheap to solve with

More Indefinite-style preconditioners: Dollar, Gould, Wathen, Schilders, 2005

* AP−1 not symmetrizable!
* However: AP−1 is P−1-Hermitian

Use Simplified Lanczos method

What spectral properties?
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Spectral properties. I

? Eigenvalues of AP−1 are real and positive, in λ ∈ {1} ∪ [α0, α1]

? Presence of Jordan blocks

However
Jordan blocks do not influence convergence
(with appropriate starting approximate solution)

AP−1 =

(
H(I − Π) + Π (H − I)B(B∗B)−1

0 I

)
r0 =

(
∗

0

)

Π = B(B∗B)−1B∗ Projector
Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), Braess Sarazin (1997) Golub
Wathen (1998) Vassilevski Lazarov (1996), Lukšan Vlček (1998-1999), Perugia S. Arioli
(1999), Keller Gould Wathen (2000), Perugia S. (2000), Gould Hribar Nocedal (2001),
Rozloznik S. (2002), Durazzi Ruggiero (2003), Axelsson Neytcheva (2003), Dollar, Gould,
Wathen, Schilders (2005),...
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Computational Considerations: Exact P vs Inexact P

P−1 =

(
H̃ B

B∗ 0

)−1

=

(
I −BT

O I

) (
I O

O −(BB
∗)−1

) (
I O

−B I

)

( eH = I if prescaling used)

3D Magnetostatic problem. Elapsed Time

SIMPLIFIED LANCZOS SIMPLIFIED LANCZOS

SIZE P P̂ (2)(it) ILDLT(10)
1119 3.0(15) 1.7(18) 0.7

2208 11.7 (13) 3.1(18) 1.5

4371 64.6 (17) 8.4(20) 5.2

8622 466.0(16) 18.3(29) 31.0

22675 3745.5(25) 63.2(45) 246.0

BB∗ ≈ S Incomplete Cholesky fact. ⇒ bP A bP−1bx = b
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Spectral properties. II

AP̂−1 still P̂−1-symmetric

Eigenvalue bounds: Let Ĉ = B∗(2I − H)BS−1, S ≈ B∗B

? If =(λ) 6= 0 then

(λmin(H) + λmin( bC)) ≤ <(λ) ≤
1

2
(λmax(H) + λmax( bC))

|=(λ)| ≤ σmax((I − H)BS−
1

2 ).

? If =(λ) = 0 then

min{λmin(H), λmin( bC)} ≤ λ ≤ max{λmax(H), λmax( bC)}

Eigenvectors: open problem
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Spectral bounds
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Benzi & Simoncini, 2006
Indefinite inner products – p. 23



Final Considerations

Indefinite inner product appropriate
to exploit inherent problem properties

Many computational issues still open

Convergence analysis still very challenging

valeria@dm.unibo.it
http://www.dm.unibo.it/˜simoncin

“ Recent computational developments in Krylov Subspace Methods for linear systems”

with Daniel Szyld, (Temple University)
To appear J. Numerical Linear Algebra w/Appl.
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