Indefinite inner products

in iterative linear system solvers
V. Simoncini

Dipartimento di Matematica
Università di Bologna
valeria@dm.unibo.it
http://www.dm.unibo.it/~simoncin

The problem

Solve the algebraic linear system

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$, large dimension $(n \gg 1000)$

The problem

Solve the algebraic linear system

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$, large dimension $(n \gg 1000)$

Approximation process: Given x_{0} and $r_{0}=b-A x_{0}$, then

$$
x_{m} \in x_{0}+\mathcal{K}_{m}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}
$$

The problem

Solve the algebraic linear system

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$, large dimension $(n \gg 1000)$

Approximation process: Given x_{0} and $r_{0}=b-A x_{0}$, then

$$
x_{m} \in x_{0}+\mathcal{K}_{m}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}
$$

Construct sequence of approximation spaces $\mathcal{K}_{m} \subset \mathcal{K}_{m+1}$ such that

$$
\widetilde{x}_{m} \in \mathcal{K}_{m} \quad \text { and } \quad \widetilde{x}_{m} \rightarrow x \quad \text { as } \quad m \rightarrow \infty
$$

(in some sense)

Projection process

$\left(x_{0}=0 \Rightarrow r_{0}=b\right)$
Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be basis of $\mathcal{K}_{m}(A, b), v_{1}=b$. Then

$$
x \approx x_{m}=V_{m} y_{m} \quad V_{m}=\left[v_{1}, \ldots, v_{m}\right]
$$

What choice for y_{m} ?

Projection process

$\left(x_{0}=0 \Rightarrow r_{0}=b\right)$
Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be basis of $\mathcal{K}_{m}(A, b), v_{1}=b$. Then

$$
x \approx x_{m}=V_{m} y_{m} \quad V_{m}=\left[v_{1}, \ldots, v_{m}\right]
$$

What choice for y_{m} ?

Residual $r_{m}:=b-A V_{m} y_{m}$ satisfies

$$
r_{m} \perp_{\star} \mathcal{L}_{m}
$$

Selection of \mathcal{L}_{m} and of orthogonality constraint distinguish among several different methods

Typical (classical) approaches

$\star \quad A$ Hermitian positive definite. Galerkin condition:

$$
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, b)
$$

Typical (classical) approaches

$\star \quad A$ Hermitian positive definite. Galerkin condition:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{*} r_{m}=0
\end{gathered}
$$

Conjugate Gradients (CG): sound implementation of Galerkin condition

Typical (classical) approaches

$\star \quad A$ Hermitian positive definite. Galerkin condition:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{*} r_{m}=0
\end{gathered}
$$

Conjugate Gradients (CG): sound implementation of Galerkin condition

$$
\left(V_{m}^{*} A V_{m}\right) y_{m}=V_{m}^{*} b \quad V_{m}^{*} A V_{m} \quad \text { Hermitian positive definite }
$$

Typical (classical) approaches

$\star \quad A$ Hermitian positive definite. Galerkin condition:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{*} r_{m}=0
\end{gathered}
$$

Conjugate Gradients (CG): sound implementation of Galerkin condition

$$
\left(V_{m}^{*} A V_{m}\right) y_{m}=V_{m}^{*} b \quad V_{m}^{*} A V_{m} \quad \text { Hermitian positive definite }
$$

If $V_{m}^{*} V_{m}=I$, then $\quad T_{m}:=V_{m}^{*} A V_{m} \quad$ tridiagonal

Typical (classical) approaches

$\star \quad A$ Hermitian positive definite. Galerkin condition:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{*} r_{m}=0
\end{gathered}
$$

Conjugate Gradients (CG): sound implementation of Galerkin condition

$$
\left(V_{m}^{*} A V_{m}\right) y_{m}=V_{m}^{*} b \quad V_{m}^{*} A V_{m} \quad \text { Hermitian positive definite }
$$

If $V_{m}^{*} V_{m}=I$, then $\quad T_{m}:=V_{m}^{*} A V_{m} \quad$ tridiagonal
Moreover,

$$
\left\|x-x_{m}\right\|_{A}=\min _{\widetilde{x} \in \mathcal{K}_{m}}!
$$

Typical (classical) approaches. II

^ A non-Hermitian:

$$
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=A \mathcal{K}_{m}(A, b)
$$

Typical (classical) approaches. II

^ A non-Hermitian:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=A \mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad\left(A V_{m}\right)^{*} r_{m}=0
\end{gathered}
$$

Typical (classical) approaches. II

^ A non-Hermitian:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=A \mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad\left(A V_{m}\right)^{*} r_{m}=0
\end{gathered}
$$

$\left(V_{m}^{*} A^{*} A V_{m}\right) y_{m}=V_{m}^{*} A^{*} b \quad V_{m}^{*} A^{*} A V_{m} \quad$ Hermitian positive definite

Typical (classical) approaches. II

* A non-Hermitian:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=A \mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad\left(A V_{m}\right)^{*} r_{m}=0
\end{gathered}
$$

$\left(V_{m}^{*} A^{*} A V_{m}\right) y_{m}=V_{m}^{*} A^{*} b \quad V_{m}^{*} A^{*} A V_{m} \quad$ Hermitian positive definite

$$
\left\|b-A V_{m} y_{m}\right\|_{2}=\min _{\widehat{y} \in \mathbb{C}_{m}}!
$$

Typical (classical) approaches. II

* A non-Hermitian:

$$
\begin{gathered}
x_{m} \in \mathcal{K}_{m}(A, b) \quad \text { and } \quad \mathcal{L}_{m}=A \mathcal{K}_{m}(A, b) \\
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad\left(A V_{m}\right)^{*} r_{m}=0
\end{gathered}
$$

$\left(V_{m}^{*} A^{*} A V_{m}\right) y_{m}=V_{m}^{*} A^{*} b \quad V_{m}^{*} A^{*} A V_{m} \quad$ Hermitian positive definite

$$
\left\|b-A V_{m} y_{m}\right\|_{2}=\min _{\widetilde{y} \in \mathbb{C}_{m}}!
$$

Arnoldi relation: $\quad\left(V_{m}^{*} V_{m}=I\right)$

$$
A V_{m}=V_{m} H_{m}+v_{m+1} h_{m+1} e_{m}^{*} \quad \operatorname{Range}\left(V_{m}\right) \subset \operatorname{Range}\left(V_{m+1}\right)
$$

Other typical orthogonality properties

$$
\star \quad e_{m}=x-x_{m} \quad \perp \mathcal{K}_{m}\left(A^{*}, A^{*} b\right)
$$

Other typical orthogonality properties

$\star \quad e_{m}=x-x_{m} \quad \perp \mathcal{K}_{m}\left(A^{*}, A^{*} b\right)$
\star Given M Hermitian and positive definite,

$$
r_{m} \perp_{M} \mathcal{L}_{m}
$$

i.e., for $\operatorname{Range}\left(L_{m}\right)=\mathcal{L}_{m} \quad$ it holds $L_{m}^{*} M r_{m}=0$

Other typical orthogonality properties

$\star \quad e_{m}=x-x_{m} \quad \perp \mathcal{K}_{m}\left(A^{*}, A^{*} b\right)$

* Given M Hermitian and positive definite,

$$
r_{m} \quad \perp_{M} \quad \mathcal{L}_{m}
$$

i.e., for $\operatorname{Range}\left(L_{m}\right)=\mathcal{L}_{m} \quad$ it holds $L_{m}^{*} M r_{m}=0$

* Or, in particular,

$$
V_{m}^{*} M V_{m}=I_{m}, \quad M \text { fixed }
$$

minimization of $\left\|r_{m}\right\|_{M}$ or $\left\|e_{m}\right\|_{M}$

- e.g. $M=A^{*} A$
- stemming from application

Other typical orthogonality properties

$\star \quad e_{m}=x-x_{m} \perp \mathcal{K}_{m}\left(A^{*}, A^{*} b\right)$

* Given M Hermitian and positive definite,

$$
r_{m} \perp_{M} \quad \mathcal{L}_{m}
$$

i.e., for $\operatorname{Range}\left(L_{m}\right)=\mathcal{L}_{m} \quad$ it holds $L_{m}^{*} M r_{m}=0$

* Or, in particular,

$$
V_{m}^{*} M V_{m}=I_{m}, \quad M \text { fixed }
$$

minimization of $\left\|r_{m}\right\|_{M}$ or $\left\|e_{m}\right\|_{M}$

- e.g. $M=A^{*} A$
- stemming from application
* $M=M(m)$ varies with the subspace dimension

An example with M hpd

A positive real, $A=S+K, \quad S$ Hermitian part of $A, \quad S^{-1} A=I+S^{-1} K$

$$
M=S
$$

An example with M hpd

A positive real,
$A=S+K, \quad S$ Hermitian part of $A, \quad S^{-1} A=I+S^{-1} K$

$$
M=S
$$

$$
\Downarrow
$$

- Generate $\mathcal{K}_{m}\left(S^{-1} A, S^{-1} b\right)$
- Create S-orthogonal V_{m}, i.e. $V_{m}^{*} S V_{m}=I$

An example with M hpd

A positive real, $A=S+K, \quad S$ Hermitian part of $A, \quad S^{-1} A=I+S^{-1} K$

$$
M=S
$$

$$
\Downarrow
$$

- Generate $\mathcal{K}_{m}\left(S^{-1} A, S^{-1} b\right)$
- Create S-orthogonal V_{m}, i.e. $V_{m}^{*} S V_{m}=I$
$S^{-1} A V_{m}=V_{m} H_{m}+v_{m+1} h_{m+1, m} e_{m}^{*} \quad$ gives

$$
\begin{aligned}
V_{m}^{*} S S^{-1} A V_{m} & =V_{m}^{*} S V_{m} H_{m}+V_{m}^{*} S v_{m+1} h_{m+1, m} e_{m}^{*} \\
V_{m}^{*} A V_{m} & =H_{m} \text { tridiagonal Concus \& Golub, Widlund,... }
\end{aligned}
$$

An example with M hpd

A positive real, $A=S+K, \quad S$ Hermitian part of $A, \quad S^{-1} A=I+S^{-1} K$

$$
M=S
$$

$$
\Downarrow
$$

- Generate $\mathcal{K}_{m}\left(S^{-1} A, S^{-1} b\right)$
- Create S-orthogonal V_{m}, i.e. $V_{m}^{*} S V_{m}=I$
$S^{-1} A V_{m}=V_{m} H_{m}+v_{m+1} h_{m+1, m} e_{m}^{*} \quad$ gives

$$
\begin{aligned}
V_{m}^{*} S S^{-1} A V_{m} & =V_{m}^{*} S V_{m} H_{m}+V_{m}^{*} S v_{m+1} h_{m+1, m} e_{m}^{*} \\
V_{m}^{*} A V_{m} & =H_{m} \text { tridiagonal Concus \& Golub, Widlund,.... }
\end{aligned}
$$

This is not the whole story!

Motivations for an indefinite inner product

- Exploit inherent properties of the problem. For instance,
A complex symmetric

Motivations for an indefinite inner product

- Exploit inherent properties of the problem. For instance,

> A complex symmetric

- Exploit matrix structure. E.g.,

$$
A=\left(\begin{array}{cc}
H & B \\
B^{*} & 0
\end{array}\right)
$$

(but also A Hamiltonian, Symplectic, etc.)

Motivations for an indefinite inner product

- Exploit inherent properties of the problem. For instance,

> A complex symmetric

- Exploit matrix structure. E.g.,

$$
A=\left(\begin{array}{cc}
H & B \\
B^{*} & 0
\end{array}\right)
$$

(but also A Hamiltonian, Symplectic, etc.)
... to gain in efficiency with (hopefully) no loss in reliability

Indefinite inner products and J-symmetry

* Indefinite inner product $((x, y))$ does not satisfy

$$
((x, x))>0 \quad \forall x
$$

* Given J Hermitian and nonsingular,
- A is J-Hermitian if $A^{*} J=J A$

Indefinite inner products and J-symmetry

* Indefinite inner product $((x, y))$ does not satisfy

$$
((x, x))>0 \quad \forall x
$$

\star Given J Hermitian and nonsingular,

- A is J-Hermitian if $A^{*} J=J A$
- J-inner product:

$$
\langle x, y\rangle_{J}=x^{*} J y
$$

$$
\left(\langle x, x\rangle_{J}=0 \text { for some } x\right)
$$

Indefinite inner products and J-symmetry

* Indefinite inner product $((x, y))$ does not satisfy

$$
((x, x))>0 \quad \forall x
$$

^ Given J Hermitian and nonsingular,

- A is J-Hermitian if $A^{*} J=J A$
- J-inner product:

$$
\langle x, y\rangle_{J}=x^{*} J y
$$

($\langle x, x\rangle_{J}=0$ for some x)

- Note:

If $A^{*} J=J A$ and J hpd then A similar to Hermitian matrix

Complex Symmetric matrices

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$ complex symmetric, that is, $A=A^{T}$ (no conjugation)
Alternatives:

Complex Symmetric matrices

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$ complex symmetric, that is, $A=A^{T}$ (no conjugation)

Alternatives:
$\star A$ treated as complex non-Hermitian matrix

Complex Symmetric matrices

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$ complex symmetric, that is, $A=A^{T}$ (no conjugation)

Alternatives:
$\star A$ treated as complex non-Hermitian matrix

* Real formulation (twice the size) to exploit symmetry (maybe)

Complex Symmetric matrices

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$ complex symmetric, that is, $A=A^{T}$ (no conjugation)

Alternatives:

$\star A$ treated as complex non-Hermitian matrix

* Real formulation (twice the size) to exploit symmetry (maybe)
* "Natural" inner product for Krylov subspace methods:

$$
((x, y)):=x^{T} y \quad \text { no conjugation }
$$

$\boldsymbol{\&} x \neq 0$ isotropic: $\quad((x, x))=0$

Complex Symmetric matrices

$$
A x=b
$$

$A \in \mathbb{C}^{n \times n}$ complex symmetric, that is, $A=A^{T}$ (no conjugation)

Alternatives:

$\star A$ treated as complex non-Hermitian matrix

* Real formulation (twice the size) to exploit symmetry (maybe)
* "Natural" inner product for Krylov subspace methods:

$$
((x, y)):=x^{T} y \quad \text { no conjugation }
$$

\& $x \neq 0$ isotropic: $\quad((x, x))=0$

* Other structure-preserving approaches
(e.g., Bunse-Gerstner \& Stöver, '99)

Krylov subspace methods using $((\cdot, \cdot))$

Galerkin condition with $x^{*} y$ replaced by condition with $((x, y))=x^{T} y$
$\mathcal{L}_{m}=\mathcal{K}_{m}$ and

$$
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{T} r_{m}=0
$$

Krylov subspace methods using $((\cdot, \cdot))$

Galerkin condition with $x^{*} y$ replaced by condition with $((x, y))=x^{T} y$
$\mathcal{L}_{m}=\mathcal{K}_{m}$ and

$$
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{T} r_{m}=0
$$

If $V_{m}^{T} V_{m}=I$ then $\quad T_{m}:=V_{m}^{T} A V_{m}$ tridiagonal

Krylov subspace methods using $((\cdot, \cdot))$

Galerkin condition with $x^{*} y$ replaced by condition with $((x, y))=x^{T} y$
$\mathcal{L}_{m}=\mathcal{K}_{m}$ and

$$
r_{m}=b-A V_{m} y_{m} \perp \mathcal{L}_{m} \quad \Leftrightarrow \quad V_{m}^{T} r_{m}=0
$$

If $V_{m}^{T} V_{m}=I$ then $\quad T_{m}:=V_{m}^{T} A V_{m}$ tridiagonal

BUT

no minimization is carried out

An example with A complex symmetric

$$
\begin{aligned}
A \in \mathbb{C}^{3627 \times 3627} \quad A= & K+i C_{H} \\
& \text { Stiffness }(\text { real })+\text { hysteretic damping matrix } \\
& \text { (Structural dynamic problem - ILU Preconditioner) }
\end{aligned}
$$

An example with A complex symmetric

 (Structural dynamic problem - ILU Preconditioner)

A natural implementation: Two-sided Lanczos

Lanczos method for non-Hermitian matrices:

\[

\]

A natural implementation: Two-sided Lanczos

Lanczos method for non-Hermitian matrices:

\[

\]

In most implementations now:

$$
\mathcal{L}_{m}=\mathcal{K}_{m}\left(A^{T}, b\right), \quad \text { s.t. } \quad L_{m}^{T} V_{m}=D_{m}
$$

A complex symmetric $\Rightarrow \mathcal{K}_{m}(A, b)=\mathcal{L}_{m}, \quad L_{m}^{T} A V_{m}$ symmetric

A natural implementation: Two-sided Lanczos

Lanczos method for non-Hermitian matrices:

\[

\]

In most implementations now:

$$
\mathcal{L}_{m}=\mathcal{K}_{m}\left(A^{T}, b\right), \quad \text { s.t. } \quad L_{m}^{T} V_{m}=D_{m}
$$

A complex symmetric $\Rightarrow \mathcal{K}_{m}(A, b)=\mathcal{L}_{m}, \quad L_{m}^{T} A V_{m}$ symmetric
\& Two-sided Lanczos provides the setting for convergence analysis

Two-sided Lanczos and J-inner product

\[

\]

Two-sided Lanczos and J-inner product

\[

\]

Assume A is J-symmetric (or J-Hermitian). Then

$$
\text { for } \quad \widehat{b}:=J b
$$

it holds

$$
\mathcal{L}_{m}=J \mathcal{K}_{m}(A, b), \quad L_{m}=J V_{m} \Sigma_{m}
$$

(Σ_{m} diagonal matrix)

Two-sided Lanczos and J-inner product

\[

\]

Assume A is J-symmetric (or J-Hermitian). Then

$$
\text { for } \quad \widehat{b}:=J b
$$

it holds

$$
\mathcal{L}_{m}=J \mathcal{K}_{m}(A, b), \quad L_{m}=J V_{m} \Sigma_{m}
$$

(Σ_{m} diagonal matrix)

$$
\Downarrow
$$

No need to generate space \mathcal{L}_{m} and its basis! (Simplified Lanczos) Freund \& Nachtigal 1995

Disclaimers

- Still in the two-sided Lanczos framework
- Possible breakdown ($L_{m}^{\star} V_{m}$ singular, $\star=T, *$)
- Stability issues
- Specific convergence analysis: open problem

An application

$$
(A+\sigma B) x=b
$$

A, B symmetric, B nonsingular $\quad \sigma \in[\alpha, \beta] \subset \mathbb{R}$
Problem: Solve for several (a few hundreds, say) values of σ

An application

$$
(A+\sigma B) x=b
$$

A, B symmetric, B nonsingular $\quad \sigma \in[\alpha, \beta] \subset \mathbb{R}$
Problem: Solve for several (a few hundreds, say) values of σ

$$
\left(A B^{-1}+\sigma I\right) \widehat{x}=b \quad x=B^{-1} \widehat{x}
$$

Shift-invariance of Krylov space: $\quad \mathcal{K}_{m}\left(A B^{-1}+\sigma I, b\right)=\mathcal{K}_{m}\left(A B^{-1}, b\right)$

An application

$$
(A+\sigma B) x=b
$$

A, B symmetric, B nonsingular $\quad \sigma \in[\alpha, \beta] \subset \mathbb{R}$
Problem: Solve for several (a few hundreds, say) values of σ

$$
\left(A B^{-1}+\sigma I\right) \widehat{x}=b \quad x=B^{-1} \widehat{x}
$$

Shift-invariance of Krylov space: $\quad \mathcal{K}_{m}\left(A B^{-1}+\sigma I, b\right)=\mathcal{K}_{m}\left(A B^{-1}, b\right)$
$\star A B^{-1}$ is B^{-1}-symmetric (that is, $\left.\left(A B^{-1}\right)^{T} B^{-1}=B^{-1}\left(A B^{-1}\right)\right)$

$$
\Downarrow
$$

Simplified Lanczos method with $J=B^{-1}$
(Perotti \& Simoncini 2002)

Application to Preconditioning

Saddle-point problem:

$$
A x=b \quad \Leftrightarrow \quad\left(\begin{array}{cc}
H & B \\
B^{*} & -C
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{b_{1}}{b_{2}}
$$

H, C Hermitian pos. (semi-)definite $\quad \Rightarrow A$ Hermitian indef. (nonsing.)
Recent survey: Benzi \& Golub \& Liesen, 2005

Application to Preconditioning

Saddle-point problem:

$$
A x=b \quad \Leftrightarrow \quad\left(\begin{array}{cc}
H & B \\
B^{*} & -C
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{b_{1}}{b_{2}}
$$

H, C Hermitian pos. (semi-)definite $\quad \Rightarrow A$ Hermitian indef. (nonsing.)
Recent survey: Benzi \& Golub \& Liesen, 2005
\star Preconditioning technique: Find nonsingular P s.t.

$$
A P^{-1} \widehat{x}=b
$$

"easier" to solve, with P cheap to invert (or, $P_{1}^{-1} A P_{2}^{-1} \widehat{x}=P_{1}^{-1} b$)
Various successful choices, mostly problem dependent

Structured Preconditioners

$$
A=\left(\begin{array}{cc}
H & B \\
B^{*} & 0
\end{array}\right)
$$

- Block diagonal ($A P^{-1}$ is P^{-1}-Hermitian - minimization in the "correct" norm)

$$
P=\left(\begin{array}{cc}
\widetilde{H} & 0 \\
0^{*} & S
\end{array}\right) \quad \widetilde{H} \approx H, S \approx B^{*} H^{-1} B
$$

Structured Preconditioners

$$
A=\left(\begin{array}{cc}
H & B \\
B^{*} & 0
\end{array}\right)
$$

- Block diagonal ($A P^{-1}$ is P^{-1}-Hermitian - minimization in the "correct" norm)

$$
P=\left(\begin{array}{cc}
\widetilde{H} & 0 \\
0^{*} & S
\end{array}\right) \quad \widetilde{H} \approx H, S \approx B^{*} H^{-1} B
$$

- Block indefinite
(more in the next few slides)

$$
P=\left(\begin{array}{cc}
\widetilde{H} & B \\
B^{*} & 0
\end{array}\right) \quad \widetilde{H} \approx H
$$

Structured Preconditioners

$$
A=\left(\begin{array}{cc}
H & B \\
B^{*} & 0
\end{array}\right)
$$

- Block diagonal ($A P^{-1}$ is P^{-1}-Hermitian - minimization in the "correct" norm)

$$
P=\left(\begin{array}{cc}
\widetilde{H} & 0 \\
0^{*} & S
\end{array}\right) \quad \widetilde{H} \approx H, S \approx B^{*} H^{-1} B
$$

- Block indefinite (more in the next few slides)

$$
P=\left(\begin{array}{cc}
\widetilde{H} & B \\
B^{*} & 0
\end{array}\right) \quad \widetilde{H} \approx H
$$

- Block triangular $\left(A P^{-1}\right.$ is similar to Hermitian, under conditions on \widetilde{H}, S)

$$
P=\left(\begin{array}{cc}
\widetilde{H} & B \\
0^{*} & -S
\end{array}\right) \quad S \approx B^{*} H^{-1} B
$$

Indefinite (Constraint) Preconditioners

$$
P=\left(\begin{array}{cc}
\widetilde{H} & B \\
B^{*} & 0
\end{array}\right) \quad A P^{-1} \widehat{x}=b
$$

$\widetilde{H} \approx H$, cheap to solve with

More Indefinite-style preconditioners: Dollar, Gould, Wathen, Schilders, 2005

Indefinite (Constraint) Preconditioners

$$
P=\left(\begin{array}{cc}
\widetilde{H} & B \\
B^{*} & 0
\end{array}\right) \quad A P^{-1} \widehat{x}=b
$$

$\widetilde{H} \approx H$, cheap to solve with

More Indefinite-style preconditioners: Dollar, Gould, Wathen, Schilders, 2005

* $A P^{-1}$ not symmetrizable!
* However: $A P^{-1}$ is P^{-1}-Hermitian

Use Simplified Lanczos method

Indefinite (Constraint) Preconditioners

$$
P=\left(\begin{array}{cc}
\widetilde{H} & B \\
B^{*} & 0
\end{array}\right) \quad A P^{-1} \widehat{x}=b
$$

$\widetilde{H} \approx H$, cheap to solve with

More Indefinite-style preconditioners: Dollar, Gould, Wathen, Schilders, 2005

* $A P^{-1}$ not symmetrizable!
* However: $A P^{-1}$ is P^{-1}-Hermitian

Use Simplified Lanczos method
What spectral properties?

Spectral properties. I

* Eigenvalues of $A P^{-1}$ are real and positive, in $\lambda \in\{1\} \cup\left[\alpha_{0}, \alpha_{1}\right]$
* Presence of Jordan blocks

Spectral properties. I

* Eigenvalues of $A P^{-1}$ are real and positive, in $\lambda \in\{1\} \cup\left[\alpha_{0}, \alpha_{1}\right]$
* Presence of Jordan blocks

However
Jordan blocks do not influence convergence (with appropriate starting approximate solution)

$$
A P^{-1}=\left(\begin{array}{cc}
H(I-\Pi)+\Pi & (H-I) B\left(B^{*} B\right)^{-1} \\
0 & I
\end{array}\right) \quad r_{0}=\binom{*}{0}
$$

$\Pi=B\left(B^{*} B\right)^{-1} B^{*}$ Projector

Spectral properties. I

* Eigenvalues of $A P^{-1}$ are real and positive, in $\lambda \in\{1\} \cup\left[\alpha_{0}, \alpha_{1}\right]$
* Presence of Jordan blocks

However

Jordan blocks do not influence convergence
(with appropriate starting approximate solution)

$$
A P^{-1}=\left(\begin{array}{cc}
H(I-\Pi)+\Pi & (H-I) B\left(B^{*} B\right)^{-1} \\
0 & I
\end{array}\right) \quad r_{0}=\binom{*}{0}
$$

$\Pi=B\left(B^{*} B\right)^{-1} B^{*}$ Projector
Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), Braess Sarazin (1997) Golub Wathen (1998) Vassilevski Lazarov (1996), Lukšan VIček (1998-1999), Perugia S. Arioli (1999), Keller Gould Wathen (2000), Perugia S. (2000), Gould Hribar Nocedal (2001), Rozloznik S. (2002), Durazzi Ruggiero (2003), Axelsson Neytcheva (2003), Dollar, Gould, Wathen, Schilders (2005),...

Computational Considerations: Exact P vs Inexact P

$P^{-1}=\left(\begin{array}{cc}\widetilde{H} & B \\ B^{*} & 0\end{array}\right)^{-1}=\left(\begin{array}{cc}I & -B^{T} \\ O & I\end{array}\right)\left(\begin{array}{cc}I & O \\ O & -\left(\mathrm{BB}^{*}\right)^{-1}\end{array}\right)\left(\begin{array}{cc}I & O \\ -B & I\end{array}\right)$
($\widetilde{H}=I$ if prescaling used)

Computational Considerations: Exact P vs Inexact P

$P^{-1}=\left(\begin{array}{cc}\widetilde{H} & B \\ B^{*} & 0\end{array}\right)^{-1}=\left(\begin{array}{cc}I & -B^{T} \\ O & I\end{array}\right)\left(\begin{array}{cc}I & O \\ O & -\left(\mathrm{BB}^{*}\right)^{-1}\end{array}\right)\left(\begin{array}{cc}I & O \\ -B & I\end{array}\right)$
($\widetilde{H}=I$ if prescaling used)
3D Magnetostatic problem. Elapsed Time

	Simplified Lanczos		Simplified Lanczos
SIZe	P	$\widehat{P}(2)(i t)$	ILDLt(10)
1119	$3.0(15)$	$\mathbf{1 . 7}(18)$	0.7
2208	$\mathbf{1 1 . 7}(13)$	$\mathbf{3 . 1}(18)$	1.5
4371	$\mathbf{6 4 . 6}(17)$	$8.4(20)$	5.2
8622	$466.0(16)$	$18.3(29)$	31.0
22675	$3745.5(25)$	$63.2(45)$	$\mathbf{2 4 6 . 0}$

$B B^{*} \approx S$ Incomplete Cholesky fact. $\quad \Rightarrow \widehat{P}$
$A \widehat{P}^{-1} \widehat{x}=b$

Spectral properties. II

- $A \widehat{P}^{-1}$ still \widehat{P}^{-1}-symmetric

Spectral properties. II

- $A \widehat{P}^{-1}$ still \widehat{P}^{-1}-symmetric
- Eigenvalue bounds: Let $\widehat{C}=B^{*}(2 I-H) B S^{-1}, \quad S \approx B^{*} B$
\star If $\Im(\lambda) \neq 0$ then

$$
\begin{aligned}
\left(\lambda_{\min }(H)+\lambda_{\min }(\widehat{C})\right) \leq \quad \Re(\lambda) & \leq \frac{1}{2}\left(\lambda_{\max }(H)+\lambda_{\max }(\widehat{C})\right) \\
& |\Im(\lambda)|
\end{aligned} \leq \sigma_{\max }\left((I-H) B S^{-\frac{1}{2}}\right) .
$$

\star If $\Im(\lambda)=0$ then

$$
\min \left\{\lambda_{\min }(H), \lambda_{\min }(\widehat{C})\right\} \leq \lambda \leq \max \left\{\lambda_{\max }(H), \lambda_{\max }(\widehat{C})\right\}
$$

Spectral properties. II

- $A \widehat{P}^{-1}$ still \widehat{P}^{-1}-symmetric
- Eigenvalue bounds: Let $\widehat{C}=B^{*}(2 I-H) B S^{-1}, \quad S \approx B^{*} B$
* If $\Im(\lambda) \neq 0$ then

$$
\begin{aligned}
\left(\lambda_{\min }(H)+\lambda_{\min }(\widehat{C})\right) \leq \quad \Re(\lambda) & \leq \frac{1}{2}\left(\lambda_{\max }(H)+\lambda_{\max }(\widehat{C})\right) \\
|\Im(\lambda)| & \leq \sigma_{\max }\left((I-H) B S^{-\frac{1}{2}}\right)
\end{aligned}
$$

\star If $\Im(\lambda)=0$ then

$$
\min \left\{\lambda_{\min }(H), \lambda_{\min }(\widehat{C})\right\} \leq \lambda \leq \max \left\{\lambda_{\max }(H), \lambda_{\max }(\widehat{C})\right\}
$$

- Eigenvectors: open problem

Spectral bounds

Benzi \& Simoncini, 2006

Final Considerations

- Indefinite inner product appropriate to exploit inherent problem properties
- Many computational issues still open
- Convergence analysis still very challenging

Final Considerations

- Indefinite inner product appropriate to exploit inherent problem properties
- Many computational issues still open
- Convergence analysis still very challenging

$$
\begin{gathered}
\text { valeria@dm.unibo.it } \\
\text { http://www.dm.unibo.it/~simoncin }
\end{gathered}
$$

"Recent computational developments in Krylov Subspace Methods for linear systems" with Daniel Szyld, (Temple University)
To appear J. Numerical Linear Algebra w/Appl.

