

An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems

V. Simoncini

Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it

Joint work with V. Mehrmann and C. Schröder (TU-Berlin)

The problem

Given

 $M \in \mathbb{R}^{n \times n}$ symmetric $(M = M^{\top})$ $N \in \mathbb{R}^{n \times n}$ skew-symmetric $(N = -N^{\top})$ approximate selected (finite) eigenpairs

 $Mx = \lambda Nx$

Problem's features:

- Large dimension
- N may be singular
- The pencil $M \lambda N$ is regular

Problem in context

Nomenclature and related problems:

alternating eigenproblem

generalized (or extended) Hamiltonian eigenproblem

skew-Hamiltonian / Hamiltonian eigenproblem

even / odd eigenproblem

Application problems:

Quadratic optimal or robust control problems

Passivity analysis

Model reduction

• • • •

General characterization

 $Mx = \lambda Nx$

* Small scale problem well studied:

analysis, perturbation theory, software

(cf. Byers, Mehrmann, Xu, Benner, Kressner, Schröder, Watkins, etc.)

 \star Large scale problem less exercised, in particular for N singular

Peculiarity of the problem: spectrum has special symmetry wrto origin

More details on structure

• For
$$N = -N^{\top}$$
, $M = M^{\top}$, the pencil

$$\alpha N - \beta M$$

is even: (α, β) same as $(-\alpha, \beta)$ + transposition

More details on structure

• For
$$N = -N^{\top}$$
, $M = M^{\top}$, the pencil

 $\alpha N - \beta M$

is even: (α, β) same as $(-\alpha, \beta)$ + transposition

• $(\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda})$ is called Hamiltonian eigensymmetry

 $(H \text{ is Hamiltonian if } (HJ)^{\top} = HJ, \text{ with } J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix})$

More details on structure

• For
$$N = -N^{\top}$$
, $M = M^{\top}$, the pencil

 $\alpha N - \beta M$

is even: (α, β) same as $(-\alpha, \beta)$ + transposition

• $(\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda})$ is called Hamiltonian eigensymmetry

 $(H \text{ is Hamiltonian if } (HJ)^{\top} = HJ, \text{ with } J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix})$

• If the pb dimension is 2k (even) then $\alpha N - \beta M$ is equivalent to the *skew-Hamiltonian* / *Hamiltonian* pencil

$$\alpha \mathcal{N} - \beta \mathcal{M}, \qquad \mathcal{N} = NJ^{\top}, \quad \mathcal{M} = MJ^{\top}$$

Approximate eigenpairs around selected value σ :

"shift-and-invert" Krylov subspace method: solve

$$(M - \sigma N)^{-1}Nx = \eta x, \qquad \eta = \frac{1}{\lambda - \sigma}$$

Approximate eigenpairs around selected value σ :

"shift-and-invert" Krylov subspace method: solve

$$(M - \sigma N)^{-1}Nx = \eta x, \qquad \eta = \frac{1}{\lambda - \sigma}$$

An example: True eigenvalues closest to $\sigma = 10i$: ± 10.544

Approximate eigenpairs around selected value σ :

"shift-and-invert" Krylov subspace method: solve

$$(M - \sigma N)^{-1}Nx = \eta x, \qquad \eta = \frac{1}{\lambda - \sigma}$$

An example: True eigenvalues closest to $\sigma = 10i$: ± 10.544 eigs(M,N,10 i, tol), tol= 10^{-12} (m = 20)

Approximate eigenpairs around selected value σ :

"shift-and-invert" Krylov subspace method: solve

$$(M - \sigma N)^{-1}Nx = \eta x, \qquad \eta = \frac{1}{\lambda - \sigma}$$

An example: True eigenvalues closest to $\sigma = 10i$: ± 10.544 eigs(M,N,10 i, tol), tol= 10^{-12} (m = 20) After 5 cycles:

 $10.544 + i2.2318 \cdot 10^{-10} \qquad \text{residual} : 1.0013 \cdot 10^{-13} \\ -10.544 + i2.5349 \cdot 10^{-12} \qquad \text{residual} : 5.7810 \cdot 10^{-14}$

both imaginary parts are small, but above residual norm !

```
\Rightarrow Are these matching eigs?
```

Missing some of the requested (unmatching) eigenvalues:

Possible difficulties with spectral preserving solver

Assume for the moment that $N = J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$. Then the matrix $K := (M + \sigma J)^{-1} J (M - \sigma J)^{-1} J$

is skew-Hamiltonian $(JK = -(JK)^{\top})$

(cf. Mehrmann, Watkins, Benner, Faßbender, Stoll, Effenberger)

Possible difficulties with spectral preserving solver

Assume for the moment that $N = J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$. Then the matrix

$$K := (M + \sigma J)^{-1} J (M - \sigma J)^{-1} J$$

is skew-Hamiltonian $(JK = -(JK)^{\top})$

(cf. Mehrmann, Watkins, Benner, Faßbender, Stoll, Effenberger)

 \Rightarrow Generate a *tall* matrix V such that

 $T = V^{\top} J K V$

is skew-Hamiltonian and of lower dimension

(e.g. V portion of symplectic transf.)

 \Rightarrow Compute eig(T) with structure preserving method for dense pbs

Possible difficulties with spectral preserving solver

Assume for the moment that $N = J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$. Then the matrix

$$K := (M + \sigma J)^{-1} J (M - \sigma J)^{-1} J$$

is skew-Hamiltonian $(JK = -(JK)^{\top})$

(cf. Mehrmann, Watkins, Benner, Faßbender, Stoll, Effenberger)

 \Rightarrow Generate a *tall* matrix V such that

 $T = V^{\top} J K V$

is skew-Hamiltonian and of lower dimension

(e.g. V portion of symplectic transf.)

 \Rightarrow Compute eig(T) with structure preserving method for dense pbs

Problem: T is not skew-Hamiltonian to machine precision !

A convenient spectral transformation

 $Mx = \lambda Nx$

Given the target value σ (real or purely imaginary),

$$K := (M + \sigma N)^{-1} N (M - \sigma N)^{-1} N$$

$$Mx = \lambda Nx \quad \Rightarrow \quad Kx = \theta x, \text{ with } \theta = \frac{1}{\lambda^2 - \sigma^2}$$

(cf. SHIRA method, Mehrmann-Watkins '01)

 $\lambda \text{ close to } \sigma \qquad \Rightarrow \qquad \theta \text{ large}$

A convenient spectral transformation

 $Mx = \lambda Nx$

Given the target value σ (real or purely imaginary),

$$K := (M + \sigma N)^{-1} N (M - \sigma N)^{-1} N$$

$$Mx = \lambda x \qquad \Rightarrow \qquad Kx = \theta x, \quad \text{with} \quad \theta = \frac{1}{\lambda^2 - \sigma^2}$$

(cf. SHIRA method, Mehrmann-Watkins '01)

 $\lambda \text{ close to } \sigma \qquad \Rightarrow \qquad \theta \text{ large}$

Natural search space for approximation:

$$\mathcal{K}_m(K, v_1) = \operatorname{span}\{v_1, Kv_1, \dots, K^{m-1}v_1\}$$

A convenient spectral transformation: basic properties

$$K = (M + \sigma N)^{-1} N (M - \sigma N)^{-1} N$$

i)
$$M + \sigma N = (M - \sigma N)^{\top}$$

ii) the matrices $(M + \sigma N)^{-1}N$ and $(M - \sigma N)^{-1}N$ commute

iii) the matrix
$$K = (M + \sigma N)^{-1} N (M - \sigma N)^{-1} N$$
 satisfies

$$NK^{\ell} = -(NK^{\ell})^{\top}, \quad \ell \in \mathbb{N},$$

that is, NK^{ℓ} is skew-symmetric for any natural number ℓ In particular, $K^{\top}N = NK$

iv) If
$$\sigma \in i\mathbb{R}$$
, then $M + \sigma N = (M + \sigma N)^*$

A convenient spectral transformation: Pros and Cons $K = (M + \sigma N)^{-1}N(M - \sigma N)^{-1}N$ $\mathcal{K}_m(K, v_1) = \operatorname{span}\{v_1, Kv_1, \dots, K^{m-1}v_1\}$ Pros

- Matching eigs captured: $\pm \lambda = \pm \sqrt{\frac{1}{\theta} + \sigma^2}, \ \theta \in \Lambda(K)$
- Well established recurrence for $\mathcal{K}_m(K, v_1)$
- Efficient eigenvalue approximation if fast solves with $M-\sigma N$

A convenient spectral transformation: Pros and Cons $K = (M + \sigma N)^{-1}N(M - \sigma N)^{-1}N$ $\mathcal{K}_m(K, v_1) = \operatorname{span}\{v_1, Kv_1, \dots, K^{m-1}v_1\}$ Pros

- Matching eigs captured: $\pm \lambda = \pm \sqrt{\frac{1}{\theta} + \sigma^2}, \ \theta \in \Lambda(K)$
- Well established recurrence for $\mathcal{K}_m(K, v_1)$
- Efficient eigenvalue approximation if fast solves with $M-\sigma N$

Cons

- All eigs of K are double! Only one instance should be retained (round-off plays against us)
- Search space with K in general not good for evecs of (M, N)
 x₋, x₊ matched evecs of (M, N) ⇒ span{x₋, x₊} invariant space of K
 but ∉

An important property to be exploited

Let (λ, x_+) be a simple eigenpair of (M, N) $(\lambda \neq 0)$ Let $(-\lambda, x_-)$ be the matched eigenpair of (M, N)Then

a) $x_+^\top N x_- \neq 0$

b) Let
$$\mathcal{V}$$
 be an *N*-neutral subspace of \mathbb{C}^n
(i.e., $v^{\top}Nw = 0$ for any $v, w \in \mathcal{V}$)
If $u \in \operatorname{span}\{x_+, x_-\} \cap \mathcal{V}$, then no other linearly independent

vector of span $\{x_+, x_-\}$ also belongs to $\mathcal V$

Pb.: All eigs of K are double! Only one instance should be retained

Fix: Require that the search space be *N*-neutral

Arnoldi-type recursion

$$KV_m = V_m H_m + v_{m+1} h_{m+1,m} e_m^{\top}, \quad V_m^{\top} N V_m = O_m$$

Thanks to $NK^{\ell} = -(NK^{\ell})^{\top}$, condition satisfied for free!

explicit enforcement of N-neutrality in finite precision arithm

Pb.: Search space with K in general not good for evecs of (M, N)Fix: Enrich the space

Define $W_m(\sigma) := (M - \sigma N)^{-1} N V_m$

Then

$$M[V_m, W_m(\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(\sigma)] \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} + [O_m, (M + \sigma N)v_{m+1}h_{m+1,m}e_m^\top]$$

Pb.: Search space with K in general not good for evecs of (M, N)Fix: Enrich the space

Define $W_m(\sigma) := (M - \sigma N)^{-1} N V_m$ It holds

$$M[V_m, W_m(\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(\sigma)] \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} + [O_m, (M + \sigma N)v_{m+1}h_{m+1,m}e_m^\top]$$

 $\Rightarrow [V_m, W_m(\sigma)]$ contains approximate invariant subspace of (M, N)

Pb.: Search space with K in general not good for evecs of (M, N)

Fix: Enrich the space

Define $W_m(\sigma) := (M - \sigma N)^{-1} N V_m$ It holds

$$M[V_m, W_m(\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(\sigma)] \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} + [O_m, (M + \sigma N)v_{m+1}h_{m+1,m}e_m^\top]$$

 $\Rightarrow [V_m, W_m(\sigma)] \text{ contains approximate invariant subspace of } (M, N)$ $\Rightarrow \text{ symmetric/ skew-sym structure preserved!}$

(multiply second block by $-H_m^{ op}$)

Approximate pairs

$$M[V_m, W_m(\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(\sigma)] \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} + [O_m, (M + \sigma N)v_{m+1}h_{m+1,m}e_m^\top].$$

Then

$$\left(\pm\hat{\lambda},\ \hat{x}_{\pm}(\sigma)\right)$$
 $\hat{x}_{\pm}(\sigma) = [V_m, W_m(\sigma)]z_{\pm}(\sigma)$

is an approximate eigenpair of (M, N), where

$$\begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} z = \mu \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} z$$

so that: $\hat{\lambda}_{\pm} = \pm \sqrt{\sigma^2 + \frac{1}{\mu}}, \quad \hat{z}_{\pm}(\sigma) := \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} z(\sigma)$

Approximate pairs

$$M[V_m, W_m(\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(\sigma)] \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} + [O_m, (M + \sigma N)v_{m+1}h_{m+1,m}e_m^\top].$$

Then

$$\left(\pm\hat{\lambda}, \ \hat{x}_{\pm}(\sigma)\right) \qquad \hat{x}_{\pm}(\sigma) = [V_m, W_m(\sigma)]z_{\pm}(\sigma)$$

is an approximate eigenpair of (M, N), where

$$\begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} z = \mu \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} z$$

so that: $\hat{\lambda}_{\pm} = \pm \sqrt{\sigma^2 + \frac{1}{\mu}}, \quad \hat{z}_{\pm}(\sigma) := \begin{bmatrix} I_m & -\sigma H_m \\ \sigma I_m & I_m \end{bmatrix} z(\sigma)$

 \star Further saving possible: recover z from evec's of $H_m = V_m^\top K V_m$

Implementation consideration

Problem: If σ is extremely close to $\hat{\lambda}_+$, then $\hat{x}_-(\sigma) \in \operatorname{range}(V_m)$

 \Rightarrow loose evec accuracy \Rightarrow large residual norm!

Implementation consideration

Problem: If σ is extremely close to $\hat{\lambda}_+$, then $\hat{x}_-(\sigma) \in \operatorname{range}(V_m)$

 \Rightarrow loose evec accuracy \Rightarrow large residual norm!

Solution to the problem: use $[V_m, W_m(-\sigma)]$

(we defined $W(\sigma) = (M - \sigma N)^{-1} N V_m$))

$$M[V_m, W_m(-\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(-\sigma)] \begin{bmatrix} I_m & \sigma H_m \\ -\sigma I_m & I_m \end{bmatrix} + [O_m, (M-\sigma N)v_{m+1}h_{m+1,m}e_m^\top].$$

Implementation consideration

Problem: If σ is extremely close to $\hat{\lambda}_+$, then $\hat{x}_-(\sigma) \in \operatorname{range}(V_m)$

 \Rightarrow loose evec accuracy \Rightarrow large residual norm!

Solution to the problem: use $[V_m, W_m(-\sigma)]$

(we defined $W(\sigma) = (M - \sigma N)^{-1} N V_m$))

$$M[V_m, W_m(-\sigma)] \begin{bmatrix} O_m & H_m \\ I_m & O_m \end{bmatrix} = N[V_m, W_m(-\sigma)] \begin{bmatrix} I_m & \sigma H_m \\ -\sigma I_m & I_m \end{bmatrix} + [O_m, (M-\sigma N)v_{m+1}h_{m+1,m}e_m^\top].$$

In summary, we obtain approx eigenpairs:

$$\left(+\hat{\lambda}, [V_m, W_m(\sigma)]z_+(\sigma)\right), \left(-\hat{\lambda}, [V_m, W_m(-\sigma)]z_-(-\sigma)\right)$$

Implicit restart

Krylov subspace of max size m with regular Arnoldi recursion

\Downarrow

Standard Krylov-Schur restarting (à la Stewart)

Note. Convergence is the same as that of IRA on matrix ${\cal K}$

Algorithm Even-IRA

Require: v_1 , maximum dimension m_{max} , restart size m_{res}

- 1: $V \leftarrow [v_1], m \leftarrow 0$
- 2: while cycle 1,2,3,... do
- 3: % Generation of the approximation space
- 4: while $m < m_{max}$ do

5:
$$m \leftarrow m + 1$$

6:
$$v \leftarrow Kv_m$$

7: Orthogonalize v against V giving $H_{1:m,m}$, and v against NV

8:
$$h_{m+1,m} \leftarrow ||v||, v_{m+1} \leftarrow v/h_{m+1,m}, V \leftarrow [V, v_{m+1}]$$

9: end while

10: % Contraction of approximation space and matrix

11:
$$H_{1:m,1:m} \to QTQ^{\top}$$
 (real Schur form)

12: Partition
$$T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}$$
, $Q = [Q_1, Q_2]$

13:
$$V \leftarrow [V_m Q_1, v_{m+1}], H \leftarrow \begin{bmatrix} T_{11} \\ h_{m+1,m} e_m^\top Q_1 \end{bmatrix}, m \leftarrow m_{res}$$

- 14: % Eigenpair extraction
- 15: Compute approximate eigenpairs and Check for convergence

16: end while

Example: linear quadratic optimal control problem

$$\min \int_{t_0}^{t_1} x^\top Q x + 2u^\top S x + u^\top R u \ dt, \qquad Q = Q^\top, R = R^\top$$

subject to the descriptor system

$$\begin{aligned} E\dot{x} &= Ax + Bu, \ x(0) = x^0 \\ y &= Cx, \end{aligned}$$

Under further conditions, a necessary condition for the existence of a stabilizing feedback controller requires eigeninfo closest to the imaginary axis of

$$L(\lambda) = \lambda N - M = \lambda \begin{bmatrix} 0 & E & 0 \\ -E^{\top} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & A & B \\ A^{\top} & C^{\top}QC & C^{\top}S \\ B^{\top} & S^{\top}C & R \end{bmatrix}.$$

Application problem: rail_1357, R = 0 = Q, S = I, A of size 1357, R of size 7

Example rail_1357, tol= 10^{-12} , 6 matching eigs closest to σ

 $condest(M - \sigma N) = 5.5 \cdot 10^{12}$ $m_{max} = 20/2 = 10$, 3 restarts

eigenvalue	residual norm	residual norm
	$\sigma = i10^{-5}$	$\sigma = 10^{-5}$
2.7062e-05	1.1674e-17	3.0662e-17
-2.7062e-05	7.7496e-18	6.7802e-18
8.8841e-05	6.0929e-17	6.2008e-17
-8.8841e-05	6.9922e-17	4.6029e-17
2.2710e-04	5.9494e-16	1.4799e-14
-2.2710e-04	3.2735e-15	6.9790e-14

Example rail_1357, tol= 10^{-12} , 6 matching eigs closest to σ				
$condest(M - \sigma N) = 5.5 \cdot 10^{12}$	$m_{max} = 20/2 = 10$, 3 restarts			
eigenvalue	residual norm	residual norm		
	$\sigma = i10^{-5}$	$\sigma = 10^{-5}$		
2.7062e-05	1.1674e-17	3.0662e-17		
-2.7062e-05	7.7496e-18	6.7802e-18		
8.8841e-05	6.0929e-17	6.2008e-17		
-8.8841e-05	6.9922e-17	4.6029e-17		
2.2710e-04	5.9494e-16	1.4799e-14		
-2.2710e-04	3.2735e-15	6.9790e-14		

Imaginary shift:

eigs: After 100 cycles (m = 10) $\lambda = \pm 2.2710 \cdot 10^{-4}$ with res norm $O(10^{-8})$ and $O(10^{-5})$

Example rail_1357, tol= 10^{-12} , 6 matching eigs closest to σ $condest(M - \sigma N) = 5.5 \cdot 10^{12}$ $m_{max} = 20/2 = 10$, 3 restarts residual norm residual norm eigenvalue $\sigma = i10^{-5}$ $\sigma = 10^{-5}$ 2.7062e-05 3.0662e-17 1.1674e-17 -2.7062e-05 6.7802e-18 7.7496e-18 8.8841e-05 6.0929e-17 6.2008e-17 -8.8841e-05 6.9922e-17 4.6029e-17 2.2710e-04 5.9494e-16 1.4799e-14 -2.2710e-04 3.2735e-15 6.9790e-14

Imaginary shift:

eigs: After 100 cycles (m = 10) $\lambda = \pm 2.2710 \cdot 10^{-4}$ with res norm $O(10^{-8})$ and $O(10^{-5})$

Real shift:

eigs: After 1 cycle (m = 20) 2.7062e-05 (res norm 8.9218e-13), -2.7063e-05 (res norm 2.2999e-12), 8.8842e-05 (res norm 1.6850e-11)

Passivity test

Under certain conditions, a necessary condition for a control system to be "passive" is that

has no purely imaginary eigs

 \Rightarrow we will be content with very inaccurate eigenvalues!

coax1 (from Schröder-Stykel,'07)

 $\sigma=6i$, one cheap cycle

Even-IRA: m = 12: $\pm 6.0377i$, $\pm 6.0681i$ with res norm below 10^{-5}

Even-IRA: m = 20: $\pm 6.0377i$, $\pm 6.0681i$ with res norm below 10^{-8}

coax1 (from Schröder-Stykel,'07)

 $\sigma=6i$, one cheap cycle

Even-IRA: m = 12: $\pm 6.0377i$, $\pm 6.0681i$ with res norm below 10^{-5}

Even-IRA: $m = 20: \pm 6.0377i, \pm 6.0681i$ with res norm below 10^{-8}

IRA (our implementation of eigs with true residual norms):

m (tol)	eigenvalue	residual norm	n. cycles
12 (10^{-5})	9.5567e-09 + 6.0377 i	2.3684e-08	2
	-1.5054e-06 + 6.0681 i	3.9961e-07	2
20 (10 ⁻⁸)	3.2863e-13 + 6.0377 i	3.8536e-16	2
	-4.8055e-12 + 6.0681 i	3.9425e-13	2

Appendix: a seemingly related method

The new method seeks evec approximations in

range([$V_m, W_m(\sigma)$]), $W_m(\sigma) = (M - \sigma N)^{-1} N V_m$

What about building directly the space range($[V_m, W_m(\sigma)]$)?

Appendix: a seemingly related method

The new method seeks evec approximations in

range([$V_m, W_m(\sigma)$]), $W_m(\sigma) = (M - \sigma N)^{-1} N V_m$

What about building directly the space range($[V_m, W_m(\sigma)]$)?

Alternate multiplications by $(M - \sigma N)^{-1}N$ or by $(M + \sigma N)^{-1}N$: $\{v_1, (M - \sigma N)^{-1}Nv_1, (M + \sigma N)^{-1}N(M - \sigma N)^{-1}Nv_1, \dots, (M - \sigma N)^{-1}N((M + \sigma N)^{-1}N(M - \sigma N)^{-1}N)^{m-1}v_1, \dots\}$

 \Rightarrow rational Krylov subspace, with shifts $\pm \sigma$ as multiple poles

Appendix: a seemingly related method

The new method seeks evec approximations in

range([$V_m, W_m(\sigma)$]), $W_m(\sigma) = (M - \sigma N)^{-1} N V_m$

What about building directly the space range($[V_m, W_m(\sigma)]$)?

Alternate multiplications by $(M - \sigma N)^{-1}N$ or by $(M + \sigma N)^{-1}N$: $\{v_1, (M - \sigma N)^{-1}Nv_1, (M + \sigma N)^{-1}N(M - \sigma N)^{-1}Nv_1, \dots, (M - \sigma N)^{-1}N((M + \sigma N)^{-1}N(M - \sigma N)^{-1}N)^{m-1}v_1, \dots\}$

 \Rightarrow rational Krylov subspace, with shifts $\pm \sigma$ as multiple poles

Note: Performance essentially similar to eigs on our problem

Concluding remarks

- "Matching preserving" method
- Usually efficient and accurate approximation
- Possible problem: ghost eigenvalues detected in certain artificial problem

Concluding remarks

- "Matching preserving" method
- Usually efficient and accurate approximation
- Possible problem: ghost eigenvalues detected in certain artificial problem

Paper:

An Implicitly-restarted Krylov Method for Real Symmetric/Skew-Symmetric Eigenproblems Volker Mehrmann , Christian Schröder and V. Simoncini Linear Algebra and Appl. doi:10.1016/j.laa.2009.11.009 (Special issue in Honor of Heinrich Voss)