On the numerical solution of large scale Riccati equation

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

Joint works with M. Monsalve, Y.Lin, D. Szyld

The problem

Find $X \in \mathbb{R}^{n \times n}$ such that

$$
A X+X A^{\top}-X B B^{\top} X+C^{\top} C=0
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{s \times n}, p, s=\mathcal{O}(1)$

A rich literature for numerical methods:
Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, ...

The problem

Find $X \in \mathbb{R}^{n \times n}$ such that

$$
A X+X A^{\top}-X B B^{\top} X+C^{\top} C=0
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{s \times n}, p, s=\mathcal{O}(1)$
A rich literature for numerical methods:
Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, ...
We focus on the large scale case: $n \gg 1000$

- (Inexact) Kleinman iteration (Newton-type method)
- Projection methods
- Invariant subspace iteration
- (Sparse) multilevel methods

Kleinman iteration

Assume A stable. Compute sequence $\left\{X_{k}\right\}$ with $X_{k} \rightarrow_{k \rightarrow \infty} X$
1: Given $X_{0} \in \mathbb{R}^{n \times n}$ such that $X_{0}=X_{0}^{\top}, A^{\top}-B B^{\top} X_{0}$ is stable
2: For $k=0,1, \ldots$, until convergence
3: \quad Set $\mathcal{A}_{k}^{\top}=A^{\top}-B B^{\top} X_{k}$
4: $\quad \operatorname{Set} \mathcal{C}_{k}^{\top}=\left[\begin{array}{ll}X_{k} B, & C^{\top}\end{array}\right]$
5: \quad Solve $\mathcal{A}_{k} X_{k+1}+X_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0$

Kleinman iteration

Assume A stable. Compute sequence $\left\{X_{k}\right\}$ with $X_{k} \rightarrow_{k \rightarrow \infty} X$
1: Given $X_{0} \in \mathbb{R}^{n \times n}$ such that $X_{0}=X_{0}^{\top}, A^{\top}-B B^{\top} X_{0}$ is stable.
2: For $k=0,1, \ldots$, until convergence
3: \quad Set $\mathcal{A}_{k}^{\top}=A^{\top}-B B^{\top} X_{k}$
4: $\quad \operatorname{Set} \mathcal{C}_{k}^{\top}=\left[X_{k} B, C^{\top}\right]$
5: \quad Solve $\mathcal{A}_{k} X_{k+1}+X_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0$
Critical issues:

- The full matrix X_{k} cannot be stored (sparse or low-rank approx)
- Cheap stopping criterion with

$$
\mathfrak{R}\left(X_{k+1}\right):=A X_{k+1}+X_{k+1} A^{\top}-X_{k+1} B B^{\top} X_{k+1}+C^{\top} C
$$

- Each iteration k requires the solution of the Lyapunov equation:

$$
\mathcal{A}_{k} X_{k+1}+X_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0
$$

(Benner, Feitzinger, Hylla, Saak, Sachs, ...)

Inexact Kleinman iteration. Computation of the residual norm.

- Solve the Lyapunov equation only approximately (inexactly). That is, X_{k+1} s.t.

$$
\mathfrak{L}\left(X_{k+1}\right):=\mathcal{A}_{k} X_{k+1}+X_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k} \approx 0
$$

(Lyapunov residual matrix)
It holds that:

$$
\mathfrak{R}\left(X_{k+1}\right)=\mathfrak{L}\left(X_{k+1}\right)-\left(X_{k} B-X_{k+1} B\right)\left(X_{k} B-X_{k+1} B\right)^{\top}
$$

(see also, Saak, previous Workshop, Aachen 2011) so that, in general,

$$
\left\|\mathfrak{R}\left(X_{k+1}\right)\right\|_{F} \leq\left\|\mathfrak{L}\left(X_{k+1}\right)\right\|_{F}+\left\|X_{k} B-X_{k+1} B\right\|_{F}^{2}
$$

Inexact Kleinman iteration. Computation of the residual norm.
Assume that for each k, the solution to the Lyapunov equation

$$
\mathcal{A}_{k} X_{k+1}+X_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0
$$

is approximated by means of a Galerkin projection method. Then

- The Riccati residual matrix satisfies

$$
\left\|\mathfrak{R}\left(X_{k+1}\right)\right\|_{F}^{2}=\left\|\mathfrak{L}\left(X_{k+1}\right)\right\|_{F}^{2}+\left\|X_{k} B-X_{k+1} B\right\|_{F}^{4}
$$

Inexact Kleinman iteration. Computation of the residual norm.
Assume that for each k, the solution to the Lyapunov equation

$$
\mathcal{A}_{k} X_{k+1}+X_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0
$$

is approximated by means of a Galerkin projection method. Then

- The Riccati residual matrix satisfies

$$
\left\|\mathfrak{R}\left(X_{k+1}\right)\right\|_{F}^{2}=\left\|\mathfrak{L}\left(X_{k+1}\right)\right\|_{F}^{2}+\left\|X_{k} B-X_{k+1} B\right\|_{F}^{4}
$$

- The norm computation is cheap:

$$
\left\|\mathfrak{R}\left(X_{k+1}\right)\right\|_{F}^{2}=\left\|\mathfrak{L}\left(X_{k+1}\right)\right\|_{F}^{2}+\left\|\left(G^{\top}-Y_{m}^{(L)} V_{m}^{\top} B\right)\right\|_{F}^{4}
$$

where V_{m} basis for Galerkin projection space of $\operatorname{dim} . \mathcal{O}(m)$.
Here: $G^{\top}=V_{m}^{\top} X_{k} B$
$Y_{m}^{(L)}$ sol'n to reduced Lyapunov pb; both are $\mathcal{O}(k)$ matrices

Inexact Kleinman iteration. Algorithmic considerations.

Assume Galerkin procedure is used for inner (Lyapunov) equation. E.g., projection space

$$
K_{m}\left(A, C^{\top}\right)=\operatorname{range}\left(\left[C^{\top}, A C^{\top}, \ldots, A^{m-1} C^{\top}\right]\right)
$$

- At iteration $k=0$, for $X_{0}=0$, solve

$$
A X+X A^{\top}+C^{\top} C=0
$$

Approximate solution: $X \approx X_{m}=V_{m} Y_{m} V_{m}^{\top}$, where Y_{m} solves

$$
\left(V_{m}^{\top} A V_{m}\right) Y+Y\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} C^{\top} C V_{m}=0
$$

\Rightarrow Richer spaces: Extended, Rational, augmented Krylov, etc.

Galerkin projection method for the Riccati equation
Given the basis V_{k} for an approximation space, determine approx

$$
X_{k}=V_{k} Y_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
V_{k}^{\top} \mathfrak{R}\left(X_{k}\right) V_{k}=0
$$

(Galerkin condition), giving
$\left(V_{k}^{\top} A V_{k}\right) Y+Y\left(V_{k}^{\top} A^{\top} V_{k}\right)-Y_{k}\left(V_{k}^{\top} B B^{\top} V_{k}\right) Y_{k}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0$
(Heyouni-Jbilou 2009)

Galerkin projection method for the Riccati equation
Given the basis V_{k} for an approximation space, determine approx

$$
X_{k}=V_{k} Y_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
V_{k}^{\top} \mathfrak{R}\left(X_{k}\right) V_{k}=0
$$

(Galerkin condition), giving
$\left(V_{k}^{\top} A V_{k}\right) Y+Y\left(V_{k}^{\top} A^{\top} V_{k}\right)-Y_{k}\left(V_{k}^{\top} B B^{\top} V_{k}\right) Y_{k}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0$
(Heyouni-Jbilou 2009)
Key questions:

- Which approximation space?
- What expected performance, compared with Galerkin method on the Lyapunov equation?

Performance of solvers

Problem: A : 3D Laplace operator, B, C randn matrices, tol $=10^{-8}$ $(n, p, s)=(125000,5,5)$

	its	inner its	time	space dim	$\operatorname{rank}\left(X_{f}\right)$
Newton $X_{0}=0$	15	$5, \ldots, 5$	808	100	95
Newton $X_{0}=X_{4}^{\text {eksm }}$	10	$5, \ldots, 5$	706	100	94
GP-EKSM	20		531	200	105
GP-RKSM	25		524	125	105

$(n, p, s)=(125000,20,20)$

	its	inner its	time	space dim	$\operatorname{rank}\left(X_{f}\right)$
Newton $X_{0}=0$	19	$5, \ldots, 5$	2332	400	346
Newton $X_{0}=X_{4}^{e k s m}$	15	$5, \ldots, 5$	2042	400	347
GP-EKSM	15		622	600	364
GP-RKSM	20		720	400	358

$G P=$ Galerkin projection

Some matrix relations
$X_{k}^{(R)}$: Galerkin approx to Riccati equation in Range $\left(V_{k}\right)$
$X_{k}^{(L)}$: Galerkin approx to Lyapunov equation $(B=0)$ in $\operatorname{Range}\left(V_{k}\right)$ (here $\operatorname{Range}\left(V_{k}\right)$ is a Krylov-type subspace)

- $X_{k}^{(L)} \geq X_{k}^{(R)}$
- $\left\|\mathfrak{R}\left(X_{k}^{(R)}\right)-\mathfrak{L}\left(X_{k}^{(L)}\right)\right\|=\left\|t_{k}^{\top}\left(Y_{k}^{(R)}-Y_{k}^{(L)}\right)\right\|$, with

$$
\left\|Y_{k}^{(L)}-Y_{k}^{(R)}\right\| \leq \frac{1}{2 \alpha}\left\|\left(B^{\top} V_{k}\right) Y_{k}^{(R)}\right\|^{2}
$$

where $\alpha=-\lambda_{\max }\left(\left(V_{k}^{\top} A V_{k}+V_{k}^{\top} A^{\top} V_{k}\right) / 2\right)$

Some matrix relations
$X_{k}^{(R)}$: Galerkin approx to Riccati equation in Range $\left(V_{k}\right)$
$X_{k}^{(L)}$: Galerkin approx to Lyapunov equation $(B=0)$ in Range $\left(V_{k}\right)$ (here Range $\left(V_{k}\right)$ is a Krylov-type subspace)

- $X_{k}^{(L)} \geq X_{k}^{(R)}$
- $\left\|\mathfrak{R}\left(X_{k}^{(R)}\right)-\mathfrak{L}\left(X_{k}^{(L)}\right)\right\|=\left\|t_{k}^{\top}\left(Y_{k}^{(R)}-Y_{k}^{(L)}\right)\right\|$, with

$$
\left\|Y_{k}^{(L)}-Y_{k}^{(R)}\right\| \leq \frac{1}{2 \alpha}\left\|\left(B^{\top} V_{k}\right) Y_{k}^{(R)}\right\|^{2}
$$

where $\alpha=-\lambda_{\max }\left(\left(V_{k}^{\top} A V_{k}+V_{k}^{\top} A^{\top} V_{k}\right) / 2\right)$

- Residual norms: $X^{(R)}$ as Riccati vs Lyapunov solution

$$
\left\|\mathfrak{R}\left(X_{k}^{(R)}\right)\right\|_{F}^{2}=\left\|\mathfrak{L}\left(X_{k}^{(R)}\right)\right\|_{F}^{2}-\left\|X_{k}^{(R)} B B^{\top} X_{k}^{(R)}\right\|_{F}^{2}
$$

Some matrix relations
$X_{k}^{(R)}$: Galerkin approx to Riccati equation in $\operatorname{Range}\left(V_{k}\right)$
$X_{k}^{(L)}$: Galerkin approx to Lyapunov equation $(B=0)$ in Range $\left(V_{k}\right)$ (here Range $\left(V_{k}\right)$ is a Krylov-type subspace)

- $X_{k}^{(L)} \geq X_{k}^{(R)}$
- $\left\|\mathfrak{R}\left(X_{k}^{(R)}\right)-\mathfrak{L}\left(X_{k}^{(L)}\right)\right\|=\left\|t_{k}^{\top}\left(Y_{k}^{(R)}-Y_{k}^{(L)}\right)\right\|$, with

$$
\left\|Y_{k}^{(L)}-Y_{k}^{(R)}\right\| \leq \frac{1}{2 \alpha}\left\|\left(B^{\top} V_{k}\right) Y_{k}^{(R)}\right\|^{2}
$$

where $\alpha=-\lambda_{\max }\left(\left(V_{k}^{\top} A V_{k}+V_{k}^{\top} A^{\top} V_{k}\right) / 2\right)$

- Residual norms: $X^{(R)}$ as Riccati vs Lyapunov solution

$$
\left\|\mathfrak{R}\left(X_{k}^{(R)}\right)\right\|_{F}^{2}=\left\|\mathfrak{L}\left(X_{k}^{(R)}\right)\right\|_{F}^{2}-\left\|X_{k}^{(R)} B B^{\top} X_{k}^{(R)}\right\|_{F}^{2}
$$

But: Why does it work (well) ?

A low-rank subspace iteration for the Riccati equation
Consider $A^{\top} X+X A-X F X+G=0$. Let

$$
\mathcal{H}=\left[\begin{array}{cc}
A & -F \\
-G & -A^{\top}
\end{array}\right]
$$

with eigenvalues satisfying
$\Re\left(\lambda_{1}\right) \leq \Re\left(\lambda_{2}\right) \leq \ldots \leq \Re\left(\lambda_{n}\right)<0<\Re\left(\lambda_{n+1}\right) \leq \Re\left(\lambda_{n+2}\right) \leq \ldots \leq \Re\left(\lambda_{2 n}\right)$
Then range $\left(\left[\begin{array}{l}I_{n} \\ X\end{array}\right]\right)$ is an invariant subspace of \mathcal{H} (X stabilizing soln $)$

A low-rank subspace iteration for the Riccati equation
Consider $A^{\top} X+X A-X F X+G=0$. Let

$$
\mathcal{H}=\left[\begin{array}{cc}
A & -F \\
-G & -A^{\top}
\end{array}\right]
$$

with eigenvalues satisfying
$\Re\left(\lambda_{1}\right) \leq \Re\left(\lambda_{2}\right) \leq \ldots \leq \Re\left(\lambda_{n}\right)<0<\Re\left(\lambda_{n+1}\right) \leq \Re\left(\lambda_{n+2}\right) \leq \ldots \leq \Re\left(\lambda_{2 n}\right)$
Then range $\left(\left[\begin{array}{l}I_{n} \\ X\end{array}\right]\right)$ is an invariant subspace of \mathcal{H} (X stabilizing soln $)$
\Rightarrow Subspace iteration with the Cayley transformation matrix

$$
\mathcal{S}(\alpha)=(\mathcal{H}+\alpha I)^{-1}(\mathcal{H}-\bar{\alpha} I)
$$

with eigs: $\left|\sigma_{1}\right| \geq \ldots \geq\left|\sigma_{n}\right|>1>\left|\sigma_{n+1}\right| \geq \ldots \geq\left|\sigma_{2 n}\right|$
(as for acceleration procedures in QR iteration)

Subspace iteration with Cayley transformation
Given $X_{0} \in \mathbb{R}^{n \times n}$ and $\alpha_{k}, k=1,2, \ldots$ with $\Re\left(\alpha_{k}\right)>0$
For $k=1,2, \ldots$

Compute

$$
\begin{aligned}
& {\left[\begin{array}{c}
M_{k} \\
N_{k}
\end{array}\right]:=\mathcal{S}\left(\alpha_{k}\right)\left[\begin{array}{c}
I \\
X_{k-1}
\end{array}\right] \quad\left(\text { with } \mathcal{S}(\alpha)=(\mathcal{H}+\alpha I)^{-1}(\mathcal{H}-\bar{\alpha} I)\right)} \\
& X_{k}:=N_{k} M_{k}^{-1}
\end{aligned}
$$

End

Subspace iteration with Cayley transformation
Given $X_{0} \in \mathbb{R}^{n \times n}$ and $\alpha_{k}, k=1,2, \ldots$ with $\Re\left(\alpha_{k}\right)>0$
For $k=1,2, \ldots$
Compute

$$
\begin{aligned}
& \left.\left[\begin{array}{c}
M_{k} \\
N_{k}
\end{array}\right]:=\mathcal{S}\left(\alpha_{k}\right)\left[\begin{array}{c}
I \\
X_{k-1}
\end{array}\right] \quad \text { (with } \mathcal{S}(\alpha)=(\mathcal{H}+\alpha I)^{-1}(\mathcal{H}-\bar{\alpha} I)\right) \\
& X_{k}:=N_{k} M_{k}^{-1}
\end{aligned}
$$

End
Corresponding to the following fixed point iteration:

$$
\begin{aligned}
& X_{k}=\left[-2 \mathfrak{a}_{k} S_{1}^{-1} G\left(A+\alpha_{k} I\right)^{-1}+\left(I-2 \mathfrak{a}_{k} S_{1}^{-1}\right) X_{k-1}\right] \\
& {\left[I-2 \mathfrak{a}_{k} S_{2}^{-1}-2 \mathfrak{a}_{k} S_{2}^{-1} F\left(-A^{*}+\alpha_{k} I\right)^{-1} X_{k-1}\right]^{-1} }
\end{aligned}
$$

(here $\mathfrak{a}_{k}=\Re\left(\alpha_{k}\right)$)

On the convergence of subspace iteration

* Schur decomposition: $\mathcal{H}=Q T Q^{*}$
* Schur decomposition: $\mathcal{S}_{k}=Q T_{(k)} Q^{*}$, where
$T_{(k)}:=\left[\begin{array}{cc}T_{11(k)} & T_{12(k)} \\ 0 & T_{22(k)}\end{array}\right]$ with $T_{j j(k)}=\left(T_{j j}+\alpha_{k} I\right)^{-1}\left(T_{j j}-\bar{\alpha}_{k} I\right)$
* $\left[\begin{array}{c}I \\ X_{0}\end{array}\right]=U_{0} R_{0}$ skinny QR, X_{0} s.t. $d=\operatorname{dist}\left(D_{n}\left(\mathcal{H}^{*}\right), \operatorname{Range}\left(\left[\begin{array}{c}I \\ X_{0}\end{array}\right]\right)\right)<1$

If the matrix M_{k} is nonsingular $\forall k$, then

$$
\operatorname{dist}\left(\operatorname{Range}\left(\left[\begin{array}{c}
I \\
X_{+}
\end{array}\right]\right), \operatorname{Range}\left(\left[\begin{array}{c}
I \\
X_{k}
\end{array}\right]\right)\right) \leq \gamma\left\|\prod_{i=k}^{1} T_{22(i)}\right\|_{2}\left\|\prod_{i=1}^{k} T_{11(i)}^{-1}\right\|_{2}
$$

where $\gamma=\frac{\left\|R_{0}^{-1}\right\|_{2}}{\sqrt{1-d^{2}}}\left(1+\frac{\left\|T_{12}\right\|_{F}}{\operatorname{sep}\left(T_{11}, T_{22}\right)}\right)$

Incremental low rank Subspace Iteration algorithm

If $F=B B^{\top}$ and $G=C^{\top} C$, then low-rank recurrence possible
1: INPUT $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{s \times n}, B \in \mathbb{R}^{n \times p}, \alpha_{k}, k=1,2, \ldots$, with $\mathfrak{a}_{k}=\Re\left(\alpha_{k}\right)$
2: $V_{1}:=-2 \mathfrak{a}_{1}\left(-A^{\top}+\alpha_{1} I\right)^{-1} C^{\top}, T_{1}=2 \mathfrak{a}_{1}\left(I+C\left(-A+\bar{\alpha}_{1} I\right)^{-1} B B^{\top}\left(-A^{\top}+\alpha_{1} I\right)^{-1} C^{*}\right)$
3: for $k=2,3, \ldots$
4: $\quad v_{k}:=\frac{\alpha_{k}}{\alpha_{k-1}}\left(v_{k-1}-\left(\alpha_{k-1}+\bar{\alpha}_{k}\right)\left(-A^{\top}+\alpha_{k} I\right)^{-1} v_{k-1}\right), V_{k}=\left[\begin{array}{ll}V_{k-1}, & v_{k}\end{array}\right]$
5: $\quad Q_{k}:=$

$$
\left.\begin{array}{ll}
\\
\frac{\bar{\alpha}_{k-1}+\alpha_{k}}{2 \mathfrak{a}_{k}} \\
\frac{\alpha_{k-1}-\alpha_{k}}{2 \mathfrak{a}_{k}} & \frac{\bar{\alpha}_{k}+\alpha_{k}}{2 \mathfrak{a}_{k}}
\end{array}\right] \otimes I_{s}
$$

6: $\quad P_{k}:=Q_{k}^{-1}+\left[\begin{array}{ll}I & \\ & 0\end{array}\right] \otimes I_{s}$
7: $\quad T_{k}:=P_{k}^{-*}\left\{\left[\begin{array}{cc}T_{k-1} & 0 \\ 0 & 2 \mathfrak{a}_{k} I\end{array}\right]+\frac{1}{2 \mathfrak{a}_{k}} Q_{k}^{-*} V_{k}^{*} B B^{\top} V_{k} Q_{k}^{-1}\right\} P_{k}^{-1}$
8: OUTPUT: V_{k}, T_{k} s.t. $X_{k}=V_{k} T_{k}^{-1} V_{k}^{*} \approx X_{+}$

Properties of incremental low rank Subspace Iteration

- Low-rank approximate solution
- One solve per iteration (s if C^{\top} has s columns)
- The generated space is the Rational Krylov space with poles α_{j} 's

Properties of incremental low rank Subspace Iteration

- Low-rank approximate solution
- One solve per iteration (s if C^{\top} has s columns)
- The generated space is the Rational Krylov space with poles α_{j} 's
- CF-ADI-like basis V_{k} (algorithm coincides with ADI for $B=0$)
- Theory motivates the parameter selection as

$$
\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}=\arg \min _{\alpha_{1}, \ldots, \alpha_{k}>0} \max _{\lambda \in \lambda_{+}(\mathcal{H})} \prod_{i=1}^{k}\left|\frac{\lambda-\bar{\alpha}_{i}}{\lambda+\alpha_{i}}\right|
$$

Subspace iteration vs Galerkin RKS method
Assume the field of values of A is in \mathbb{C}^{-}
$X_{k}=V_{k} T_{k}^{-1} V_{k}^{\top}$: Subspace iteration approx
$V_{k}=\operatorname{range}\left(\left[\left(-A^{\top}+\alpha_{1} I\right)^{-1} C^{\top}, \ldots,\left(-A^{\top}+\alpha_{k} I\right)^{-1} C^{\top}\right]\right)$
$R_{k}=C^{\top} C+A^{\top} X_{k}+X_{k} A-X_{k} B B^{\top} X_{k}$: residual matrix. Then

$$
V_{k}^{\top} R_{k} V_{k}=0 \quad \Leftrightarrow \quad\left(V_{k}^{\top} V_{k}\right)^{-1} V_{k}^{\top} C^{\top}=T_{k}^{-1} 1
$$

Moreover, the parameters α_{j} are the mirrored Ritz values of $A^{\top}-X_{k} B B^{\top}$:

$$
\alpha_{j}=-\bar{\lambda}_{j}, j=1, \ldots, k
$$

where $\lambda_{j}=\operatorname{eig}\left(\left(V_{k}^{\top} V_{k}\right)^{-1} V_{k}^{\top}\left(A^{\top}-X_{k} B B^{\top}\right) V_{k}\right)$
(cf. H_{2}-optimal MOR)

A numerical example

Consider the 500×500 Toeplitz matrix

$$
A=\operatorname{toeplitz}(-1, \underline{2.5}, 1,1,1), \quad C=[1,-2,1,-2, \ldots], B=1
$$

Parameter computation:
Left: adaptive RKSM on A

A numerical example

Consider the 500×500 Toeplitz matrix

$$
A=\operatorname{toeplitz}(-1, \underline{2.5}, 1,1,1), \quad C=[1,-2,1,-2, \ldots], B=1
$$

Parameter computation:
Left: adaptive RKSM on $A \quad$ Right: adaptive RKSM on $A^{\top}-X_{k}^{(R)} B B^{\top}$

Conclusions and open problems

- Projection methods a good alternative to Newton iteration (numerical evidence)
- Derivation of an ad-hoc adaptive RKSM for Riccati equations
- Subspace iteration provides a new framework to analyze RKSM

References

- V. Simoncini, Daniel B. Szyld and Marlliny Monsalve,

On two numerical methods for the solution of large-scale algebraic Riccati equations
To appear in IMA Journal of Numerical Analysis. (available on-line)

- Yiding Lin and V. Simoncini,

A new subspace iteration method for the algebraic Riccati equation pp.1-25, July 2013. arXiv:1307.3843. Submitted

