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The approximation problem

Given v € R" and A € R™", approximate

x= f(A)v e.g. f(\) = et

» f analytic function
» Focus: A large dimension

» General approach: xm € K, (some) Krylov subspace



E——
Problem in context

Wide range of applications:

» Numerical solution of Time-dependent PDEs
» Complex networks

» Flows on manifolds
Q= H(Q,1)Q, Q(t)],o = Qo € Vi(R")

Vi Stiefel manifold (computation of a few Lyapunov exponents)



Approximation using Krylov subspace

Km = Kn(A, v) = span{v, Av, ..., A"y}

Vin  st.orange(Vin) = Kn(A,v) and ViV, =1

Arnoldi relation
AV, = VpHp + hm+1,me+le:7

A common approach
F(AV ~ Xm = Vuf(Hm)e,,  |v|=1

Xm derived from interpolation problem in Hermite sense (Saad '92)
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Pausing on pros and cons

Current full-orth based Krylov subspaces may be “expensive” J

» ‘“expensive’ in different ways: Memory, computation, communication, etc.

» General concern :
linear systems, eigenvalue problems, matrix equations, etc.

Imperative

Keep the Krylov recurrence short and cheap!
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Several steps back. Short recurrences

Main ingredient: Krylov decomposition (Stewart, '01)
AU, = UcBy + Uk+1bi+1

with
- By is k x k, Rayleigh quotient

- [Uk, uk+1] are linearly independent, build a Krylov space (here, by 1 = Bri1ex)
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Several steps back. Short recurrences

Main ingredient: Krylov decomposition (Stewart, '01)
AU, = UcBy + Uk+1bz+1

with
- By is k x k, Rayleigh quotient

- [Uk, uk+1] are linearly independent, build a Krylov space (here, by 1 = Bri1ex)

Procedures fitting this framework:

- Full orth Arnoldi (*)
- Truncated Arnoldi, restarted Arnoldi
- Chebyshev, Newton, ... iterations

- Nonsymmetric Lanczos

Except for (*), all methods suffer from lack/loss of orthogonality properties! J

(Rich literature from the 1990s and early 2000s)
_ V. Simoncini - Sketched Krylov methods 7/18
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Towards stabilized procedures. Randomized strategies

Randomized methods have become a key tool to:
» Lower memory requirements by “oblivious” projections
» Lower computational costs

» Stabilize procedures

.. with probabilistic confidence.
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Towards stabilized procedures. Randomized strategies

Randomized methods have become a key tool to:
» Lower memory requirements by “oblivious” projections
» Lower computational costs

» Stabilize procedures

.. with probabilistic confidence.

Random projections can be used to make bases more orthogonal )
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* Let 7 : Rm<(k+1) _ Rex(k+1) he a row selection operator with s > k + 1
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* Let J(U) = QR be the reduced QR decomposition of the subsampled matrix
(see, e.g., Woodruff, '14)

Ideal low-cost stabilization problem

Given Uki1 = [Uk, uk+1], for some s with k + 1 < s < n, find J giving the best
conditioned matrix

U1 = U1 R7?
where J(Ukt+1) = QR
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» Columns of Uyy1 are assumed not to be available simultaneously!
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Towards stabilized procedures. Randomized strategies

AU = UBy + Uk+1bz
* Let 7 : Rm<(k+1) _ Rex(k+1) he a row selection operator with s > k + 1

* Let J(U) = QR be the reduced QR decomposition of the subsampled matrix
(see, e.g., Woodruff, '14)

Ideal low-cost stabilization problem

Given Uki1 = [Uk, uk+1], for some s with k + 1 < s < n, find J giving the best
conditioned matrix

U1 = U1 R7?

where J(Ukt+1) = QR

Unrealistic:
» Solving this problem is expensive
» Columns of Uyy1 are assumed not to be available simultaneously!

Select J a priori = random subsampling, with row selection probability p;
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A randomly subsampled Krylov decomposition

Let Ux = UxR;*

Randomized Krylov decomposition v.1 (Palitta, Schweitzer, Simoncini, '25)
It holds that

T(AU) = T(U) (B + dief) + arsixwes, arsr L T(Uk)

1. §k + dej rank-one modification (last column) of §k = Rk_lBkRk

2. Randomized Krylov decomposition corresponds to J* J-orthogonalization of original
Krylov decomposition
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A simple example. Matrix function evaluation.

exp(A)v ~ Us eXP(Ek + dkeg)erxo
n = 4900, s = 200 — similar results for s = 80 (kmax=40)

Nonsymmetric Lanczos iteration:

—stabilized
—-standard

100F

True error norm

10'10,

1015}
0 5 10 15 20 25 30 35
space dimension
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Carrying on

Why non-symmetric Lanczos iterations?

» Pros: Inherently short-term recurrence (no truncation parameter!)

» Pros: Builds same Krylov subspace as all Arnoldi-type methods
» Cons: Requires AT

» Cons: Breakdown possible
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Is row subsampling enough?
» Row sampling cheap and easy fix
» Row sampling is often not enough as stabilizer
» Conditioning not necessarily low




-
Carrying on

Why non-symmetric Lanczos iterations?
» Pros: Inherently short-term recurrence (no truncation parameter!)
» Pros: Builds same Krylov subspace as all Arnoldi-type methods
» Cons: Requires AT

» Cons: Breakdown possible

Is row subsampling enough?
» Row sampling cheap and easy fix
» Row sampling is often not enough as stabilizer
» Conditioning not necessarily low

Sketching strategies: Subspace embedding J
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Sketching strategies. Subspace embedding.

A (1 + ) £r-subspace embedding for V € R™*k is an operator S such that
(1= 9lIVxll3 < IS()I3 < (1 +e)[[Vxl3,  ¥x e R

with high probability.

The Subsampled Randomized Hadamard Transform
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Sketching strategies. Subspace embedding.

A (1 + ) £r-subspace embedding for V € R™*k is an operator S such that
(1= 9lIVxll3 < IS()I3 < (1 +e)[[Vxl3,  ¥x e R

with high probability.

The Subsampled Randomized Hadamard Transform
A convenient such choice (Rademacher operator)
1

S(v) = o

PCDyv, S(+) is an s X n matrix
with
D “rotation” (diagonal matrix from random distr. in {—1,1})

C fast cosine transform
P coordinate sampling

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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Subspace embedding in Krylov decomposition
Sketched Krylov decomposition:
S(AU) = S(Ux)(Bi + dief) + qrarxues,  qrer L S(Uk)

with
1+¢
1—¢

Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

ra(U) <

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.
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Subspace embedding in Krylov decomposition
Sketched Krylov decomposition:
S(AU) = S(Ux)(Bi + dief) + qesrxwess  qren L S(U)
with
14¢
1—e¢

Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

ra(U) <

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.

This leads in fact to an “equivalent” Krylov decomposition (in Stewart’s sense):

(Simoncini, Wang, 2025)
Assume U1 full rank, S(Uk+1) = QRk+1, and let

_ ~ _ 1 Rk rktr
U1 = [Uk, Uk1] = UkaiR .y Rk = {0 pHJ

Any Krylov decomp. is transformed by sketching into the equivalent Krylov decomp.:

S~ e . . .
AUy = Uk Bk + U1 Bk418 Bk = RikBkR ™ + riv1bitakex Ry
o 1
Br+1 = Pr+1bict1,kry k-
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Another example with nonsymmetric Lanczos

Paradigm: Stabilize while constructing

At each iteration k
» Compute next Lanczos vectors uy, wy
» Compute embedded vector S(uy)
» Update QR of embedded basis (i.e. stabilization matrix Ry)
>

Update and use I§k + dkeg
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Another example with nonsymmetric Lanczos

Paradigm: Stabilize while constructing

At each iteration k

» Compute next Lanczos vectors uy, wy

» Compute embedded vector S(uy)

» Update QR of embedded basis (i.e. stabilization matrix Ry)
>

Update and use I§k + dkeg

Enhanced stabilization within non-sym Lanczos:
& Weak biorthogonality in Up,, Vi, (no parameters)
& Strong subsampled orthogonality in U,

Shared step: Two-pass strategy to recover problem solution (quick basis recostruction)
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Another example with nonsymmetric Lanczos

FD discretization of the operator
L(u) = —(exp(—xy)ux)x — (exp(xy)uy), — 100(x + y)u, + 500u,
such that n = 4900, v = randn (norm'd), s = 200

exp(A_%)v =~ Ok exp((ék +dke,f)_%)e1X0




E——
Conclusions

» Randomized subsampling is a good compromise

» Sketching as a practical tool for core NLA solvers
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Final note

Buon Compleanno, Luciano



