

Structured Preconditioners for Saddle Point Problems

V. Simoncini

Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it

Mario Arioli, RAL, UK
Michele Benzi, Emory University (GA)
Ilaria Perugia, Università di Pavia
Miro Rozloznik, Institute of Computer Science, Academy of Science, Prague

Motivational Application

Constrained minimization problem

minimize
$$J(u) = \frac{1}{2} \langle Au, u \rangle - \langle f, u \rangle$$

subject to Bu = g $A \quad n \times n$ symmetric, $B \ m \times n, \ m \leq n$ \downarrow

Lagrange multipliers approach

Karush-Kuhn-Tucker (KKT) system

- Computational Fluid Dynamics
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Weighted Least Squares (Image restoration)

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

• A sym. pos.semidef., B full rank

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

- A sym. pos.semidef., B full rank
- A sym. pos.semidef., B rank defic., C sym. [semi]def.

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

- A sym. pos.semidef., B full rank
- A sym. pos.semidef., B rank defic., C sym. [semi]def.
- A nonsym., B and C as above

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

- A sym. pos.semidef., B full rank
- A sym. pos.semidef., B rank defic., C sym. [semi]def.
- A nonsym., B and C as above

A sym,

$$\mathcal{M}x = b$$
 \mathcal{M} sym. indef.

With n positive and m negative real eigenvalues

Typical Sparsity pattern (3D problem)

•
$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$
 $0 < \lambda_n \leq \cdots \leq \lambda_1$ eigs of A
 $0 < \sigma_m \leq \cdots \leq \sigma_1$ sing. vals of B

•
$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$
 $0 < \lambda_n \leq \cdots \leq \lambda_1$ eigs of A
 $0 < \sigma_m \leq \cdots \leq \sigma_1$ sing. vals of B

• (Rusten & Winther 1992) $\Lambda(\mathcal{M})$ subset of

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_m^2})\right]$$

•
$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix}$$
 $0 < \lambda_n \leq \cdots \leq \lambda_1$ eigs of A
 $0 < \sigma_m \leq \cdots \leq \sigma_1$ sing. vals of B

• (Rusten & Winther 1992) $\Lambda(\mathcal{M})$ subset of

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_m^2})\right]$$

• (Silvester & Wathen 1994), $0 \le \sigma_m \le \cdots \le \sigma_1$

$$\lambda_n - \lambda_{\max}(C) - \sqrt{(\lambda_n + \lambda_{\max}(C))^2 + 4\sigma_1^2}$$

•
$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix}$$
 $0 < \lambda_n \leq \cdots \leq \lambda_1$ eigs of A
 $0 < \sigma_m \leq \cdots \leq \sigma_1$ sing. vals of B

• (Rusten & Winther 1992) $\Lambda(\mathcal{M})$ subset of

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_m^2})\right]$$

• (Silvester & Wathen 1994), $0 \le \sigma_m \le \cdots \le \sigma_1$

$$\lambda_n - \lambda_{\max}(C) - \sqrt{(\lambda_n + \lambda_{\max}(C))^2 + 4\sigma_1^2}$$

More results for special cases (e.g. Perugia & S. 2000)

General preconditioning strategy

• Find \mathcal{P} such that

$$\mathcal{M}\mathcal{P}^{-1}\hat{u} = b \qquad \hat{u} = \mathcal{P}u$$

is easier (faster) to solve than $\mathcal{M}u = b$

General preconditioning strategy

• Find \mathcal{P} such that

$$\mathcal{M}\mathcal{P}^{-1}\hat{u} = b \qquad \hat{u} = \mathcal{P}u$$

is easier (faster) to solve than $\mathcal{M}u = b$

- A look at efficiency:
 - Dealing with \mathcal{P} should be cheap
 - Storage for $\ensuremath{\mathcal{P}}$ should be low
 - Properties (algebraic/functional) exploited

Structure preserving preconditioning

Idealized case:

Structure preserving preconditioning

Idealized case:

★ A nonsing., C = 0:

$$\mathcal{P} = \begin{bmatrix} A & 0\\ 0 & B^T A^{-1} B \end{bmatrix} \Rightarrow \mathcal{MP}^{-1} \text{ eigs } 1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

MINRES converges in at most 3 iterations

(Murphy, Golub & Wathen, 2002)

Structure preserving preconditioning

Idealized case:

★ A nonsing., C = 0:

$$\mathcal{P} = \begin{bmatrix} A & 0\\ 0 & B^T A^{-1} B \end{bmatrix} \Rightarrow \mathcal{MP}^{-1} \text{ eigs } 1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

MINRES converges in at most 3 iterations

(Murphy, Golub & Wathen, 2002)

★ A nonsing., $C \neq 0$:

$$\mathcal{P} = \begin{bmatrix} A & B \\ 0 & B^T A^{-1} B + C \end{bmatrix} \Rightarrow \mathcal{M} \mathcal{P}^{-1} = \begin{bmatrix} I & 0 \\ B^T A^{-1} & I \end{bmatrix}$$

GMRES converges in at most 2 iterations

Block diagonal Preconditioner

$$\mathcal{P} = \left[\begin{array}{cc} \widetilde{A} & 0 \\ 0 & \widetilde{C} \end{array} \right]$$

sym. pos. def.

Rusten Winther (1992), Silvester Wathen (1993-1994), Klawonn (1998) Fischer Ramage Silvester Wathen (1998...), . . .

Block diagonal Preconditioner

$$\mathcal{P} = \left[\begin{array}{cc} \widetilde{A} & 0 \\ 0 & \widetilde{C} \end{array} \right]$$

sym. pos. def.

Rusten Winther (1992), Silvester Wathen (1993-1994), Klawonn (1998) Fischer Ramage Silvester Wathen (1998...), . . .

 $\lambda \neq 0$ eigs of $\mathcal{P}^{-\frac{1}{2}}\mathcal{M}\mathcal{P}^{-\frac{1}{2}}$,

$$\lambda \in [-a, -b] \cup [c, d]$$

$$\mathcal{Q} = \begin{bmatrix} \widetilde{A} & B \\ B^T & -C \end{bmatrix}$$

Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), Braess Sarazin (1997) Golub Wathen (1998) Vassilevski Lazarov (1996), Lukšan Vlček (1998-1999), Perugia S. Arioli (1999), Keller Gould Wathen (2000) Perugia S. (2000), Gould Hribar Nocedal (2001), Rozloznik S. (2002), Durazzi Ruggiero (2003), Axelsson Neytcheva (2003), ...

Constraint Preconditioner

$$\mathcal{Q} = \begin{bmatrix} \widetilde{A} & B \\ B^T & -C \end{bmatrix}$$

Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), Braess Sarazin (1997) Golub Wathen (1998) Vassilevski Lazarov (1996), Lukšan Vlček (1998-1999), Perugia S. Arioli (1999), Keller Gould Wathen (2000) Perugia S. (2000), Gould Hribar Nocedal (2001), Rozloznik S. (2002), Durazzi Ruggiero (2003), Axelsson Neytcheva (2003), ...

 $\lambda \neq 0$ eigs di \mathcal{MQ}^{-1} , $\lambda \in \mathbb{R}^+$, $\lambda \in \{1\} \cup [\alpha_0, \alpha_1]$

Constraint Preconditioner

$$\mathcal{Q} = \begin{bmatrix} \widetilde{A} & B \\ B^T & -C \end{bmatrix}$$

Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), Braess Sarazin (1997) Golub Wathen (1998) Vassilevski Lazarov (1996), Lukšan Vlček (1998-1999), Perugia S. Arioli (1999), Keller Gould Wathen (2000) Perugia S. (2000), Gould Hribar Nocedal (2001), Rozloznik S. (2002), Durazzi Ruggiero (2003), Axelsson Neytcheva (2003), ...

 $\lambda \neq 0$ eigs di \mathcal{MQ}^{-1} , $\lambda \in \mathbb{R}^+$, $\lambda \in \{1\} \cup [\alpha_0, \alpha_1]$ Remark: $B^T x_k = 0$ for all iterates x_k

Constraint Preconditioner

$$\mathcal{Q} = \begin{bmatrix} \widetilde{A} & B \\ B^T & -C \end{bmatrix}$$

Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), Braess Sarazin (1997) Golub Wathen (1998) Vassilevski Lazarov (1996), Lukšan Vlček (1998-1999), Perugia S. Arioli (1999), Keller Gould Wathen (2000) Perugia S. (2000), Gould Hribar Nocedal (2001), Rozloznik S. (2002), Durazzi Ruggiero (2003), Axelsson Neytcheva (2003), ...

 $\lambda \neq 0$ eigs di \mathcal{MQ}^{-1} , $\lambda \in \mathbb{R}^+$, $\lambda \in \{1\} \cup [\alpha_0, \alpha_1]$ Remark: $B^T x_k = 0$ for all iterates x_k

$$\mathcal{Q}^{-1} = \begin{bmatrix} I & -B^T \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & -(\mathbf{B}\mathbf{B^T} + \mathbf{C})^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -B & I \end{bmatrix}$$

Polyak 1970, ..., Fischer & Ramage & Silvester & Wathen 1997, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Golub 2004, S. & Benzi 2004, ...

$$\Lambda(\mathcal{M}_{-})$$
 in \mathbb{C}^{+}

Polyak 1970, ..., Fischer & Ramage & Silvester & Wathen 1997, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, ...

$$\Lambda(\mathcal{M}_{-})$$
 in \mathbb{C}^{+}

• More refined spectral information possible

Polyak 1970, ..., Fischer & Ramage & Silvester & Wathen 1997, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Golub 2004, S. & Benzi 2004, ...

$$\Lambda(\mathcal{M}_{-})$$
 in \mathbb{C}^{+}

- More refined spectral information possible
- New classes of preconditioners

Polyak 1970, ..., Fischer & Ramage & Silvester & Wathen 1997, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Golub 2004, S. & Benzi 2004, ...

$$\Lambda(\mathcal{M}_{-})$$
 in \mathbb{C}^{+}

- More refined spectral information possible
- New classes of preconditioners
- General framework for spectral analysis of some inexact preconditioners

- $A \quad n \times n$ sym. semidef. matrix, $B \quad m \times n$, $m \leq n$
 - \mathcal{M}_{-} has at least n m real eigenvalues

Spectral properties of \mathcal{M}_{-}

• Let $C = \beta I$. If $\lambda_{\min}(A + \beta I) \ge 4 \lambda_{\max}(B^T A^{-1}B + \beta I)$, then all eigenvalues of \mathcal{M}_- are real.

A $n \times n$ sym. semidef. matrix, $B \quad m \times n$, $m \leq n$

• \mathcal{M}_{-} has at least n-m real eigenvalues

- $A \quad n \times n$ sym. semidef. matrix, $B \quad m \times n$, $m \leq n$
 - \mathcal{M}_{-} has at least n-r
 - Let $C = \beta I$. If $\lambda_{\min}(A + \beta I) \ge 4 \lambda_{\max}(B^T A^{-1} B + \beta I)$, then all eigenvalues of \mathcal{M}_{-} are real.
 - Let C be sym. Let $\lambda \in \Lambda(\mathcal{M}_{-})$. If $\Im(\lambda) \neq 0$, then

 $\lambda_{\max}(C)$ $|\mathfrak{I}(\Lambda)| \geq o_{\max}(D).$

If $\Im(\lambda) = 0$ then

 $2\min\{\lambda_{\min}(A), \lambda_{\min}(C)\} \le \lambda \le (\lambda_{\max}(A) + \lambda_{\max}(C)).$

cf. Sidi 2003 for C=0

Spectral properties of \mathcal{M}_{-}

$$n$$
 real eigenvalues

$$\frac{1}{2}(\lambda_{\min}(A) + \lambda_{\min}(C)) \le \Re(\lambda) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\min}(C)) \le \Re(\lambda) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(C)) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}(A) \le \frac{1}{2}(\lambda_{\max}(A) + \lambda_{\max}(A) + \lambda_{\max}($$

Hermitian Skew-Hermitian

Preconditioning

$$\mathcal{M}_{-} = \begin{bmatrix} A & B^{T} \\ -B & C \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix} + \begin{bmatrix} 0 & B^{T} \\ -B & 0 \end{bmatrix} = \mathcal{H} + \mathcal{S}$$

Hermitian Skew-Hermitian

Preconditioning

$$\mathcal{M}_{-} = \begin{bmatrix} A & B^{T} \\ -B & C \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix} + \begin{bmatrix} 0 & B^{T} \\ -B & 0 \end{bmatrix} = \mathcal{H} + \mathcal{S}$$

Use the preconditioner

$$\mathcal{R} = \frac{1}{2\alpha} (\mathcal{H} + \alpha I) (\mathcal{S} + \alpha I) \qquad \alpha \in \mathbb{R}, \ \alpha > 0$$

Bai & Golub & Ng 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004

Hermitian Skew-Hermitian

Preconditioning

$$\mathcal{M}_{-} = \begin{bmatrix} A & B^{T} \\ -B & C \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix} + \begin{bmatrix} 0 & B^{T} \\ -B & 0 \end{bmatrix} = \mathcal{H} + \mathcal{S}$$

Use the preconditioner

$$\mathcal{R} = \frac{1}{2\alpha} (\mathcal{H} + \alpha I) (\mathcal{S} + \alpha I) \qquad \alpha \in \mathbb{R}, \ \alpha > 0$$

Bai & Golub & Ng 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004

Sharp spectral bounds for C = 0 (S. & Benzi 2004)

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \longrightarrow \begin{bmatrix} \widetilde{A} & \widetilde{B}^T \\ -\widetilde{B} & \widetilde{C} \end{bmatrix} \qquad \widetilde{A} \ge 0, \ \widetilde{C} \ge 0$$

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \longrightarrow \begin{bmatrix} \widetilde{A} & \widetilde{B}^T \\ -\widetilde{B} & \widetilde{C} \end{bmatrix} \qquad \widetilde{A} \ge 0, \ \widetilde{C} \ge 0$$

Inexact Constraint Preconditioner

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \longrightarrow \begin{bmatrix} \widetilde{A} & \widetilde{B}^T \\ -\widetilde{B} & \widetilde{C} \end{bmatrix} \qquad \widetilde{A} \ge 0, \ \widetilde{C} \ge 0$$

- Inexact Constraint Preconditioner
- Hermitian Skew-Hermitian Preconditioner ($C = \beta I$)

$$\mathcal{P}^{-1} \begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \longrightarrow \begin{bmatrix} \widetilde{A} & \widetilde{B}^T \\ -\widetilde{B} & \widetilde{C} \end{bmatrix} \qquad \widetilde{A} \ge 0, \ \widetilde{C} \ge 0$$

- Inexact Constraint Preconditioner
- Hermitian Skew-Hermitian Preconditioner ($C = \beta I$)
- Indefinite Block diagonal Preconditioner

$$\left[\begin{array}{cc} \widehat{A} & 0\\ 0 & -\widehat{C} \end{array}\right]$$

cf. Fischer et al. 1997

• Performance of preconditioners is problem dependent

- Performance of preconditioners is problem dependent
- Ad-Hoc preconditioners usually designed (information from application problem)

- Performance of preconditioners is problem dependent
- Ad-Hoc preconditioners usually designed (information from application problem)
- Non-Hermitian problem not fully understood

- Performance of preconditioners is problem dependent
- Ad-Hoc preconditioners usually designed (information from application problem)
- Non-Hermitian problem not fully understood
- Visit http://www.dm.unibo.it/~simoncin