

Analysis of the rational Krylov subspace method for large-scale algebraic Riccati equations

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

Partly joint works with M. Monsalve, Y.Lin, D. Szyld

The problem

Find $X \in \mathbb{R}^{n \times n}$ such that

$$AX + XA^{\top} - XBB^{\top}X + C^{\top}C = 0$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{s \times n}$, $p, s = \mathcal{O}(1)$

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-Iannazzo-Meini 2012, Mehrmann etal 2003 ...

The problem

Find $X \in \mathbb{R}^{n \times n}$ such that

$$AX + XA^{\top} - XBB^{\top}X + C^{\top}C = 0$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{s \times n}$, $p, s = \mathcal{O}(1)$

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-Iannazzo-Meini 2012, Mehrmann etal 2003 ...

We focus on the large scale case: $n \gg 1000$

Different strategies

- (Inexact) Kleinman iteration (Newton-type method)
- Projection methods
- Invariant subspace iteration
- (Sparse) multilevel methods
-

Galerkin projection method for the Riccati equation

Given the basis V_k for an approximation space, determine approximation

 $X_k = V_k Y_k V_k^\top$

to the Riccati solution matrix by orthogonal projection:

$$V_k^{\top}(AX_k + X_kA^{\top} - X_kBB^{\top}X_k + C^{\top}C)V_k = 0$$
 (Galerkin condition) giving

 $(V_k^{\top}AV_k)Y + Y(V_k^{\top}A^{\top}V_k) - Y(V_k^{\top}BB^{\top}V_k)Y + (V_k^{\top}C^{\top})(CV_k) = 0$

(Heyouni-Jbilou 2009)

Galerkin projection method for the Riccati equation

Given the basis V_k for an approximation space, determine approximation

 $X_k = V_k Y_k V_k^\top$

to the Riccati solution matrix by orthogonal projection:

$$V_k^{\top} (AX_k + X_k A^{\top} - X_k BB^{\top} X_k + C^{\top} C) V_k = 0$$
 (Galerkin condition)

giving

$$(V_k^{\top}AV_k)Y + Y(V_k^{\top}A^{\top}V_k) - Y_k(V_k^{\top}BB^{\top}V_k)Y_k + (V_k^{\top}C^{\top})(CV_k) = 0$$

(Heyouni-Jbilou 2009)

Key questions:

- Which approximation space?
- Is this meaningful from a Control Theory perspective?

On the choice of approximation space

Approximate solution $X_k = V_k Y_k V_k^{\top}$, with

 $(V_k^{\top}AV_k)Y + Y(V_k^{\top}A^{\top}V_k) - Y_k(V_k^{\top}BB^{\top}V_k)Y_k + (V_k^{\top}C^{\top})(CV_k) = 0$

Krylov-type subspaces: (from Lyapunov case)

- $\mathcal{K}_k(A, C^{\top}) := \operatorname{Range}([C^{\top}, AC^{\top}, \dots, A^{k-1}C^{\top}])$ (Polynomial)
- $\mathcal{EK}_k(A, C^{\top}) := \mathcal{K}_k(A, C^{\top}) \cup \mathcal{K}_k(A^{-1}, A^{-1}C^{\top})$ (EKSM, Rational)
- $\mathcal{RK}_k(A, C^{\top}, \mathbf{s}) :=$

Range(
$$[C^{\top}, (A - s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{k-1} (A - s_{j+1} I)^{-1} C^{\top}]$$
)

(RKSM, Rational)

On the choice of approximation space

Approximate solution $X_k = V_k Y_k V_k^{\top}$, with

 $(V_k^{\top}AV_k)Y + Y(V_k^{\top}A^{\top}V_k) - Y_k(V_k^{\top}BB^{\top}V_k)Y_k + (V_k^{\top}C^{\top})(CV_k) = 0$

Krylov-type subspaces: (from Lyapunov case)

- $\mathcal{K}_k(A, C^{\top}) := \operatorname{Range}([C^{\top}, AC^{\top}, \dots, A^{k-1}C^{\top}])$ (Polynomial)
- $\mathcal{EK}_k(A, C^{\top}) := \mathcal{K}_k(A, C^{\top}) \cup \mathcal{K}_k(A^{-1}, A^{-1}C^{\top})$ (EKSM, Rational)
- $\mathcal{RK}_k(A, C^{\top}, \mathbf{s}) :=$

Range(
$$[C^{\top}, (A - s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{k-1} (A - s_{j+1} I)^{-1} C^{\top}]$$
)

(RKSM, Rational)

★ Matrix BB^{\top} not involved

On the choice of approximation space

Approximate solution $X_k = V_k Y_k V_k^{\top}$, with

 $(V_k^{\top}AV_k)Y + Y(V_k^{\top}A^{\top}V_k) - Y_k(V_k^{\top}BB^{\top}V_k)Y_k + (V_k^{\top}C^{\top})(CV_k) = 0$

Krylov-type subspaces: (from Lyapunov case)

- $\mathcal{K}_k(A, C^{\top}) := \operatorname{Range}([C^{\top}, AC^{\top}, \dots, A^{k-1}C^{\top}])$ (Polynomial)
- $\mathcal{EK}_k(A, C^{\top}) := \mathcal{K}_k(A, C^{\top}) \cup \mathcal{K}_k(A^{-1}, A^{-1}C^{\top})$ (EKSM, Rational)
- $\mathcal{RK}_k(A, C^{\top}, \mathbf{s}) :=$

Range(
$$[C^{\top}, (A - s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{k-1} (A - s_{j+1} I)^{-1} C^{\top}]$$
)

(RKSM, Rational)

★ Matrix BB^{\top} not involved

* Parameters s_j (adaptively) chosen in field of values of -A

Performance of solvers

Problem: A: 3D Laplace operator, B, C randn matrices, tol= 10^{-8} (n, p, s) = (125000, 5, 5)

	its	inner its	time	space dim	$rank(X_f)$
Newton $X_0 = 0$	15	5,, 5	808	100	95
GP-EKSM	20		531	200	105
GP-RKSM	25		524	125	105

$$(n, p, s) = (125000, 20, 20)$$

	its	inner its	time	space dim	$rank(X_f)$
Newton $X_0 = 0$	19	5,, 5	2332	400	346
GP-EKSM	15		622	600	364
GP-RKSM	20		720	400	358

GP=Galerkin projection

(V.Simoncini, D.Szyld, M.Monsalve, 2014)

A numerical example

Consider the 500×500 Toeplitz matrix

$$A = \text{toeplitz}(-1, \underline{2.5}, 1, 1, 1), \quad C = [1, -2, 1, -2, \ldots], B = \mathbf{1}$$

Parameter computation: Left: adaptive RKSM on A

A numerical example

Consider the 500×500 Toeplitz matrix

 $A = \text{toeplitz}(-1, \underline{2.5}, 1, 1, 1), \quad C = [1, -2, 1, -2, \ldots], B = \mathbf{1}$

Parameter computation:

Left: adaptive RKSM on A Right: adaptive RKSM on $A - BB^{\top}X_k$

(Lin, Simoncini 2015)

Connection to dynamical systems

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0\\ y(t) = Cx(t), \end{cases}$$

u(t): control (input) vector; y(t): output vector x(t): state vector; $x_0:$ initial state

Connection to dynamical systems

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0\\ y(t) = Cx(t), \end{cases}$$

u(t): control (input) vector; y(t): output vector x(t): state vector; x_0 : initial state Minimization problem for a Cost functional: (simplified form)

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_0^\infty (x(t)^\top C^\top C x(t) + u(t)^\top u(t)) dt$$

Connection to dynamical systems

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_0^\infty (x(t)^\top C^\top C x(t) + u(t)^\top u(t)) dt$$

THEOREM. Let the pair (A, B) be stabilizable and (C, A) observable. Then there is a unique solution $\mathbf{X} \ge 0$ of the Riccati equation. Moreover,

i) For each x_0 there is a unique optimal control, and it is given by $u_*(t) = -B^{\top} \mathbf{X} \exp((A - BB^{\top} \mathbf{X})t) x_0$ for $t \ge 0$; ii) $\mathcal{J}(u_*, x_0) = x_0^{\top} \mathbf{X} x_0$ for all $x_0 \in \mathbb{R}^n$

Order reduction of dynamical systems by projection

Let $V_k \in \mathbb{R}^{n \times d_k}$ have orthonormal columns, $d_k \ll n$ Let $T_k = V_k^\top A V_k$, $B_k = V_k^\top B$, $C_k^\top = V_k^\top C^\top$

Reduced order dynamical system:

$$\begin{cases} \dot{\widehat{x}}(t) = T_k \widehat{x}(t) + B_k \widehat{u}(t), \qquad \widehat{x}(0) = \widehat{x}_0 := V_k^\top x_0 \\ \widehat{y}(t) = C_k \widehat{x}(t) \end{cases}$$

 $x_k(t) = V_k \widehat{x}(t) \approx x(t)$

Typical frameworks:

- Transfer function approximation
- Model reduction

The role of the projected Riccati equation

 $(V_k^\top A V_k) \mathbf{Y} + \mathbf{Y} (V_k^\top A^\top V_k) - \mathbf{Y} (V_k^\top B B^\top V_k) \mathbf{Y} + (V_k^\top C^\top) (C V_k) = 0$ that is

$$T_k \mathbf{Y} + \mathbf{Y} T_k^\top - \mathbf{Y} B_k B_k^\top \mathbf{Y} + C_k^\top C_k = 0 \qquad (*)$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \ge 0$ of (*) that for each \hat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

The role of the projected Riccati equation

 $(V_k^\top A V_k)\mathbf{Y} + \mathbf{Y}(V_k^\top A^\top V_k) - \mathbf{Y}(V_k^\top B B^\top V_k)\mathbf{Y} + (V_k^\top C^\top)(CV_k) = 0$ that is

$$T_k \mathbf{Y} + \mathbf{Y} T_k^\top - \mathbf{Y} B_k B_k^\top \mathbf{Y} + C_k^\top C_k = 0 \qquad (*)$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \ge 0$ of (*) that for each \hat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

If there exists a matrix K such that A - BK is passive, then the pair (T_k, B_k) is stabilizable.

Projected optimal vs approximate optimal control functions* Our projected optimal control function:

$$\widehat{u}_*(t) = -B_k^\top Y_k \exp((T_k - B_k B_k^\top Y_k)t)\widehat{x}_0, \quad t \ge 0$$

with $X_k = V_k Y_k V_k^\top$

* Typically used approximate control function:

$$\widetilde{u}(t) := -B^{\top} \widetilde{X} x(t)$$

where $\widetilde{x}(t) := \exp((A - BB^{\top} \widetilde{X})t) x_0$ for some $\widetilde{X} \approx X$

 $\widehat{u}_* \neq \widetilde{u}$

They induce different actions on the cost functional \mathcal{J} , even for $\widetilde{X} = X_k$

Projected optimal vs approximate optimal control functions Residual matrix:

$$R_k := AX_k + X_k A - X_k B B^\top X_k + C^\top C$$

THEOREM. Assume that $A - BB^{\top}X_k$ is stable and that $\widetilde{u}(t) := -B^{\top}X_k x(t)$. Then

$$|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)| \le \frac{\|R_k\|}{2\alpha} x_0^\top x_0,$$

where $\alpha > 0$ is such that $||e^{(A-BB^{\top}X_k)t}|| \le e^{-\alpha t}$ for all $t \ge 0$.

Note: $|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)|$ is nonzero for $R_k \neq 0$

On the residual matrix and adaptive RKSM

$$R_k := AX_k + X_k A - X_k B B^\top X_k + C^\top C$$

THEOREM. Let $\mathcal{T}_k = T_k - B_k B_k^\top Y_k$. Then $R_k = \widehat{R}_k V_k^\top + V_k \widehat{R}_k^\top$, with $\widehat{R}_k = A V_k Y_k + V_k Y_k \mathcal{T}_k^\top + C^\top (CV_k)$ so that $\|R_k\|_F = \sqrt{2} \|\widehat{R}_k\|_F$

At least formally:

 $\Rightarrow V_k Y_k V_k^{\top}$ is a solution to the Riccati equation $(R_k = 0)$ if and only if $Z_k = V_k Y_k$ is the solution to the Sylvester equation $(\widehat{R}_k = 0)$ On the residual matrix and adaptive RKSM

$$R_k = \widehat{R}_k V_k^\top + V_k \widehat{R}_k^\top$$

Expression for the semi-residual \widehat{R}_k :

THEOREM. Assume $C^{\top} \in \mathbb{R}^n$, $\text{Range}(V_k) = \mathcal{RK}_k(A, C^{\top}, \mathbf{s})$. Assume that $\mathcal{T}_k = T_k - B_k B_k^{\top} Y_k$ is diagonalizable. Then

$$\widehat{R}_k = \psi_{k,T_k}(A)C^{\top}CV_k(\psi_{k,T_k}(-\mathcal{T}_k^{\top}))^{-1}.$$

where

$$\psi_{k,T_{k}}(z) = \frac{\det(zI - T_{k})}{\prod_{j=1}^{k}(z - s_{j})}$$

Here $\mathcal{T}_k = V_k^{\top} (A - BB^{\top} X_k) V_k = T_k - B_k B_k^{\top} Y_k$

(see also Beckermann 2011)

On the choice of the next parameters s_{k+1}

$$\widehat{R}_k = \psi_{k,T_k}(A)C^{\top}CV_k(\psi_{k,T_k}(-\mathcal{T}_k^{\top}))^{-1}.$$

with $\psi_{k,T_k}(z) = \frac{\det(zI - T_k)}{\prod_{j=1}^k (z - s_j)}$

* Greedy strategy: Next shift should make $(\psi_{k,T_k}(-\mathcal{T}_k^{\top}))^{-1}$ smaller

\Downarrow

Determine for which s in the spectral region of \mathcal{T}_k the quantity $(\psi_{k,T_k}(-s))^{-1}$ is large, and add a root there

$$s_{k+1} = \arg \max_{s \in \partial \mathbb{S}_k} \left| \frac{1}{\psi_{k,T_k}(s)} \right|$$

 \mathbb{S}_k region enclosing the eigenvalues of $-\mathcal{T}_k$

(This argument is new also for Sylvester/Lyapunov equations)

Selection of s_{k+1} in RKSM. An example

A: 900 × 900 2D Laplacian, $B = t\mathbf{1}$ with $t_j = 5 \cdot 10^{-j}$, C = [1, -2, 1, -2, 1, -2, ...]

RKSM convergence with and without modified shift selection as t varies

Solid curves: use of \mathcal{T}_k Dashed curves: use of T_k

Further results and conclusions

Not presented but relevant:

- Stabilization properties of approximate solution X_k
- Approximation tracking as subspace grows
- Invariant subspace approximation

Wrap-up:

- Projection-type methods fill the gap between MOR and Riccati equation
- Clearer role of the non-linear term during the projection

Further results and conclusions

Not presented but relevant:

- Stabilization properties of approximate solution X_k
- Approximation tracking as subspace grows
- Invariant subspace approximation

Wrap-up:

- Projection-type methods fill the gap between MOR and Riccati equation
- Clearer role of the non-linear term during the projection

References

- V. Simoncini, Daniel B. Szyld and Marlliny Monsalve,

On two numerical methods for the solution of large-scale algebraic Riccati equations IMA Journal of Numerical Analysis, v.34, n.3, (2014)

- Yiding Lin and V. Simoncini,

A new subspace iteration method for the algebraic Riccati equation Numerical Linear Algebra w/Appl., v.22, n.1, (2015)

- V.Simoncini, Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations arXiv: 1602.00649. To appear in SIMAX