Matrix equations. Application to PDEs

V. Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Joint work with M.C. D'Autilia \& I. Sgura, Università di Lecce

Reaction-diffusion PDEs

$$
\left.\left.u_{t}=\ell(u)+f(u), \quad u=u(x, y, t), \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
$$

with $u(x, y, 0)=u_{0}(x, y)$, and appropriate b.c. on Ω
ℓ : diffusion operator linear in $u \quad f$: nonlinear reaction terms

An application: reaction-diffusion PDEs

$$
\left.\left.u_{t}=\ell(u)+f(u), \quad u=u(x, y, t), \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
$$

with $u(x, y, 0)=u_{0}(x, y)$, and appropriate b.c. on Ω
ℓ : diffusion operator linear in $u \quad f$: nonlinear reaction terms
Generalization to systems:

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

An application: reaction-diffusion PDEs

$$
\left.\left.u_{t}=\ell(u)+f(u), \quad u=u(x, y, t), \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
$$

with $u(x, y, 0)=u_{0}(x, y)$, and appropriate b.c. on Ω
ℓ : diffusion operator linear in $u \quad f$: nonlinear reaction terms
Generalization to systems:

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

Applications:
chemistry, biology, ecology, and more recently in metal growth by electrodeposition, tumor growth, biomedicine and cell motility

An application: reaction-diffusion PDEs

$$
\left.\left.u_{t}=\ell(u)+f(u), \quad u=u(x, y, t), \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
$$

with $u(x, y, 0)=u_{0}(x, y)$, and appropriate b.c. on Ω
ℓ : diffusion operator linear in $u \quad f$: nonlinear reaction terms
Generalization to systems:

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

Application: mathematical description of morphogenesis by A.Turing coupling between diffusion and nonlinear kinetics can lead to the so-called diffusion-driven or Turing instability
\Rightarrow spatial patterns such as labyrinths, spots, stripes

Long term spatial patterns

Labyrinths, spots, stripes, etc.

Numerical modelling issues

$$
\left\{\begin{array}{l}
u_{t}=\ell_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\ell_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

- Problem is stiff
- Use appropriate time discretizations
- Time stepping constraints
- Pattern visible only after long time period (transient unstable phase)
- Pattern visible only if domain is well represented

Space discretization of the reaction-diffusion PDE
ℓ : elliptic operator $\Rightarrow \ell(u) \approx A \mathbf{u}$, so that

$$
\dot{\mathbf{u}}=A \mathbf{u}+f(\mathbf{u}), \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

Analogously:

$$
\begin{cases}\dot{\mathbf{u}}=A_{1} \mathbf{u}+f_{1}(\mathbf{u}, \mathbf{v}), & \mathbf{u}(0)=\mathbf{u}_{0} \\ \dot{\mathbf{v}}=A_{2} \mathbf{v}+f_{2}(\mathbf{u}, \mathbf{v}), & \mathbf{v}(0)=\mathbf{v}_{0}\end{cases}
$$

Space discretization of the reaction-diffusion PDE
ℓ : multiple of the Laplace operator $\Rightarrow \ell(u) \approx A \mathbf{u}$, so that

$$
\dot{\mathbf{u}}=A \mathbf{u}+f(\mathbf{u}), \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

Analogously:

$$
\begin{cases}\dot{\mathbf{u}}=A_{1} \mathbf{u}+f_{1}(\mathbf{u}, \mathbf{v}), & \mathbf{u}(0)=\mathbf{u}_{0} \\ \dot{\mathbf{v}}=A_{2} \mathbf{v}+f_{2}(\mathbf{u}, \mathbf{v}), & \mathbf{v}(0)=\mathbf{v}_{0}\end{cases}
$$

Key fact: Ω simple domain, e.g., $\Omega=\left[0, \ell_{x}\right] \times\left[0, \ell_{y}\right]$. Therefore

$$
\begin{aligned}
& A_{(i)}=I_{y} \otimes T_{1}+T_{2}^{T} \otimes I_{x} \in \mathbb{R}^{N_{x} N_{y} \times N_{x} N_{y}}, i=1,2 \\
\Rightarrow A \mathbf{u}= & \operatorname{vec}\left(T_{1} U+U T_{2}\right)
\end{aligned}
$$

Matrix-oriented formulation of reaction-diffusion PDEs

$$
\dot{U}=T_{1} U+U T_{2}+F(U), \quad U(0)=U_{0}
$$

$F(U)$ nonlinear vector function $f(\mathbf{u})$ evaluated componentwise $\operatorname{vec}\left(U_{0}\right)=\mathbf{u}_{0}$ initial condition

Analogously,

$$
\begin{cases}\dot{U}=T_{11} U+U T_{12}+F_{1}(U, V), & U(0)=U_{0}, \\ \dot{V}=T_{21} V+V T_{22}+F_{2}(U, V), & V(0)=V_{0}\end{cases}
$$

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\mathbf{u}_{n+1}-\mathbf{u}_{n}=h_{t}\left(A \mathbf{u}_{n+1}+f\left(\mathbf{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} A\right) \mathbf{u}_{n+1}=\mathbf{u}_{n}+h_{t} f\left(\mathbf{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(T_{1} U_{n+1}+U_{n+1} T_{2}\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} T_{1}\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} T_{2}\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\mathbf{u}_{n+1}-\mathbf{u}_{n}=h_{t}\left(A \mathbf{u}_{n+1}+f\left(\mathbf{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} A\right) \mathbf{u}_{n+1}=\mathbf{u}_{n}+h_{t} f\left(\mathbf{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(T_{1} U_{n+1}+U_{n+1} T_{2}\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} T_{1}\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} T_{2}\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

2. Second order $S B D F$, known as IMEX 2-SBDF method $3 \mathbf{u}_{n+2}-4 \mathbf{u}_{n+1}+\mathbf{u}_{n}=2 h_{t} A \mathbf{u}_{n+2}+2 h_{t}\left(2 f\left(\mathbf{u}_{n+1}\right)-f\left(\mathbf{u}_{n}\right)\right), \quad n=0,1, \ldots, N_{t}$ Matrix-oriented form: for $n=0, \ldots, N_{t}-2$, $\left(3 I-2 h_{t} T_{1}\right) \mathbf{U}_{n+2}+\mathbf{U}_{n+2}\left(-2 h_{t} T_{2}\right)=4 U_{n+1}-U_{n}+2 h_{t}\left(2 F\left(U_{n+1}\right)-F\left(U_{n}\right)\right)$

Time stepping Matrix-oriented methods
Exponential integrator
Exponential first order Euler method:

$$
\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \varphi_{1}\left(h_{t} A\right) f\left(\mathbf{u}_{n}\right)
$$

$e^{h_{t} A}$: matrix exponential, $\varphi_{1}(z)=\left(e^{z}-1\right) / z$ first "phi" function
That is,
$\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \mathbf{v}_{n}, \quad$ where $A \mathbf{v}_{n}=e^{h_{t} A} f\left(\mathbf{u}_{n}\right)-f\left(\mathbf{u}_{n}\right) \quad n=0, \ldots, N_{t}-1$.

Time stepping Matrix-oriented methods
Exponential integrator
Exponential first order Euler method:

$$
\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \varphi_{1}\left(h_{t} A\right) f\left(\mathbf{u}_{n}\right)
$$

$e^{h_{t} A}$: matrix exponential, $\varphi_{1}(z)=\left(e^{z}-1\right) / z$ first "phi" function
That is,
$\mathbf{u}_{n+1}=e^{h_{t} A} \mathbf{u}_{n}+h_{t} \mathbf{v}_{n}, \quad$ where $A \mathbf{v}_{n}=e^{h_{t} A} f\left(\mathbf{u}_{n}\right)-f\left(\mathbf{u}_{n}\right) \quad n=0, \ldots, N_{t}-1$.

Matrix-oriented form: since $e^{h_{t} A} \mathbf{u}=\left(e^{h_{t} T_{2}^{T}} \otimes e^{h_{t} T_{1}}\right) \mathbf{u}=\operatorname{vec}\left(e^{h_{t} T_{1}} U e^{h_{t} T_{2}}\right)$

1. Compute $E_{1}=e^{h_{t} T_{1}}, E_{2}=e^{h_{t} T_{2}^{T}}$
2. For each n

Solve

$$
\begin{gather*}
T_{1} \mathbf{V}_{n}+\mathbf{V}_{n} T_{2}=E_{1} F\left(U_{n}\right) E_{2}^{T}-F\left(U_{n}\right) \tag{2}\\
U_{n+1}=E_{1} U_{n} E_{2}^{T}+h_{t} V_{n}
\end{gather*}
$$

Time stepping Matrix-oriented methods

Computational issues:

- Dimensions of T_{1}, T_{2} very modest
- T_{1}, T_{2} quasi-symmetric (non-symmetry due to b.c.)
- T_{1}, T_{2} do not depend on time step
\& Matrix-oriented form all in spectral space (after eigenvector transformation)

A numerical example of system of RD-PDEs

Model describing an electrodeposition process for metal growth

$$
\begin{aligned}
& f_{1}(u, v)=\rho\left(A_{1}(1-v) u-A_{2} u^{3}-B(v-\alpha)\right) \\
& \left.f_{2}(u, v)=\rho\left(C\left(1+k_{2} u\right)(1-v)[1-\gamma(1-v)]-D v\left(1+k_{3} u\right)(1+\gamma v)\right)\right)
\end{aligned}
$$

Turing pattern

A numerical example of system of RD-PDEs

Model describing an electrodeposition process for metal growth

$$
\begin{aligned}
& f_{1}(u, v)=\rho\left(A_{1}(1-v) u-A_{2} u^{3}-B(v-\alpha)\right) \\
& \left.f_{2}(u, v)=\rho\left(C\left(1+k_{2} u\right)(1-v)[1-\gamma(1-v)]-D v\left(1+k_{3} u\right)(1+\gamma v)\right)\right)
\end{aligned}
$$

Turing pattern

Schnackenberg model

$$
f_{1}(u, v)=\gamma\left(a-u+u^{2} v\right), f_{2}(u, v)=\gamma\left(b-u^{2} v\right)
$$

Left plot: Turing pattern solution for $\gamma=1000\left(N_{x}=400\right)$
Center plot: CPU times (sec), $N_{x}=100$ variation of h_{t}
Right plot: CPU times $(\mathrm{sec}), h_{t}=10^{-4}$, increasing values of
$N_{x}=50,100,200,300,400$

The three-dimensional case

$$
\dot{\mathbf{u}}=A \mathbf{u}+f(\mathbf{u}), \quad \mathbf{u}(0)=\mathbf{u}_{0} \text { in } \quad \Omega=\left[0, \ell_{x}\right] \times\left[0, \ell_{y}\right] \times\left[0, \ell_{z}\right]
$$

High computational costs
Typically:

$$
A=I_{z} \otimes I_{y} \otimes T_{1}+I_{z} \otimes T_{2}^{T} \otimes I_{x}+T_{3}^{T} \otimes I_{y} \otimes I_{x} \in \mathbb{R}^{N_{x} N_{y} N_{z} \times N_{x} N_{y} N_{z}}
$$

\& Tensor versions of

- IMEX methods
- Exponential integrators
\& DEIM-type projection

Conclusions and Outlook

Large-scale linear matrix equations are a new computational tool

- Matrix-oriented versions lead to computational and numerical advantages
- Matrix equation challenges rely on strength and maturity of linear system solvers

Conclusions and Outlook

Large-scale linear matrix equations are a new computational tool

- Matrix-oriented versions lead to computational and numerical advantages
- Matrix equation challenges rely on strength and maturity of linear system solvers

Outlook:

- Large scale Nonlinear time-dependent problems with DEIM
- 3D time-dependent problems require tensors
- Low-rank tensor equations require new thinking

Conclusions and Outlook

Large-scale linear matrix equations are a new computational tool

- Matrix-oriented versions lead to computational and numerical advantages
- Matrix equation challenges rely on strength and maturity of linear system solvers

Outlook:

- Large scale Nonlinear time-dependent problems with DEIM
- 3D time-dependent problems require tensors
- Low-rank tensor equations require new thinking

Webpage: www.dm.unibo.it/~simoncin
Reference: Maria Chiara D'Autilia, Ivonne Sgura and V. Simoncini
Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications.

To appear in Computers and Mathematics with Applications.

