On low-rank methods for large-scale matrix equations and application to PDEs

V. Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

Some matrix equations - large scale

- Sylvester matrix equation $A \mathbf{X}+\mathbf{X} B+D=0$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

- Lyapunov matrix equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}
$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Multiterm matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Control, (Stochastic) PDEs, ...
Survey article: V.Simoncini, SIAM Review 2016.

More matrix equations - large scale

- Systems of linear matrix equations:

$$
\begin{aligned}
A_{2} \mathbf{X}+\mathbf{X} A_{1}+B^{\top} \mathbf{P} & =F_{1} \\
A_{1} \mathbf{Y}+\mathbf{Y} A_{2}+\mathbf{P} B & =F_{2} \\
B \mathbf{X}+\mathbf{Y} B^{\top} & =F_{3}
\end{aligned}
$$

(Simoncini, 2019 to appear in IMA Num.Anal.)

More matrix equations - large scale

- Systems of linear matrix equations:

$$
\begin{aligned}
A_{2} \mathbf{X}+\mathbf{X} A_{1}+B^{\top} \mathbf{P} & =F_{1} \\
A_{1} \mathbf{Y}+\mathbf{Y} A_{2}+\mathbf{P} B & =F_{2} \\
B \mathbf{X}+\mathbf{Y} B^{\top} & =F_{3}
\end{aligned}
$$

(Simoncini, 2019 to appear in IMA Num.Anal.)

- Riccati equation: Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

workhorse in Control Theory

More matrix equations - large scale

- Systems of linear matrix equations:

$$
\begin{aligned}
A_{2} \mathbf{X}+\mathbf{X} A_{1}+B^{\top} \mathbf{P} & =F_{1} \\
A_{1} \mathbf{Y}+\mathbf{Y} A_{2}+\mathbf{P} B & =F_{2} \\
B \mathbf{X}+\mathbf{Y} B^{\top} & =F_{3}
\end{aligned}
$$

(Simoncini, 2019 to appear in IMA Num.Anal.)

- Riccati equation: Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

workhorse in Control Theory

- Tensor equation: Find $\mathbf{X} \in \mathbb{R}^{n \times n \times n}$ such that

$$
(H \otimes M \otimes A+M \otimes A \otimes H+A \otimes H \otimes M) \mathbf{x}+c=0 \quad \mathbf{x}=\operatorname{vec}(\mathbf{X})
$$

Discretization of parameter-dependent PDEs

Projection-type methods

Approximate \mathbf{X} in:

$$
A \mathbf{X}+\mathbf{X} A^{\top}+B B^{\top}=0
$$

Given an low dimensional approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Projection-type methods

Approximate \mathbf{X} in:

$$
A \mathbf{X}+\mathbf{X} A^{\top}+B B^{\top}=0
$$

Given an low dimensional approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $\quad R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \quad \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Assume $V_{m}^{\top} V_{m}=I_{m}$ and let $X_{m}:=V_{m} Y_{m} V_{m}^{\top}$.
Projected Lyapunov equation:

$$
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} B B^{\top} V_{m}=0
$$

Early contributions: Saad '90, Jaimoukha \& Kasenally '94, for
$\mathcal{K}=\mathcal{K}_{m}(A, B)=$ Range $\left(\left[B, A B, \ldots, A^{m-1} B\right]\right)$

More recent options as approximation space

Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathbb{E} \mathbb{K}:=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2} B, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

More recent options as approximation space

Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathbb{E} \mathbb{K}:=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right)
$$

that is, $\mathcal{K}=\operatorname{Range}\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2} B, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

- Rational Krylov subspace

$$
\mathcal{K}=\mathbb{K}:=\operatorname{Range}\left(\left[B,\left(A-s_{2} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

usually, $\left\{s_{2}, \ldots, s_{m}\right\} \subset \mathbb{C}^{+}$chosen either a-priori or dynamically
(Used in different contexts, since Ruhe '84)

More recent options as approximation space

Enrich space to decrease space dimension

- Extended Krylov subspace

$$
\mathcal{K}=\mathbb{E} \mathbb{K}:=\mathcal{K}_{m}(A, B)+\mathcal{K}_{m}\left(A^{-1}, A^{-1} B\right),
$$

that is, $\mathcal{K}=$ Range $\left(\left[B, A^{-1} B, A B, A^{-2} B, A^{2} B, A^{-3} B, \ldots,\right]\right)$
(Druskin \& Knizhnerman '98, Simoncini '07)

- Rational Krylov subspace

$$
\mathcal{K}=\mathbb{K}:=\operatorname{Range}\left(\left[B,\left(A-s_{2} I\right)^{-1} B, \ldots,\left(A-s_{m} I\right)^{-1} B\right]\right)
$$

usually, $\left\{s_{2}, \ldots, s_{m}\right\} \subset \mathbb{C}^{+}$chosen either a-priori or dynamically
(Used in different contexts, since Ruhe '84)

In both cases, for Range $\left(V_{m}\right)=\mathcal{K}$, projected Lyapunov equation:

$$
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} A^{\top} V_{m}\right)+V_{m}^{\top} B B^{\top} V_{m}=0
$$

$X_{m}=V_{m} Y_{m} V_{m}^{\top}$

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
\end{aligned}
$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
\end{aligned}
$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares

Main device: Kronecker formulation

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) x=c
$$

Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Onwunta, Raydan, Stoll, Szyld, Tobler, Zander, and many others...)

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
\end{aligned}
$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares
- ...

Alternative approaches:

- Projection onto rich approximation space
- Compression to two-term matrix equation
- Splitting strategy towards two-term matrix equation

PDEs on uniform grids and separable coeffs

$-\varepsilon \Delta u+\phi_{1}(x) \psi_{1}(y) u_{x}+\phi_{2}(x) \psi_{2}(y) u_{y}+\gamma_{1}(x) \gamma_{2}(y) u=f \quad(x, y) \in \Omega$
$\phi_{i}, \psi_{i}, \gamma_{i}, i=1,2$ sufficiently regular functions + b.c.
Problem discretization by means of a tensor basis:
Finite differences, isogeometric analysis, spectral methods, etc.

PDEs on uniform grids and separable coeffs

$-\varepsilon \Delta u+\phi_{1}(x) \psi_{1}(y) u_{x}+\phi_{2}(x) \psi_{2}(y) u_{y}+\gamma_{1}(x) \gamma_{2}(y) u=f \quad(x, y) \in \Omega$
$\phi_{i}, \psi_{i}, \gamma_{i}, i=1,2$ sufficiently regular functions + b.c.
Problem discretization by means of a tensor basis:
Finite differences, isogeometric analysis, spectral methods, etc.

Multiterm linear equation:

$$
-\varepsilon T_{1} \mathbf{U}-\varepsilon \mathbf{U} T_{2}+\Phi_{1} B_{1} \mathbf{U} \Psi_{1}+\Phi_{2} \mathbf{U} B_{2}^{\top} \Psi_{2}+\Gamma_{1} \mathbf{U} \Gamma_{2}=F
$$

Finite Diff.: $\mathbf{U}_{i, j}=\mathbf{U}\left(x_{i}, y_{j}\right)$ approximate solution at the nodes (see, e.g., Palitta \& Simoncini, '16)

PDEs with random inputs

Stochastic steady-state diffusion eqn: Find $u: D \times \Omega \rightarrow \mathbb{R}$ s.t. \mathbb{P}-a.s.,

$$
\left\{\begin{aligned}
-\nabla \cdot(a(\mathbf{x}, \omega) \nabla u(\mathbf{x}, \omega)) & =f(\mathbf{x}) & & \text { in } D \\
u(\mathbf{x}, \omega) & =0 & & \text { on } \partial D
\end{aligned}\right.
$$

f : deterministic;
a : random field, linear function of finite no. of real-valued random variables $\xi_{r}: \Omega \rightarrow \Gamma_{r} \subset \mathbb{R}$
Common choice: truncated Karhunen-Loève (KL) expansion,

$$
a(\mathbf{x}, \omega)=\mu(\mathbf{x})+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} \phi_{r}(\mathbf{x}) \xi_{r}(\omega),
$$

$\mu(\mathbf{x})$: expected value of diffusion coef. σ : std dev.
$\left(\lambda_{r}, \phi_{r}(\mathbf{x})\right)$ eigs of the integral operator \mathcal{V} wrto $V\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{\sigma^{2}} C\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
$\left(\lambda_{r} \searrow \quad C: D \times D \rightarrow \mathbb{R}\right.$ covariance function)

Discretization by stochastic Galerkin

Approx with space in tensor product form ${ }^{\text {a }} \mathcal{X}_{h} \times S_{p}$

$$
\mathcal{A} \mathbf{x}=\mathbf{b}, \quad \mathcal{A}=G_{0} \otimes K_{0}+\sum_{r=1}^{m} G_{r} \otimes K_{r}, \quad \mathbf{b}=\mathbf{g}_{0} \otimes \mathbf{f}_{0}
$$

\mathbf{x} : expansion coef. of approx to u in the tensor product basis $\left\{\varphi_{i} \psi_{k}\right\}$
$K_{r} \in \mathbb{R}^{n_{x} \times n_{x}}$, FE matrices (sym)
$G_{r} \in \mathbb{R}^{n_{\xi} \times n_{\xi}}, r=0,1, \ldots, m$ Galerkin matrices associated w/ S_{p} (sym.)
g_{0} : first column of G_{0}
f_{0} : FE rhs of deterministic PDE

$$
n_{\xi}=\operatorname{dim}\left(S_{p}\right)=\frac{(m+p)!}{m!p!} \quad \Rightarrow n_{x} \cdot n_{\xi} \text { huge }
$$

[^0]The matrix equation formulation

$$
\left(G_{0} \otimes K_{0}+G_{1} \otimes K_{1}+\ldots+G_{m} \otimes K_{m}\right) \mathbf{x}=\mathbf{g}_{0} \otimes \mathbf{f}_{0}
$$

transforms into

$$
\begin{aligned}
& \quad K_{0} \mathbf{X} G_{0}+K_{1} \mathbf{X} G_{1}+\ldots+K_{m} \mathbf{X} G_{m}=F, \quad F=\mathbf{f}_{0} \mathbf{g}_{0}^{\top} \\
& \left(G_{0}=I\right)
\end{aligned}
$$

Solution strategy. Conjecture:

- $\left\{K_{r}\right\}$ from trunc'd Karhunen-Loève (KL) expansion

$$
\mathbf{X} \approx \widetilde{X} \text { low rank, } \widetilde{X}=X_{1} X_{2}^{\top}
$$

(Possibly extending results of Grasedyck, 2004)

Matrix Galerkin approximation of the deterministic part. 1
Approximation space \mathcal{K}_{k} and basis matrix $V_{k}: \quad \mathbf{X} \approx X_{k}=V_{k} Y$

$$
V_{k}^{\top} R_{k}=0, \quad R_{k}:=K_{0} X_{k}+K_{1} X_{k} G_{1}+\ldots+K_{m} X_{k} G_{m}-\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

Computational challenges:

- Generation of \mathcal{K}_{k} involved $m+1$ different matrices $\left\{K_{r}\right\}$!
- Matrices K_{r} have different spectral properties
- n_{x}, n_{ξ} so large that X_{k}, R_{k} should not be formed !
(Powell \& Silvester \& Simoncini, SISC 2017)

More on Kronecker connection for low-rank Galerkin approximation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=F
$$

- Operators: $\mathcal{S}: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{n \times p}$,

$$
\mathcal{S}: \quad X \mapsto \sum_{j=1}^{\ell} A_{j} X B_{j}
$$

and $\mathcal{S}_{\ell}:=\sum_{j=1}^{\ell} B_{j}^{\top} \otimes A_{j}$. So that

$$
\mathcal{S}(\mathbf{X})=F \quad \Leftrightarrow \quad \mathcal{S}_{\ell} \operatorname{vec}(\mathbf{X})=\operatorname{vec}(F)
$$

More on Kronecker connection for low-rank Galerkin approximation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=F
$$

- Operators: $\mathcal{S}: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{n \times p}$,

$$
\mathcal{S}: \quad X \mapsto \sum_{j=1}^{\ell} A_{j} X B_{j}
$$

and $\mathcal{S}_{\ell}:=\sum_{j=1}^{\ell} B_{j}^{\top} \otimes A_{j}$. So that

$$
\mathcal{S}(\mathbf{X})=F \quad \Leftrightarrow \quad \mathcal{S}_{\ell} \operatorname{vec}(\mathbf{X})=\operatorname{vec}(F)
$$

- Galerkin condition: $\quad V_{k}^{\top} R_{k} W_{k}=0 \quad \Leftrightarrow \quad\left(W_{k} \otimes V_{k}\right)^{\top} r_{k}=0$ where $r_{k}=\operatorname{vec}\left(R_{k}\right)$ and $\mathcal{V}_{m}=\operatorname{range}\left(W_{k} \otimes V_{k}\right)$

Optimality properties of low-rank Galerkin approximation
For $\mathcal{S}: \quad X \mapsto \sum_{j=1}^{\ell} A_{j} X B_{j}$ and $\mathcal{S}_{\ell}:=\sum_{j=1}^{\ell} B_{j}^{\top} \otimes A_{j}:$
DEF: \mathcal{S} is symmetric and positive definite if for any $0 \neq x \in \mathbb{R}^{n p}$, $x=\operatorname{vec}(X)$, with $X \in \mathbb{R}^{n \times p}$, it holds

- $\mathcal{S}_{\ell}=\mathcal{S}_{\ell}^{\top}$
- $x^{\top} \mathcal{S}_{\ell} x>0$, where $x^{\top} \mathcal{S}_{\ell} x=\operatorname{trace}\left(\sum_{j=1}^{\ell} X^{\top} A_{j} X B_{j}\right)$
\Rightarrow We use $\|X\|_{\mathcal{S}}^{2}:=x^{\top} \mathcal{S}_{\ell} x . \quad$ (see, e.g., Vandereycken \& Vandewalle, '10)

Optimality properties of low-rank Galerkin approximation
For $\mathcal{S}: \quad X \mapsto \sum_{j=1}^{\ell} A_{j} X B_{j}$ and $\mathcal{S}_{\ell}:=\sum_{j=1}^{\ell} B_{j}^{\top} \otimes A_{j}:$
DEF: \mathcal{S} is symmetric and positive definite if for any $0 \neq x \in \mathbb{R}^{n p}$, $x=\operatorname{vec}(X)$, with $X \in \mathbb{R}^{n \times p}$, it holds

- $\mathcal{S}_{\ell}=\mathcal{S}_{\ell}^{\top}$
- $x^{\top} \mathcal{S}_{\ell} x>0$, where $x^{\top} \mathcal{S}_{\ell} x=\operatorname{trace}\left(\sum_{j=1}^{\ell} X^{\top} A_{j} X B_{j}\right)$
\Rightarrow We use $\|X\|_{\mathcal{S}}^{2}:=x^{\top} \mathcal{S}_{\ell} x . \quad$ (see, e.g., Vandereycken \& Vandewalle, '10)

$$
\begin{aligned}
& \text { PROP: Let } \mathcal{S}(X)=F \text { with } \mathcal{S}: X \mapsto \sum_{j} A_{j} X B_{j} \text { sym.pos.def., and let } \\
& X_{k}=V_{k} Y_{k} W_{k}^{\top} \text { be the Galerkin approximate solution. Then } \\
& \qquad\left\|X-X_{k}\right\|_{\mathcal{S}}=\min _{\substack{Z=V_{k} Y W_{k}^{\top} \\
Y \in \mathbb{R}^{k \times k}}}\|X-Z\|_{\mathcal{S}}
\end{aligned}
$$

(Palitta \& Simoncini, tr2019; see also Kressner \& Tobler, '10 for related results)

Optimality properties of Galerkin approximation. Lyapunov equation.

$$
A^{\top} X+X A+F=0
$$

For A sym.pos.def.,

$$
\|X\|_{\mathcal{S}}^{2}=2 \operatorname{trace}\left(X^{\top} A X\right)
$$

Let $E_{k}=X-X_{k}$. Then

$$
\left\|E_{k}\right\|_{\mathcal{S}}^{2}=\min _{\substack{Z=V_{k} Y W_{k}^{\top} \\ Y \in \mathbb{R}_{k} \times \times k_{k}}}\|X-Z\|_{\mathcal{S}}^{2}=2 \operatorname{trace}\left(E_{k} A E_{k}\right) .
$$

Optimality properties of Galerkin approximation. Lyapunov equation.

$$
A^{\top} X+X A+F=0
$$

For A sym.pos.def.,

$$
\|X\|_{\mathcal{S}}^{2}=2 \operatorname{trace}\left(X^{\top} A X\right)
$$

Let $E_{k}=X-X_{k}$. Then

$$
\left\|E_{k}\right\|_{\mathcal{S}}^{2}=\min _{\substack{Z=V_{k} Y W_{k}^{\top} \\ Y \in \mathbb{R}^{k} \times k^{\top}}}\|X-Z\|_{\mathcal{S}}^{2}=2 \operatorname{trace}\left(E_{k} A E_{k}\right) .
$$

\&: If F is sym, we can choose $W_{k}=V_{k}$

Optimality properties of low-rank Petrov-Galerkin approximation $\mathcal{K}_{k}=\operatorname{range}\left(W_{k} \otimes V_{k}\right)$ approximation space, \mathcal{L}_{k} test space.

In vector form: $\quad \mathcal{L}_{k}^{\top} r_{m}=0$

Optimality properties of low-rank Petrov-Galerkin approximation $\mathcal{K}_{k}=\operatorname{range}\left(W_{k} \otimes V_{k}\right)$ approximation space, \mathcal{L}_{k} test space.

In vector form: $\quad \mathcal{L}_{k}^{\top} r_{m}=0$

For $\mathcal{L}_{k}=\mathcal{S}_{\ell} \mathcal{K}_{k}$, minimization of residual norm:

$$
\min _{x \in \operatorname{range}\left(W_{k} \otimes V_{k}\right)}\left\|\operatorname{vec}(F)-\mathcal{S}_{\ell} x\right\|_{2}=\min _{y \in \mathbb{R}^{k^{2}}}\left\|\operatorname{vec}(F)-\mathcal{S}_{\ell}\left(W_{k} \otimes V_{k}\right) y\right\|_{2}
$$

Optimality properties of low-rank Petrov-Galerkin approximation
$\mathcal{K}_{k}=\operatorname{range}\left(W_{k} \otimes V_{k}\right)$ approximation space, \mathcal{L}_{k} test space.
In vector form: $\quad \mathcal{L}_{k}^{\top} r_{m}=0$

For $\mathcal{L}_{k}=\mathcal{S}_{\ell} \mathcal{K}_{k}$, minimization of residual norm:

$$
\min _{x \in \operatorname{range}\left(W_{k} \otimes V_{k}\right)}\left\|\operatorname{vec}(F)-\mathcal{S}_{\ell} x\right\|_{2}=\min _{y \in \mathbb{R}^{k^{2}}}\left\|\operatorname{vec}(F)-\mathcal{S}_{\ell}\left(W_{k} \otimes V_{k}\right) y\right\|_{2}
$$

In matrix form:

$$
\min _{X=V_{k} Y W_{k}^{\top}}\|F-\mathcal{S}(X)\|_{F}=\min _{Y \in \mathbb{R}^{k \times k}}\left\|F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right\|_{F}
$$

For the Lyapunov eqn, Lin \& Simoncini, 2013

Optimality properties of low-rank Petrov-Galerkin approximation
$\mathcal{K}_{k}=\operatorname{range}\left(W_{k} \otimes V_{k}\right)$ approximation space, \mathcal{L}_{k} test space.
In vector form: $\quad \mathcal{L}_{k}^{\top} r_{m}=0$

For $\mathcal{L}_{k}=\mathcal{S}_{\ell} \mathcal{K}_{k}$, minimization of residual norm:

$$
\min _{x \in \operatorname{range}\left(W_{k} \otimes V_{k}\right)}\left\|\operatorname{vec}(F)-\mathcal{S}_{\ell} x\right\|_{2}=\min _{y \in \mathbb{R}^{k^{2}}}\left\|\operatorname{vec}(F)-\mathcal{S}_{\ell}\left(W_{k} \otimes V_{k}\right) y\right\|_{2}
$$

In matrix form:

$$
\min _{X=V_{k} Y W_{k}^{\top}}\|F-\mathcal{S}(X)\|_{F}=\min _{Y \in \mathbb{R}^{k \times k}}\left\|F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right\|_{F}
$$

For the Lyapunov eqn, Lin \& Simoncini, 2013
A problem: Even if exact solution is definite, Y is not necessarily definite!

A constrained optimality of low-rank Petrov-Galerkin approximation
Impose definiteness as constraint:

$$
\min _{\substack{Y \in \mathbb{R} k \times k \\ Y \leq 0}}\left\|F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right\|_{F}
$$

A constrained optimality of low-rank Petrov-Galerkin approximation Impose definiteness as constraint:

$$
\min _{\substack{Y \in \mathbb{R} k \times k \\ Y \leq 0}}\left\|F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right\|_{F}
$$

Optimization context: linear matrix inequalities

$$
Y \leq 0, \quad\left[\begin{array}{cc}
I & \operatorname{vec}\left(F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right) \\
\operatorname{vec}\left(F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right)^{\top} & \gamma
\end{array}\right] \geq 0
$$

for the unknown matrix Y and scalar $\gamma>0$

A constrained optimality of low-rank Petrov-Galerkin approximation Impose definiteness as constraint:

$$
\min _{\substack{Y \in \mathbb{R} k \times k \\ Y \leq 0}}\left\|F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right\|_{F}
$$

Optimization context: linear matrix inequalities

$$
Y \leq 0, \quad\left[\begin{array}{cc}
I & \operatorname{vec}\left(F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right) \\
\operatorname{vec}\left(F-\mathcal{S}\left(V_{k} Y W_{k}^{\top}\right)\right)^{\top} & \gamma
\end{array}\right] \geq 0
$$

for the unknown matrix Y and scalar $\gamma>0$
d: In practice, optimization problem solved in the reduced space!
Palitta \& Simoncini, tr2019

Low-rank Tensor equation

Find the unique $\mathbf{X} \in \mathbb{R}^{n \times n \times n}$ such that

$$
(H \otimes M \otimes A+M \otimes A \otimes H+A \otimes H \otimes M) \operatorname{vec}(\mathbf{X})+f_{3} \otimes f_{2} \otimes f_{1}=0
$$

Low-rank Tensor equation

Find the unique $\mathbf{X} \in \mathbb{R}^{n \times n \times n}$ such that

$$
(H \otimes M \otimes A+M \otimes A \otimes H+A \otimes H \otimes M) \operatorname{vec}(\mathbf{X})+f_{3} \otimes f_{2} \otimes f_{1}=0
$$

PROP. Let $A^{\top} H^{-\top}=Q \Lambda Q^{-1}$ be the eigendecomposition of $A^{\top} H^{-\top}$. Then for each $k=1, \ldots, n$, the solution \mathbf{X} is obtained as $\mathbf{X}(:,:, k)=\mathbf{Z}_{k} Q^{-\top}$ where \mathbf{Z}_{k} solves

$$
\left(A+\lambda_{k} H\right) \mathbf{Z} M^{\top}+M \mathbf{Z} A^{\top}+f_{2} g_{k} f_{3}^{\top}=0
$$

with $g^{\top}=f_{1}^{\top} H^{-\top} Q$.

Low-rank Tensor equation

Find the unique $\mathbf{X} \in \mathbb{R}^{n \times n \times n}$ such that

$$
(H \otimes M \otimes A+M \otimes A \otimes H+A \otimes H \otimes M) \operatorname{vec}(\mathbf{X})+f_{3} \otimes f_{2} \otimes f_{1}=0
$$

PROP. Let $A^{\top} H^{-\top}=Q \Lambda Q^{-1}$ be the eigendecomposition of $A^{\top} H^{-\top}$. Then for each $k=1, \ldots, n$, the solution \mathbf{X} is obtained as $\mathbf{X}(:,:, k)=\mathbf{Z}_{k} Q^{-\top}$ where \mathbf{Z}_{k} solves

$$
\left(A+\lambda_{k} H\right) \mathbf{Z} M^{\top}+M \mathbf{Z} A^{\top}+f_{2} g_{k} f_{3}^{\top}=0
$$

with $g^{\top}=f_{1}^{\top} H^{-\top} Q$.

An example: (Random data)

n	9	25	49	81	121
CPU Time (secs)	0.0054	0.0442	0.3069	1.679	6.7465

(Work in progress)
\& For $n=121 \quad \Rightarrow \quad n^{3}=1,771,561$

Conclusions and Outlook

Large-scale (Multiterm) linear equations are a new computational tool

- Reduced Order methods are a key ingredient and may show optimality properties
- Matrix equation challenges rely on strength and maturity of linear system solvers
- Low-rank tensor equations require new thinking

Webpage: www.dm.unibo.it/~simoncin
Reference for linear matrix equations:

* V. Simoncini,

Computational methods for linear matrix equations,
SIAM Review, Sept. 2016.

[^0]: ${ }^{\mathrm{a}} S_{p}$ set of multivariate polyn of total degree $\leq p$

