# Matrix-oriented numerical methods for semilinear PDEs

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

Joint works with

M.C. D'Autilia & I. Sgura, Università di Lecce, Gerhard Kirsten, Università di Bologna

## The differential problem

We are interested in solving

 $u_t = \ell(u) + f(u, t), \quad u = u(x, y, t) \quad \text{with } (x, y) \in \Omega \subset \mathbb{R}^2, \ t \in \mathcal{T}$ 

with given initial conditions  $u(x, y, 0) = u_0(x, y)$  and proper b.c.

- $\triangleright$   $\ell$  linear in u (typically 2<sup>order</sup> diff operator in space, w/separable coeffs)
- f nonlinear function in u

Discretization: use tensor bases (finite differences, conformal mappings, IGA, spectral methods, etc.)

 $\clubsuit$  To simplify the presentation,  $\Omega$  rectangle

## The differential problem

We are interested in solving

 $u_t = \ell(u) + f(u, t), \quad u = u(x, y, t) \quad \text{with } (x, y) \in \Omega \subset \mathbb{R}^2, \ t \in \mathcal{T}$ 

with given initial conditions  $u(x, y, 0) = u_0(x, y)$  and proper b.c.

- $\triangleright$   $\ell$  linear in u (typically 2<sup>order</sup> diff operator in space, w/separable coeffs)
- f nonlinear function in u

Discretization: use tensor bases (finite differences, conformal mappings, IGA, spectral methods, etc.)



## The matrix differential problem. 1

$$u_t = \ell(u) + f(u, t), \quad u = u(x, y, t) \quad \text{with } (x, y) \in \Omega \subset \mathbb{R}^2, \ t \in \mathcal{T}$$

Linear operator:

$$\ell(u) = \Delta u$$

Standard (vector) discretization in space,  $n_x \times n_y$  grid:

 $\blacktriangleright \Delta u \Rightarrow \mathcal{A} \boldsymbol{u} \qquad \mathcal{A} \in \mathbb{R}^{n_x n_y \times n_x n_y}$ 

►  $f(u, t) \Rightarrow f(u, t)$  ( $n_x n_y$  components, evaluated component-wise) with lexicographic ordering of the rectangle nodes

#### Matrix-oriented discretization in space:

- $\blacktriangleright \Delta u \Rightarrow A\mathbf{U} + \mathbf{U}B, \quad A \in \mathbb{R}^{n_x \times n_x}, \ B \in \mathbb{R}^{n_y \times n_y}, (\mathbf{U})_{ij} \approx u(x_i, y_j)$
- $f(u,t) \Rightarrow \mathcal{F}(\boldsymbol{U},t) (n_x \times n_y, \text{ evaluated component-wise})$

## The matrix differential problem. 1

$$u_t = \ell(u) + f(u, t), \quad u = u(x, y, t) \quad \text{with } (x, y) \in \Omega \subset \mathbb{R}^2, \ t \in \mathcal{T}$$

Linear operator:

$$\ell(u) = \Delta u$$

Standard (vector) discretization in space,  $n_x \times n_y$  grid:

 $\blacktriangleright \Delta u \Rightarrow \mathcal{A} \boldsymbol{u} \qquad \mathcal{A} \in \mathbb{R}^{n_x n_y \times n_x n_y}$ 

►  $f(u, t) \Rightarrow f(u, t)$  ( $n_x n_y$  components, evaluated component-wise) with lexicographic ordering of the rectangle nodes

#### Matrix-oriented discretization in space:

- $\blacktriangleright \Delta u \Rightarrow A U + U B, \quad A \in \mathbb{R}^{n_x \times n_x}, \ B \in \mathbb{R}^{n_y \times n_y}, (U)_{ij} \approx u(x_i, y_j)$
- ▶  $f(u,t) \Rightarrow \mathcal{F}(\boldsymbol{U},t) (n_x \times n_y, \text{ evaluated component-wise})$

## Reminder: matrix formulation of tensor discretization



Discretization:  $U_{i,j} \approx u(x_i, y_j)$ , with  $(x_i, y_j)$  interior nodes, so that

$$u_{xx}(x_i, y_j) \approx \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} = \frac{1}{h^2} [1, -2, 1] \begin{bmatrix} U_{i-1,j} \\ U_{i,j} \\ U_{i+1,j} \end{bmatrix}$$
$$u_{yy}(x_i, y_j) \approx \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h^2} = \frac{1}{h^2} [U_{i,j-1}, U_{i,j}, U_{i,j+1}] \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Let  $T = \frac{1}{h^2}$  tridiag(-1, 2, -1). Collecting all nodes together,

 $-u_{xx} pprox TU, \qquad -u_{yy} pprox UT$ 

Therefore, directly from the grid,

 $-u_{xx}-u_{yy} \Rightarrow TU+UT+b.c.$ 

## Reminder: matrix formulation of tensor discretization



Discretization:  $U_{i,j} \approx u(x_i, y_j)$ , with  $(x_i, y_j)$  interior nodes, so that

$$u_{XX}(x_i, y_j) \approx \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} = \frac{1}{h^2} \begin{bmatrix} 1, -2, 1 \end{bmatrix} \begin{bmatrix} U_{i-1,j} \\ U_{i,j} \\ U_{i+1,j} \end{bmatrix}$$
$$u_{YY}(x_i, y_j) \approx \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h^2} = \frac{1}{h^2} \begin{bmatrix} U_{i,j-1}, U_{i,j}, U_{i,j+1} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Let  $T = \frac{1}{h^2} \operatorname{tridiag}(-1, \underline{2}, -1)$ . Collecting all nodes together,

 $-u_{xx} \approx TU, \qquad -u_{yy} \approx UT$ 

Therefore, directly from the grid,

$$-u_{xx}-u_{yy} \Rightarrow TU+UT+b.c.$$

# The matrix differential equation

## $\dot{\boldsymbol{U}}(t) = A\boldsymbol{U}(t) + \boldsymbol{U}(t)B + \mathcal{F}(\boldsymbol{U},t), \quad \boldsymbol{U}(0) = \boldsymbol{U}_0$

Computational strategies. Time stepping methods:

- **Small scale:** matrix-oriented IMEX methods, exponential integrators
- **Large scale:** In sequence:
  - 1. Order reduction procedure ( $\Rightarrow$  POD-type)
  - 2. Feasible handling of nonlinear term  $\mathcal{F}(\boldsymbol{U},t)$  ( $\Rightarrow$  matrix DEIM)
  - 3. Time stepping of reduced problem

# The matrix differential equation

$$\dot{\boldsymbol{U}}(t) = A\boldsymbol{U}(t) + \boldsymbol{U}(t)B + \mathcal{F}(\boldsymbol{U},t), \quad \boldsymbol{U}(0) = \boldsymbol{U}_0$$

Computational strategies. Time stepping methods:

Small scale: matrix-oriented IMEX methods, exponential integrators

- Large scale: In sequence:
  - 1. Order reduction procedure ( $\Rightarrow$  POD-type)
  - 2. Feasible handling of nonlinear term  $\mathcal{F}(\boldsymbol{U},t)$  ( $\Rightarrow$  matrix DEIM)
  - 3. Time stepping of reduced problem

# The matrix differential equation

$$\dot{\boldsymbol{U}}(t) = A\boldsymbol{U}(t) + \boldsymbol{U}(t)B + \mathcal{F}(\boldsymbol{U},t), \quad \boldsymbol{U}(0) = \boldsymbol{U}_0$$

Computational strategies. Time stepping methods:

- Small scale: matrix-oriented IMEX methods, exponential integrators
- Large scale: In sequence:
  - 1. Order reduction procedure ( $\Rightarrow$  POD-type)
  - 2. Feasible handling of nonlinear term  $\mathcal{F}(\boldsymbol{U}, t) \iff \text{matrix DEIM}$
  - 3. Time stepping of reduced problem

## Small scale time stepping

 $u_t = \ell(u) + f(u, t), \quad u = u(x, y, t) \quad \text{with } (x, y) \in \Omega \subset \mathbb{R}^2, \ t \in \mathcal{T}$ 

- Problem is stiff
  - Use appropriate time discretizations
  - Time stepping constraints
- Possibly long time period (e.g., for pattern detection), with occurrence of transient unstable phase
- Phenomenon sets is only if domain is well represented

$$\dot{\boldsymbol{U}}(t) = A\boldsymbol{U}(t) + \boldsymbol{U}(t)B + \mathcal{F}(\boldsymbol{U},t), \quad \boldsymbol{U}(0) = \boldsymbol{U}_0$$

IMEX methods

1. First order Euler:  $\boldsymbol{u}_{n+1} - \boldsymbol{u}_n = h_t(\mathcal{A}\boldsymbol{u}_{n+1} + f(\boldsymbol{u}_n))$  so that

 $(I - h_t \mathcal{A})\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + h_t f(\boldsymbol{u}_n), \quad n = 0, \dots, N_t - 1$ 

Matrix-oriented form:  $U_{n+1} - U_n = h_t(AU_{n+1} + U_{n+1}B) + h_tF(U_n)$ , so that

 $(I - h_t A)U_{n+1} + U_{n+1}(-h_t B) = U_n + h_t F(U_n), \quad n = 0, \dots, N_t - 1.$ 

2. Second order SBDF, known as IMEX 2-SBDF method

 $3u_{n+2} - 4u_{n+1} + u_n = 2h_t \mathcal{A}u_{n+2} + 2h_t (2f(u_{n+1}) - f(u_n)), \quad n = 0, 1, \dots, N_t$ 

Matrix-oriented form: for  $n = 0, \ldots, N_t - 2$ ,

#### IMEX methods

1. First order Euler:  $\boldsymbol{u}_{n+1} - \boldsymbol{u}_n = h_t(\mathcal{A}\boldsymbol{u}_{n+1} + f(\boldsymbol{u}_n))$  so that

$$(I-h_t\mathcal{A})\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + h_t f(\boldsymbol{u}_n), \quad n = 0, \dots, N_t - 1$$

Matrix-oriented form:  $U_{n+1} - U_n = h_t(AU_{n+1} + U_{n+1}B) + h_tF(U_n)$ , so that

 $(I - h_t A)U_{n+1} + U_{n+1}(-h_t B) = U_n + h_t F(U_n), \quad n = 0, \dots, N_t - 1.$ 

2. Second order SBDF, known as IMEX 2-SBDF method

 $3u_{n+2} - 4u_{n+1} + u_n = 2h_t \mathcal{A}u_{n+2} + 2h_t (2f(u_{n+1}) - f(u_n)), \quad n = 0, 1, \dots, N_t$ 

Matrix-oriented form: for  $n = 0, \ldots, N_t - 2$ ,

### IMEX methods

1. First order Euler:  $\boldsymbol{u}_{n+1} - \boldsymbol{u}_n = h_t(\mathcal{A}\boldsymbol{u}_{n+1} + f(\boldsymbol{u}_n))$  so that

$$(I-h_t\mathcal{A})\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + h_t f(\boldsymbol{u}_n), \quad n = 0, \dots, N_t - 1$$

Matrix-oriented form:  $U_{n+1} - U_n = h_t(AU_{n+1} + U_{n+1}B) + h_tF(U_n)$ , so that

 $(I - h_t A)U_{n+1} + U_{n+1}(-h_t B) = U_n + h_t F(U_n), \quad n = 0, \dots, N_t - 1.$ 

2. Second order SBDF, known as IMEX 2-SBDF method

 $3u_{n+2} - 4u_{n+1} + u_n = 2h_t \mathcal{A}u_{n+2} + 2h_t (2f(u_{n+1}) - f(u_n)), \quad n = 0, 1, \dots, N_t$ 

Matrix-oriented form: for  $n = 0, \ldots, N_t - 2$ ,

### IMEX methods

1. First order Euler:  $\boldsymbol{u}_{n+1} - \boldsymbol{u}_n = h_t(\mathcal{A}\boldsymbol{u}_{n+1} + f(\boldsymbol{u}_n))$  so that

$$(I-h_t\mathcal{A})\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + h_t f(\boldsymbol{u}_n), \quad n = 0, \dots, N_t - 1$$

Matrix-oriented form:  $U_{n+1} - U_n = h_t(AU_{n+1} + U_{n+1}B) + h_tF(U_n)$ , so that

 $(I - h_t A)U_{n+1} + U_{n+1}(-h_t B) = U_n + h_t F(U_n), \quad n = 0, \dots, N_t - 1.$ 

2. Second order SBDF, known as IMEX 2-SBDF method

 $3u_{n+2} - 4u_{n+1} + u_n = 2h_t \mathcal{A}u_{n+2} + 2h_t (2f(u_{n+1}) - f(u_n)), \quad n = 0, 1, \dots, N_t$ 

Matrix-oriented form: for  $n = 0, \ldots, N_t - 2$ ,

Exponential integrator

Exponential first order Euler method:

$$oldsymbol{u}_{n+1}=e^{h_t\mathcal{A}}oldsymbol{u}_n+h_tarphi_1(h_t\mathcal{A})f(oldsymbol{u}_n)$$

 $e^{h_t \mathcal{A}}$ : matrix exponential,  $arphi_1(z) = (e^z - 1)/z$  first "phi" function That is,

$$\boldsymbol{u}_{n+1} = e^{h_t \mathcal{A}} \boldsymbol{u}_n + h_t \boldsymbol{v}_n, \quad \text{where } \mathcal{A} \boldsymbol{v}_n = e^{h_t \mathcal{A}} f(\boldsymbol{u}_n) - f(\boldsymbol{u}_n) \qquad n = 0, \dots, N_t - 1.$$

Matrix-oriented form: since  $e^{h_t A} u = (e^{h_t B^\top} \otimes e^{h_t A}) u = \operatorname{vec}(e^{h_t A} U e^{h_t B})$ 1. Compute  $E_1 = e^{h_t A}$ ,  $E_2 = e^{h_t B^\top}$ 

Solve 
$$AV_n + V_n B = E_1 F(U_n) E_2^\top - F(U_n)$$
  
Compute  $U_{n+1} = E_1 U_n E_2^\top + h_t V_n$ 

Exponential integrator

Exponential first order Euler method:

$$oldsymbol{u}_{n+1}=e^{h_t\mathcal{A}}oldsymbol{u}_n+h_tarphi_1(h_t\mathcal{A})f(oldsymbol{u}_n)$$

 $e^{h_t \mathcal{A}}$ : matrix exponential,  $arphi_1(z) = (e^z - 1)/z$  first "phi" function That is,

$$\boldsymbol{u}_{n+1} = e^{h_t \mathcal{A}} \boldsymbol{u}_n + h_t \boldsymbol{v}_n, \quad \text{where } \mathcal{A} \boldsymbol{v}_n = e^{h_t \mathcal{A}} f(\boldsymbol{u}_n) - f(\boldsymbol{u}_n) \qquad n = 0, \dots, N_t - 1.$$

Matrix-oriented form: since  $e^{h_t A} u = (e^{h_t B^\top} \otimes e^{h_t A}) u = \operatorname{vec}(e^{h_t A} U e^{h_t B})$ 

- 1. Compute  $E_1 = e^{h_t A}$ ,  $E_2 = e^{h_t B^{\top}}$
- 2. For each n

Solve 
$$AV_n + V_n B = E_1 F(U_n) E_2^{\top} - F(U_n)$$
  
Compute  $U_{n+1} = E_1 U_n E_2^{\top} + h_t V_n$ 

### Computational issues:

- Dimensions of A, B very modest
- A, B quasi-symmetric (non-symmetry due to bc's)
- A, B do not depend on time step

Matrix-oriented form all in spectral space (after eigenvector transformation)

Numerical properties:

Structural properties are preserved

### Computational issues:

- Dimensions of A, B very modest
- A, B quasi-symmetric (non-symmetry due to bc's)
- A, B do not depend on time step

Matrix-oriented form all in spectral space (after eigenvector transformation)

Numerical properties:

Structural properties are preserved

## A numerical example of system of RD-PDEs

$$\begin{cases} u_t = \ell_1(u) + f_1(u, v), \\ v_t = \ell_2(v) + f_2(u, v), & \text{with} \quad (x, y) \in \Omega \subset \mathbb{R}^2, \quad t \in ]0, T] \end{cases}$$

Model describing an electrodeposition process for metal growth  $f_1(u, v) = \rho \left(A_1(1-v)u - A_2 u^3 - B(v-\alpha)\right)$  $f_2(u, v) = \rho \left(C(1+k_2u)(1-v)[1-\gamma(1-v)] - Dv(1+k_3u)(1+\gamma v)\right)$ 





Joint work with M.C. D'Autilia & I. Sgura, Università di Lecce

# A numerical example of system of RD-PDEs

$$\begin{cases} u_t = \ell_1(u) + f_1(u, v), \\ v_t = \ell_2(v) + f_2(u, v), & \text{with} \quad (x, y) \in \Omega \subset \mathbb{R}^2, \quad t \in ]0, T] \end{cases}$$

Model describing an electrodeposition process for metal growth  $f_1(u, v) = \rho \left(A_1(1-v)u - A_2 u^3 - B(v-\alpha)\right)$  $f_2(u, v) = \rho \left(C(1+k_2u)(1-v)[1-\gamma(1-v)] - Dv(1+k_3u)(1+\gamma v)\right)$ 



Turing pattern

Joint work with M.C. D'Autilia & I. Sgura, Università di Lecce

## Schnackenberg model

$$f_1(u, v) = \gamma(a - u + u^2 v), \ f_2(u, v) = \gamma(b - u^2 v)$$



Left plot: Turing pattern solution for  $\gamma = 1000$  ( $N_x = 400$ ) Center plot: CPU times (sec),  $N_x = 100$  variation of  $h_t$ Right plot: CPU times (sec),  $h_t = 10^{-4}$ , increasing values of  $N_x = 50, 100, 200, 300, 400$ 

## Large scale time stepping

$$\mathbf{U}(t) = A\mathbf{U}(t) + \mathbf{U}(t)B + \mathcal{F}(\mathbf{U}, t), \quad \mathbf{U}(0) = \mathbf{U}_0$$

Approximation strategy:  $\boldsymbol{U} \in \mathbb{R}^{n_x \times n_y}$ ,

$$\boldsymbol{U} pprox \boldsymbol{V}_{\ell,U} \boldsymbol{Y}_k(t) \boldsymbol{W}_{r,U}^{ op} =$$
 ,  $t \in [0, T_f]$ 

 $\mathbf{A} V_{\ell,U} \in \mathbb{R}^{n_x \times k_1}$ ,  $W_{r,U} \in \mathbb{R}^{n_y \times k_2}$  matrices<sup>1</sup> to be determined, independent of time

**&** Function  $Y_k(t)$  numerical solution to *reduced* semilinear problem:

$$\dot{\mathbf{Y}}_{k}(t) = A_{k} \mathbf{Y}_{k}(t) + \mathbf{Y}_{k}(t)B_{k} + \overline{\mathcal{F}}_{k}(\mathbf{Y}_{k}, \overline{t})$$
$$\mathbf{Y}_{k}(0) = \mathbf{Y}_{k}^{(0)} := \mathbf{V}_{\ell,U}^{\top} \mathbf{U}_{0} \mathbf{W}_{r,U}$$

with  $A_k = \mathbf{V}_{\ell,U}^{\top} A \mathbf{V}_{\ell,U}, B_k = \mathbf{W}_{r,U}^{\top} B \mathbf{W}_{r,U},$ 

 $\mathcal{F}_k(\mathbf{Y}_k, t)$  is a matrix-oriented DEIM approximation to

 $\mathcal{F}_k(\boldsymbol{Y}_k,t) = \boldsymbol{V}_{\ell,U}^{\top} \mathcal{F}(\boldsymbol{V}_{\ell,U} \boldsymbol{Y}_k \boldsymbol{W}_{r,U}^{\top},t) \boldsymbol{W}_{r,U}.$ 

 $^{1}k_{1},k_{2}\ll n$  and we let  $k=(k_{1},k_{2})$ 

## Large scale time stepping

$$\dot{\boldsymbol{U}}(t) = A\boldsymbol{U}(t) + \boldsymbol{U}(t)B + \mathcal{F}(\boldsymbol{U},t), \quad \boldsymbol{U}(0) = \boldsymbol{U}_0$$

Approximation strategy:  $\boldsymbol{U} \in \mathbb{R}^{n_x \times n_y}$ ,

$$\boldsymbol{U} \approx \boldsymbol{V}_{\ell,U} \boldsymbol{Y}_k(t) \boldsymbol{W}_{r,U}^{\top} = \boxed{\qquad}, \quad t \in [0, T_f]$$

 $\mathbf{A} \ \mathbf{V}_{\ell,U} \in \mathbb{R}^{n_x imes k_1}$ ,  $\mathbf{W}_{r,U} \in \mathbb{R}^{n_y imes k_2}$  matrices<sup>1</sup> to be determined, independent of time

**\clubsuit** Function  $Y_k(t)$  numerical solution to *reduced* semilinear problem:

$$\dot{\mathbf{Y}}_{k}(t) = A_{k} \mathbf{Y}_{k}(t) + \mathbf{Y}_{k}(t)B_{k} + \overline{\mathcal{F}_{k}(\mathbf{Y}_{k}, t)}$$
$$\mathbf{Y}_{k}(0) = \mathbf{Y}_{k}^{(0)} := \mathbf{V}_{\ell, U}^{\top} \mathbf{U}_{0} \mathbf{W}_{r, U}$$

with  $A_k = \boldsymbol{V}_{\ell,U}^{\top} A \boldsymbol{V}_{\ell,U}, B_k = \boldsymbol{W}_{r,U}^{\top} B \boldsymbol{W}_{r,U},$ 

 $\widehat{\mathcal{F}_k(\mathbf{Y}_k, t)} \text{ is a matrix-oriented DEIM approximation to}$  $\mathcal{F}_k(\mathbf{Y}_k, t) = \mathbf{V}_{\ell, U}^\top \mathcal{F}(\mathbf{V}_{\ell, U} \mathbf{Y}_k \mathbf{W}_{r, U}^\top, t) \mathbf{W}_{r, U}.$ 

 $^{1}k_{1},k_{2}\ll n$  and we let  $k=(k_{1},k_{2})$ 

## Large scale time stepping

$$\dot{\boldsymbol{U}}(t) = A\boldsymbol{U}(t) + \boldsymbol{U}(t)B + \mathcal{F}(\boldsymbol{U},t), \quad \boldsymbol{U}(0) = \boldsymbol{U}_0$$

Approximation strategy:  $\boldsymbol{U} \in \mathbb{R}^{n_x \times n_y}$ ,

$$\boldsymbol{U} \approx \boldsymbol{V}_{\ell,U} \boldsymbol{Y}_k(t) \boldsymbol{W}_{r,U}^{\top} = \boxed{\qquad}, \quad t \in [0, T_f]$$

 $\mathbf{k} \ \mathbf{V}_{\ell,U} \in \mathbb{R}^{n_x \times k_1}, \ \mathbf{W}_{r,U} \in \mathbb{R}^{n_y \times k_2} \ \text{matrices}^1 \ \text{to be determined, independent of time}$ 

**\clubsuit** Function  $Y_k(t)$  numerical solution to *reduced* semilinear problem:

$$\dot{\mathbf{Y}}_{k}(t) = A_{k} \mathbf{Y}_{k}(t) + \mathbf{Y}_{k}(t)B_{k} + \overline{\mathcal{F}_{k}(\mathbf{Y}_{k}, t)}$$
$$\mathbf{Y}_{k}(0) = \mathbf{Y}_{k}^{(0)} := \mathbf{V}_{\ell,U}^{\top} \mathbf{U}_{0} \mathbf{W}_{r,U}$$

with  $A_k = \boldsymbol{V}_{\ell,U}^{\top} A \boldsymbol{V}_{\ell,U}, B_k = \boldsymbol{W}_{r,U}^{\top} B \boldsymbol{W}_{r,U},$ 

 $\mathcal{F}_k(\mathbf{Y}_k, t)$  is a matrix-oriented DEIM approximation to

$$\mathcal{F}_k(\boldsymbol{Y}_k,t) = \boldsymbol{V}_{\ell,U}^\top \mathcal{F}(\boldsymbol{V}_{\ell,U} \boldsymbol{Y}_k \boldsymbol{W}_{r,U}^\top,t) \boldsymbol{W}_{r,U}.$$

 $^{1}k_{1},k_{2}\ll n$  and we let  $k=(k_{1},k_{2})$ 

## Large scale time stepping: computational steps

- ▶ Determine  $V_{\ell,U} \in \mathbb{R}^{n_x \times k_1}$ ,  $W_{r,U} \in \mathbb{R}^{n_y \times k_2}$  via new two-sided matrix POD (*literature: parameter-based affine formulations/approximations (MDEIM, Manzoni etal), Jacobian approximation (Stefanescu etal 2017),...)*
- Determine  $\widetilde{\mathcal{F}_k(Y_k, t)}$  via new matrix-oriented DEIM
- Matrix-oriented time stepping for  $Y_k(t)$  (small scale)

for general vector treatment, Benner, Gugercin, Willcox, SIREV 2015

Matrix formulation preserves structure, e.g., symmetry

## Two-sided matrix POD

POD: select an approximation basis using solution "snapshots"  $\{\boldsymbol{U}(t_i)\}_{i=1}^{n_{\max}}$ Matrix-oriented POD: select two bases

Snapshot dynamic selection procedure

Refinements  $\mathcal{I}_i$ ,  $j = 1, \ldots, 3$  of time interval



A In fact: Snapshots computed on the fly (SI Euler) while the time interval is spanned

## Two-sided matrix POD

POD: select an approximation basis using solution "snapshots"  $\{\boldsymbol{U}(t_i)\}_{i=1}^{n_{\max}}$ Matrix-oriented POD: select two bases

Snapshot dynamic selection procedure

Refinements  $\mathcal{I}_i$ ,  $j = 1, \ldots, 3$  of time interval



A In fact: Snapshots computed on the fly (SI Euler) while the time interval is spanned

Given snapshots  $\{\boldsymbol{U}(t_i)\}_{i=1}^{n_{\max}}$  and three refinements  $\mathcal{I}_j$ ,  $j = 1, \dots, 3$  of time interval

for each  $j = 1, \ldots, 3$ ,

for each  $t_i \in \mathcal{I}_j$  such that  $U_i$  is to be included

- Compute  $[\boldsymbol{V}_i, \boldsymbol{\Sigma}_i, \boldsymbol{W}_i] = \mathtt{svds}\left(\boldsymbol{U}_i, \kappa\right)$
- Append  $\widetilde{V}_i \leftarrow (\widetilde{V}_{i-1}, V_i), \ \widehat{W}_i \leftarrow (\widehat{W}_{i-1}, W_i), \ \widetilde{\Sigma}_i \leftarrow \texttt{blkdiag}(\widetilde{\Sigma}_{i-1}, \Sigma_i)$
- Decreasingly order the entries of (diagonal)  $\widetilde{\mathbf{\Sigma}}_i$  and keep the first  $\kappa$

- Order  $\widetilde{V}_i$  and  $\widehat{W}_i$  accordingly and keep the first  $\kappa$  vectors of each

Check if next refinement is needed

# Matrix-oriented DEIM approximation of nonlinear function

Matrix-oriented POD: Given snapshots  $\{\mathcal{F}(t_j)\}_{j=1}^{n_s}$  use dynamic selection to generate  $V_{\ell,\mathcal{F}} \in \mathbb{R}^{n \times p_1}$  such that

 $\mathcal{F}(t) pprox \boldsymbol{V}_{\ell,\mathcal{F}} \boldsymbol{C}(t) \boldsymbol{W}_{r,\mathcal{F}}^{\top}$ 

with  $\boldsymbol{C}(t)$  to be determined.

**DEIM** strategy, in a two-sided context (2S-DEIM):

 $V_{\ell,\mathcal{F}}C(t)W_{r,\mathcal{F}}^{\top}=\mathcal{F}(t)$ 

1. Select independent rows of  $V_{\ell,\mathcal{F}}$  and  $W_{r,\mathcal{F}}$  (via reduction indices)

$$\boldsymbol{P}_{\ell,\mathcal{F}}^{\top}\boldsymbol{V}_{\ell,\mathcal{F}}\boldsymbol{C}(t)\boldsymbol{W}_{r,\mathcal{F}}^{\top}\boldsymbol{P}_{r,\mathcal{F}} = \boldsymbol{P}_{\ell,\mathcal{F}}^{\top}\mathcal{F}(t)\boldsymbol{P}_{r,\mathcal{F}},$$

Solve for C(t)

# Matrix-oriented DEIM approximation of nonlinear function

Matrix-oriented POD: Given snapshots  $\{\mathcal{F}(t_j)\}_{j=1}^{n_s}$  use dynamic selection to generate  $V_{\ell,\mathcal{F}} \in \mathbb{R}^{n \times p_1}$  such that

 $\mathcal{F}(t) pprox \boldsymbol{V}_{\ell,\mathcal{F}} \boldsymbol{C}(t) \boldsymbol{W}_{r,\mathcal{F}}^{\top}$ 

with  $\boldsymbol{C}(t)$  to be determined.

DEIM strategy, in a two-sided context (2s-DEIM):

 $V_{\ell,\mathcal{F}}C(t)W_{r,\mathcal{F}}^{\top}=\mathcal{F}(t)$ 

1. Select independent rows of  $V_{\ell,\mathcal{F}}$  and  $W_{r,\mathcal{F}}$  (via reduction indices)

$$\boldsymbol{P}_{\ell,\mathcal{F}}^{\top}\boldsymbol{V}_{\ell,\mathcal{F}}\boldsymbol{C}(t)\boldsymbol{W}_{r,\mathcal{F}}^{\top}\boldsymbol{P}_{r,\mathcal{F}} = \boldsymbol{P}_{\ell,\mathcal{F}}^{\top}\mathcal{F}(t)\boldsymbol{P}_{r,\mathcal{F}},$$

Solve for C(t)

2. Project onto *U*-spaces: (element-wise eval of  $\mathcal{F}$ )  $\mathcal{F}_{k}(\mathbf{Y}_{k},t) \approx \mathbf{V}_{\ell,U}^{\top} \mathbf{V}_{\ell,\mathcal{F}} (\mathbf{P}_{\ell,\mathcal{F}}^{\top} \mathbf{V}_{\ell,\mathcal{F}})^{-1} \mathbf{P}_{\ell,\mathcal{F}}^{\top} \mathcal{F}(\mathbf{V}_{\ell,U} \mathbf{Y}_{k}(t) \mathbf{W}_{r,U}^{\top}, t) \mathbf{P}_{r,\mathcal{F}} (\mathbf{W}_{r,\mathcal{F}}^{\top} \mathbf{P}_{r,\mathcal{F}})^{-1} \mathbf{W}_{r,\mathcal{F}}^{\top} \mathbf{W}_{r,U}$   $= \mathbf{V}_{\ell,U}^{\top} \mathbf{V}_{\ell,\mathcal{F}} (\mathbf{P}_{\ell,\mathcal{F}}^{\top} \mathbf{V}_{\ell,\mathcal{F}})^{-1} \mathcal{F} (\mathbf{P}_{\ell,\mathcal{F}}^{\top} \mathbf{V}_{\ell,U} \mathbf{Y}_{k}(t) \mathbf{W}_{r,U}^{\top} \mathbf{P}_{r,\mathcal{F}}, t) (\mathbf{W}_{r,\mathcal{F}}^{\top} \mathbf{P}_{r,\mathcal{F}})^{-1} \mathbf{W}_{r,\mathcal{F}}^{\top} \mathbf{W}_{r,U}$   $=: \overline{\mathcal{F}_{k}(\mathbf{Y}_{k}, t)}$ 

# Matrix-oriented DEIM approximation of nonlinear function

Matrix-oriented POD: Given snapshots  $\{\mathcal{F}(t_j)\}_{j=1}^{n_s}$  use dynamic selection to generate  $V_{\ell,\mathcal{F}} \in \mathbb{R}^{n \times p_1}$  such that

$$\mathcal{F}(t) pprox oldsymbol{V}_{\ell,\mathcal{F}}oldsymbol{\mathcal{C}}(t)oldsymbol{W}_{r,\mathcal{F}}^ op$$

with  $\boldsymbol{C}(t)$  to be determined.

DEIM strategy, in a two-sided context (2S-DEIM):

$$V_{\ell,\mathcal{F}}C(t)W_{r,\mathcal{F}}^{\top}=\mathcal{F}(t)$$

1. Select independent rows of  $V_{\ell,\mathcal{F}}$  and  $W_{r,\mathcal{F}}$  (via reduction indices)

$$\boldsymbol{P}_{\ell,\mathcal{F}}^{\top}\boldsymbol{V}_{\ell,\mathcal{F}}\boldsymbol{C}(t)\boldsymbol{W}_{r,\mathcal{F}}^{\top}\boldsymbol{P}_{r,\mathcal{F}} = \boldsymbol{P}_{\ell,\mathcal{F}}^{\top}\mathcal{F}(t)\boldsymbol{P}_{r,\mathcal{F}},$$

Solve for  $\boldsymbol{C}(t)$ 

2. Project onto *U*-spaces:  $\mathcal{F}_{k}(\mathbf{Y}_{k}, t) \approx \mathbf{V}_{\ell, U}^{\top} \mathbf{V}_{\ell, \mathcal{F}} (\mathbf{P}_{\ell, \mathcal{F}}^{\top} \mathbf{V}_{\ell, \mathcal{F}})^{-1} \mathbf{P}_{\ell, \mathcal{F}}^{\top} \mathcal{F} (\mathbf{V}_{\ell, U} \mathbf{Y}_{k}(t) \mathbf{W}_{r, U}^{\top}, t) \mathbf{P}_{r, \mathcal{F}} (\mathbf{W}_{r, \mathcal{F}}^{\top} \mathbf{P}_{r, \mathcal{F}})^{-1} \mathbf{W}_{r, \mathcal{F}}^{\top} \mathbf{W}_{r, U}$   $= \mathbf{V}_{\ell, U}^{\top} \mathbf{V}_{\ell, \mathcal{F}} (\mathbf{P}_{\ell, \mathcal{F}}^{\top} \mathbf{V}_{\ell, \mathcal{F}})^{-1} \mathcal{F} (\mathbf{P}_{\ell, \mathcal{F}}^{\top} \mathbf{V}_{\ell, U} \mathbf{Y}_{k}(t) \mathbf{W}_{r, U}^{\top} \mathbf{P}_{r, \mathcal{F}}, t) (\mathbf{W}_{r, \mathcal{F}}^{\top} \mathbf{P}_{r, \mathcal{F}})^{-1} \mathbf{W}_{r, \mathcal{F}}^{\top} \mathbf{W}_{r, U}$   $=: \widetilde{\mathcal{F}_{k}(\mathbf{Y}_{k}, t)}$ 

# Algorithm 2S-POD-DEIM

**INPUT:**  $n_{max}$ ,  $\kappa$ , and  $\tau$ ,  $n_{\mathfrak{t}}$ ,  $\{\mathfrak{t}_i\}$ ,  $i = 0, \ldots, n_{\mathfrak{t}}$ **OUTPUT:**  $V_{\ell,U}$ ,  $W_{r,U}$  and  $Y_k^{(i)}$ ,  $i = 0, \ldots, n_{\mathfrak{t}}$  (for  $V_{\ell,U}Y_k^{(i)}W_{r,U}^{\top} \approx U(\mathfrak{t}_i)$ )

Offline:

- 1. Determine  $V_{\ell,U}$ ,  $W_{r,U}$  for  $\{U\}_{i=1}^{n_{max}}$  and  $V_{\ell,\mathcal{F}}$ ,  $W_{r,\mathcal{F}}$  for  $\{\mathcal{F}\}_{i=1}^{n_{max}}$  via dynamic procedure
- 2. Compute  $\boldsymbol{Y}_{k}^{(0)} = \boldsymbol{V}_{\ell,U}^{\top} \boldsymbol{U}_{0} \boldsymbol{W}_{r,U}$ ,  $A_{k} = \boldsymbol{V}_{\ell,U}^{\top} \boldsymbol{A} \boldsymbol{V}_{\ell,U}$ ,  $B_{k} = \boldsymbol{W}_{r,U}^{\top} \boldsymbol{B} \boldsymbol{W}_{r,U}$
- 3. Determine  $P_{\ell,\mathcal{F}}, P_{r,\mathcal{F}}$  using 2S-DEIM
- 4. Compute  $V_{\ell,U}^{\top} V_{\ell,\mathcal{F}} (P_{\ell,\mathcal{F}}^{\top} V_{\ell,\mathcal{F}})^{-1}$ ,  $(W_{r,\mathcal{F}}^{\top} P_{r,\mathcal{F}})^{-1} W_{r,\mathcal{F}}^{\top} W_{r,U}$ ,  $P_{\ell,\mathcal{F}}^{\top} V_{\ell,U}$  and  $W_{r,U}^{\top} P_{r,\mathcal{F}}$

#### Online:

For each  $i = 1, \ldots, n_t$ 

(i) Evaluate  $f(\boldsymbol{Y}_k^{(i-1)}) := \mathcal{F}_k(\boldsymbol{Y}_k^{(i-1)}, \mathfrak{t}_{i-1})$ 

(ii) Matrix exponential integrator: solve the matrix equation

$$A_k \Phi + \Phi B_k = e^{hA_k} \mathfrak{f}(\boldsymbol{Y}_k^{(i-1)}) e^{hB_k} - \mathfrak{f}(\boldsymbol{Y}_k^{(i-1)})$$

and compute

$$\mathbf{Y}_{k}^{(i)} = e^{hA_{k}} \mathbf{Y}_{k}^{(i-1)} e^{hB_{k}} + h\Phi^{(i-1)}$$

A numerical example, the 2D Allen-Cahn equation

$$u_t = \epsilon_1 \Delta u - \frac{1}{\epsilon_2^2} \left( u^3 - u \right), \quad \Omega = [a, b] \times [a, b], \quad t \in [0, T_f], \quad u(x, y, 0) = u_0$$

EXAMPLE AC1

([Song, Jian, Li, 2016])

 $\epsilon_1 = 10^{-2}, \quad \epsilon_2 = 1, \quad a = 0, \quad b = 2\pi, \quad T_f = 5$ 

 $u_0 = 0.05 \sin x \cos y$  and zero Dirichlet b.c.

EXAMPLE AC2

([Evans, Spruck, 1991, Ju, Zhang, Zhu, Du, 2015])

$$\epsilon_1 = 1, \ \epsilon_2 \in \{0.01, 0.02, 0.04\}, \quad a = -0.5, \quad b = 0.5, \quad T_f = 0.075$$

 $u_0 = anh\left(rac{0.4-\sqrt{x^2+y^2}}{\sqrt{2}\epsilon_2}
ight)$  and periodic b.c.

Problem dimension:  $n_x = n_y \equiv n = 1000$ 

# Numerical results. 1

| PB.                                                             | $n_{ m max}/\kappa$ | Ξ              | ALGORITHM | $\mathcal I$ refin | n <sub>s</sub> | $ u_\ell/ u_r$ |
|-----------------------------------------------------------------|---------------------|----------------|-----------|--------------------|----------------|----------------|
| AC 1                                                            | 40/50               | U              | DYNAMIC   | 1                  | 8              | 9/2            |
|                                                                 |                     |                | VECTOR    | 2                  | 9              | 9              |
|                                                                 |                     | $\mathcal{F}$  | DYNAMIC   | 1                  | 7              | 10/3           |
|                                                                 |                     |                | VECTOR    | 2                  | 9              | 9              |
| $\epsilon_2 = 0.04$                                             | 400/50              | U              | DYNAMIC   | 1                  | 2              | 15/15          |
|                                                                 |                     |                | VECTOR    | 2                  | 25             | 25             |
|                                                                 |                     | $\mathcal{F}$  | DYNAMIC   | 1                  | 3              | 27/27          |
|                                                                 |                     |                | VECTOR    | 2                  | 40             | 40             |
| $\begin{array}{c} \text{AC } 2\\ \epsilon_2 = 0.02 \end{array}$ | 1200/70             | U              | DYNAMIC   | 1                  | 3              | 30/30          |
|                                                                 |                     |                | VECTOR    | 1                  | 28             | 28             |
|                                                                 |                     | ${\mathcal F}$ | DYNAMIC   | 1                  | 4              | 39/39          |
|                                                                 |                     |                | VECTOR    | 2                  | 53             | 53             |
| $\begin{array}{c} \text{AC } 2\\ \epsilon_2 = 0.01 \end{array}$ | 5000/150            | U              | DYNAMIC   | 1                  | 3              | 62/62          |
|                                                                 |                     |                | VECTOR    | 1                  | 43             | 43             |
|                                                                 |                     | $\mathcal{F}$  | DYNAMIC   | 1                  | 5              | 73/73          |
|                                                                 |                     |                | VECTOR    | 2                  | 92             | 92             |

 $n_{max}$ : max # snapshots  $\kappa$ : max allowed POD dim  $n_s$ : employed # snapshots  $\nu_\ell, \nu_r$ : dim two POD bases

# Numerical results. 2

|              |         | OFFLINE |        |                           | ONLINE       |                           |                   |
|--------------|---------|---------|--------|---------------------------|--------------|---------------------------|-------------------|
|              |         | BASIS   | DEIM   |                           |              |                           | REL.              |
| PB.          | METHOD  | TIME    | TIME   | MEMORY                    | TIME $(n_t)$ | MEMORY                    | ERROR             |
| AC 1         | DYNAMIC | 1.8     | 0.001  | 200 <i>n</i>              | 0.009 (300)  | 24 <i>n</i>               | $1 \cdot 10^{-4}$ |
|              | VECTOR  | 0.6     | 0.228  | 18 <i>n</i> <sup>2</sup>  | 0.010 (300)  | 18 <i>n</i> <sup>2</sup>  | $1 \cdot 10^{-4}$ |
| AC 2<br>0.04 | DYNAMIC | 0.8     | 0.005  | 200 <i>n</i>              | 0.010 (300)  | 84 <i>n</i>               | $3 \cdot 10^{-4}$ |
|              | VECTOR  | 8.4     | 3.745  | 65 <i>n</i> <sup>2</sup>  | 0.020 (300)  | 65 <i>n</i> <sup>2</sup>  | $2 \cdot 10^{-4}$ |
| AC 2<br>0.02 | DYNAMIC | 1.8     | 0.004  | 280 <i>n</i>              | 0.140 (1000) | 138 <i>n</i>              | $2 \cdot 10^{-4}$ |
|              | VECTOR  | 14.6    | 5.273  | 81 <i>n</i> <sup>2</sup>  | 0.120 (1000) | 81 <i>n</i> <sup>2</sup>  | $3 \cdot 10^{-5}$ |
| AC 2<br>0.01 | DYNAMIC | 5.3     | 0.008  | 600 <i>n</i>              | 0.820 (2000) | 270 <i>n</i>              | $5 \cdot 10^{-4}$ |
|              | VECTOR  | 46.2    | 13.820 | 135 <i>n</i> <sup>2</sup> | 0.420 (2000) | 135 <i>n</i> <sup>2</sup> | $2 \cdot 10^{-4}$ |

# Conclusions and outlook

- ► Two-sided matrix-oriented approximation  $V_{\ell,U}Y_k(t)W_{r,U}^{\top}$  is a feasible and effective technique (memory and CPU time saving, structure aware)
- Matrix approach unables combining POD-DEIM with robust exponential integrators
- 3D (tensor) version already available (G. Kirsten, arXiv 2103.04343 (2021))
- Multiparameter version can be foreseen

#### REFERENCES

- Maria Chiara D'Autilia, Ivonne Sgura and V. Simoncini Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications Computers and Mathematics with Applications, v. 79 (1), 2020, pages 2067-2085.

Gerhard Kirsten and V. Simoncini
 A matrix-oriented POD-DEIM algorithm applied to semilinear matrix differential equations
 pp. 1-25, Dipartimento di Matematica, Universita' di Bologna, June 2020. arXiv preprint n. 2006.13289

# Conclusions and outlook

- ► Two-sided matrix-oriented approximation  $V_{\ell,U}Y_k(t)W_{r,U}^{\top}$  is a feasible and effective technique (memory and CPU time saving, structure aware)
- Matrix approach unables combining POD-DEIM with robust exponential integrators
- 3D (tensor) version already available (G. Kirsten, arXiv 2103.04343 (2021))
- Multiparameter version can be foreseen

#### REFERENCES

- Maria Chiara D'Autilia, Ivonne Sgura and V. Simoncini Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications Computers and Mathematics with Applications, v. 79 (1), 2020, pages 2067-2085.

- Gerhard Kirsten and V. Simoncini
 A matrix-oriented POD-DEIM algorithm applied to semilinear matrix differential equations
 pp. 1-25, Dipartimento di Matematica, Universita' di Bologna, June 2020. arXiv preprint n. 2006.13289