Order reduction numerical methods for the algebraic Riccati equation

V. Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

The problem
Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{s \times n}, p, s=\mathcal{O}(1)$
Rich literature on analysis, applications and numerics:
Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

The problem
Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{s \times n}, p, s=\mathcal{O}(1)$
Rich literature on analysis, applications and numerics:
Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...
We focus on the large scale case: $n \gg 1000$
Different strategies

- (Inexact) Kleinman iteration (Newton-type method)
- Projection methods
- Invariant subspace iteration
- (Sparse) multilevel methods
-

Newton-Kleinman iteration

Assume A stable. Compute sequence $\left\{\mathbf{X}_{k}\right\}$ with $\mathbf{X}_{k} \rightarrow_{k \rightarrow \infty} \mathbf{X}$

$$
\left(A-\mathbf{X}_{k} B B^{\top}\right) \mathbf{X}_{k+1}+\mathbf{X}_{k+1}\left(A^{\top}-B B^{\top} \mathbf{X}_{k}\right)+C^{\top} C+\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}=0
$$

Newton-Kleinman iteration
Assume A stable. Compute sequence $\left\{\mathbf{X}_{k}\right\}$ with $\mathbf{X}_{k} \rightarrow_{k \rightarrow \infty} \mathbf{X}$

$$
\left(A-\mathbf{X}_{k} B B^{\top}\right) \mathbf{X}_{k+1}+\mathbf{X}_{k+1}\left(A^{\top}-B B^{\top} \mathbf{X}_{k}\right)+C^{\top} C+\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}=0
$$

1: Given $\mathbf{X}_{0} \in \mathbb{R}^{n \times n}$ such that $\mathbf{X}_{0}=\mathbf{X}_{0}^{\top}, A^{\top}-B B^{\top} \mathbf{X}_{0}$ is stable
2: For $k=0,1, \ldots$, until convergence
3: \quad Set $\mathcal{A}_{k}^{\top}=A^{\top}-B B^{\top} \mathbf{X}_{k}$
4: $\quad \operatorname{Set} \mathcal{C}_{k}^{\top}=\left[\mathbf{X}_{k} B, C^{\top}\right]$
5: \quad Solve $\mathcal{A}_{k} \mathbf{X}_{k+1}+\mathbf{X}_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0$

Newton-Kleinman iteration
Assume A stable. Compute sequence $\left\{\mathbf{X}_{k}\right\}$ with $\mathbf{X}_{k} \rightarrow_{k \rightarrow \infty} \mathbf{X}$

$$
\left(A-\mathbf{X}_{k} B B^{\top}\right) \mathbf{X}_{k+1}+\mathbf{X}_{k+1}\left(A^{\top}-B B^{\top} \mathbf{X}_{k}\right)+C^{\top} C+\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}=0
$$

1: Given $\mathbf{X}_{0} \in \mathbb{R}^{n \times n}$ such that $\mathbf{X}_{0}=\mathbf{X}_{0}^{\top}, A^{\top}-B B^{\top} \mathbf{X}_{0}$ is stable.
2: For $k=0,1, \ldots$, until convergence
3: \quad Set $\mathcal{A}_{k}^{\top}=A^{\top}-B B^{\top} \mathbf{X}_{k}$
4: $\quad \operatorname{Set} \mathcal{C}_{k}^{\top}=\left[\mathbf{X}_{k} B, C^{\top}\right]$
5: \quad Solve $\mathcal{A}_{k} \mathbf{X}_{k+1}+\mathbf{X}_{k+1} \mathcal{A}_{k}^{\top}+\mathcal{C}_{k}^{\top} \mathcal{C}_{k}=0$

Critical issues:

- The full matrix \mathbf{X}_{k} cannot be stored (sparse or low-rank approx)
- Need a computable stopping criterion
- Each iteration k requires the solution of the Lyapunov equation
(Benner, Feitzinger, Hylla, Saak, Sachs, ...)

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

$$
V_{k}^{\top}\left(A \mathbf{X}_{k}+\mathbf{X}_{k} A^{\top}-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C\right) V_{k}=0
$$

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

$$
V_{k}^{\top}\left(A \mathbf{X}_{k}+\mathbf{X}_{k} A^{\top}-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C\right) V_{k}=0
$$

giving the reduced Riccati equation

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

\mathbf{Y}_{k} is the stabilizing solution (Heyouni-Jbilou 2009)

Galerkin projection method for the Riccati equation
Given the orth basis V_{k} for an approximation space, determine

$$
\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}
$$

to the Riccati solution matrix by orthogonal projection:

$$
\text { Galerkin condition: } \quad \text { Residual orthogonal to approximation space }
$$

$$
V_{k}^{\top}\left(A \mathbf{X}_{k}+\mathbf{X}_{k} A^{\top}-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C\right) V_{k}=0
$$

giving the reduced Riccati equation

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

\mathbf{Y}_{k} is the stabilizing solution (Heyouni-Jbilou 2009)
Key questions:

- Which approximation space?
- Is this meaningful from a Control Theory perspective?

Dynamical systems and the Riccati equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

Time-invariant linear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t)
\end{array}\right.
$$

$u(t)$: control (input) vector; $\quad y(t)$: output vector
$x(t)$: state vector; $\quad x_{0}$: initial state

Dynamical systems and the Riccati equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

Time-invariant linear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t)=C x(t)
\end{array}\right.
$$

$u(t)$: control (input) vector; $\quad y(t)$: output vector
$x(t)$: state vector; $\quad x_{0}$: initial state

Minimization problem for a Cost functional: (simplified form)

$$
\inf _{u} \mathcal{J}\left(u, x_{0}\right) \quad \mathcal{J}\left(u, x_{0}\right):=\int_{0}^{\infty}\left(x(t)^{\top} C^{\top} C x(t)+u(t)^{\top} u(t)\right) d t
$$

Dynamical systems and the Riccati equation

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

$$
\inf _{u} \mathcal{J}\left(u, x_{0}\right) \quad \mathcal{J}\left(u, x_{0}\right):=\int_{0}^{\infty}\left(x(t)^{\top} C^{\top} C x(t)+u(t)^{\top} u(t)\right) d t
$$

THEOREM Let the pair (A, B) be stabilizable and (C, A) observable. Then there is a unique solution $\mathbf{X} \geq 0$ of the Riccati equation. Moreover,
i) For each x_{0} there is a unique optimal control, and it is given by

$$
u_{*}(t)=-B^{\top} \mathbf{X} \exp \left(\left(A-B B^{\top} \mathbf{X}\right) t\right) x_{0} \quad \text { for } \quad t \geq 0
$$

ii) $\mathcal{J}\left(u_{*}, x_{0}\right)=x_{0}^{\top} \mathbf{X} x_{0}$ for all $x_{0} \in \mathbb{R}^{n}$
see, e.g., Lancaster \& Rodman, 1995

Order reduction of dynamical systems by projection
Let $V_{k} \in \mathbb{R}^{n \times d_{k}}$ have orthonormal columns, $d_{k} \ll n$
Let $\quad T_{k}=V_{k}^{\top} A V_{k}, \quad B_{k}=V_{k}^{\top} B, \quad C_{k}^{\top}=V_{k}^{\top} C^{\top}$
Reduced order dynamical system:

$$
\left\{\begin{array}{l}
\dot{\widehat{x}}(t)=T_{k} \widehat{x}(t)+B_{k} \widehat{u}(t), \quad \widehat{x}(0)=\widehat{x}_{0}:=V_{k}^{\top} x_{0} \\
\widehat{y}(t)=C_{k} \widehat{x}(t)
\end{array}\right.
$$

$x_{k}(t)=V_{k} \widehat{x}(t) \approx x(t)$
Typical frameworks:

- Transfer function approximation
- Model reduction

The role of the projected Riccati equation
Consider again the reduced Riccati equation:

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

that is

$$
\begin{equation*}
T_{k} \mathbf{Y}+\mathbf{Y} T_{k}^{\top}-\mathbf{Y} B_{k} B_{k}^{\top} \mathbf{Y}+C_{k}^{\top} C_{k}=0 \tag{*}
\end{equation*}
$$

The role of the projected Riccati equation
Consider again the reduced Riccati equation:

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

that is

$$
\begin{equation*}
T_{k} \mathbf{Y}+\mathbf{Y} T_{k}^{\top}-\mathbf{Y} B_{k} B_{k}^{\top} \mathbf{Y}+C_{k}^{\top} C_{k}=0 \tag{*}
\end{equation*}
$$

Theorem. Let the pair $\left(T_{k}, B_{k}\right)$ be stabilizable and $\left(C_{k}, T_{k}\right)$ observable. Then there is a unique solution $\mathbf{Y}_{k} \geq 0$ of $\left(^{*}\right)$ that for each \widehat{x}_{0} gives the feedback optimal control

$$
\widehat{u}_{*}(t)=-B_{k}^{*} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{*} \mathbf{Y}_{k}\right) t\right) \widehat{x}_{0}, \quad t \geq 0
$$

for the reduced system.

The role of the projected Riccati equation
Consider again the reduced Riccati equation:

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

that is

$$
\begin{equation*}
T_{k} \mathbf{Y}+\mathbf{Y} T_{k}^{\top}-\mathbf{Y} B_{k} B_{k}^{\top} \mathbf{Y}+C_{k}^{\top} C_{k}=0 \tag{*}
\end{equation*}
$$

Theorem. Let the pair $\left(T_{k}, B_{k}\right)$ be stabilizable and $\left(C_{k}, T_{k}\right)$ observable. Then there is a unique solution $\mathbf{Y}_{k} \geq 0$ of $\left({ }^{*}\right)$ that for each \widehat{x}_{0} gives the feedback optimal control

$$
\widehat{u}_{*}(t)=-B_{k}^{*} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{*} \mathbf{Y}_{k}\right) t\right) \widehat{x}_{0}, \quad t \geq 0
$$

for the reduced system.
\& If there exists a matrix K such that $A-B K$ is passive, then the pair $\left(T_{k}, B_{k}\right)$ is stabilizable.

Projected optimal control vs approximate control
\star Our projected optimal control function:

$$
\widehat{u}_{*}(t)=-B_{k}^{\top} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k}\right) t\right) \widehat{x}_{0}, \quad t \geq 0
$$

with $\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}$
\star Commonly used approximate control function:
If $\widetilde{\mathbf{X}}$ is some approximation to \mathbf{X}, then

$$
\widetilde{u}(t):=-B^{\top} \widetilde{\mathbf{X}} \widetilde{x}(t)
$$

where $\widetilde{x}(t):=\exp \left(\left(A-B B^{\top} \widetilde{\mathbf{X}}\right) t\right) x_{0}$

$$
\widehat{u}_{*} \neq \widetilde{u}
$$

They induce different actions on the functional \mathcal{J}, even for $\widetilde{\mathbf{X}}=\mathbf{X}_{k}$

Projected optimal control vs approximate control
$\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}$
Residual matrix: $\quad R_{k}:=A \mathbf{X}_{k}+\mathbf{X}_{k} A-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C$
\star Projected optimal control function:
$\widehat{u}_{*}(t)=-B_{k}^{\top} \mathbf{Y}_{k} \exp \left(\left(T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k}\right) t\right)$

THEOREM. Assume that $A-B B^{\top} \mathbf{X}_{k}$ is stable and that $\widetilde{u}(t):=$ $-B^{\top} \mathbf{X}_{k} x(t)$ approx control. Then

$$
\left|\mathcal{J}\left(\widetilde{u}, x_{0}\right)-\widehat{\mathcal{J}}_{k}\left(\widehat{u}_{*}, \widehat{x}_{0}\right)\right|=\mathcal{E}_{k}, \quad \text { with } \quad \mathcal{E}_{k} \leq \frac{\left\|R_{k}\right\|}{2 \alpha} x_{0}^{\top} x_{0}
$$

where $\alpha>0$ is such that $\left\|e^{\left(A-B B^{\top} \mathbf{X}_{k}\right) t}\right\| \leq e^{-\alpha t}$ for all $t \geq 0$.

Note: $\left|\mathcal{J}\left(\widetilde{u}, x_{0}\right)-\widehat{\mathcal{J}}_{k}\left(\widehat{u}_{*}, \widehat{x}_{0}\right)\right|$ is nonzero for $R_{k} \neq 0$

On the choice of approximation space

Approximate solution $\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}$, with

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}_{k}+\mathbf{Y}_{k}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}_{k}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}_{k}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

Krylov-type subspaces: (extensively used in the linear case)

- $\mathcal{K}_{k}\left(A, C^{\top}\right):=\operatorname{Range}\left(\left[C^{\top}, A C^{\top}, \ldots, A^{k-1} C^{\top}\right]\right)$ (Polynomial)
- $\mathcal{E} \mathcal{K}_{k}\left(A, C^{\top}\right):=\mathcal{K}_{k}\left(A, C^{\top}\right)+\mathcal{K}_{k}\left(A^{-1}, A^{-1} C^{\top}\right)($ EKSM, Rational)
- $\mathcal{R} \mathcal{K}_{k}\left(A, C^{\top}, \mathbf{s}\right):=$

Range $\left(\left[C^{\top},\left(A-s_{2} I\right)^{-1} C^{\top}, \ldots, \prod_{j=1}^{k-1}\left(A-s_{j+1} I\right)^{-1} C^{\top}\right]\right)$
(RKSM, Rational)

On the choice of approximation space

Approximate solution $\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}$, with

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}_{k}+\mathbf{Y}_{k}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}_{k}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}_{k}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

Krylov-type subspaces: (extensively used in the linear case)

- $\mathcal{K}_{k}\left(A, C^{\top}\right):=\operatorname{Range}\left(\left[C^{\top}, A C^{\top}, \ldots, A^{k-1} C^{\top}\right]\right)$ (Polynomial)
- $\mathcal{E} \mathcal{K}_{k}\left(A, C^{\top}\right):=\mathcal{K}_{k}\left(A, C^{\top}\right)+\mathcal{K}_{k}\left(A^{-1}, A^{-1} C^{\top}\right)($ EKSM, Rational)
- $\mathcal{R K}_{k}\left(A, C^{\top}, \mathbf{s}\right):=$

Range $\left(\left[C^{\top},\left(A-s_{2} I\right)^{-1} C^{\top}, \ldots, \prod_{j=1}^{k-1}\left(A-s_{j+1} I\right)^{-1} C^{\top}\right]\right)$
(RKSM, Rational)
\star Matrix $B B^{\top}$ not involved (nonlinear term!)

On the choice of approximation space

Approximate solution $\mathbf{X}_{k}=V_{k} \mathbf{Y}_{k} V_{k}^{\top}$, with

$$
\left(V_{k}^{\top} A V_{k}\right) \mathbf{Y}_{k}+\mathbf{Y}_{k}\left(V_{k}^{\top} A^{\top} V_{k}\right)-\mathbf{Y}_{k}\left(V_{k}^{\top} B B^{\top} V_{k}\right) \mathbf{Y}_{k}+\left(V_{k}^{\top} C^{\top}\right)\left(C V_{k}\right)=0
$$

Krylov-type subspaces: (extensively used in the linear case)

- $\mathcal{K}_{k}\left(A, C^{\top}\right):=\operatorname{Range}\left(\left[C^{\top}, A C^{\top}, \ldots, A^{k-1} C^{\top}\right]\right)$ (Polynomial)
- $\mathcal{E} \mathcal{K}_{k}\left(A, C^{\top}\right):=\mathcal{K}_{k}\left(A, C^{\top}\right)+\mathcal{K}_{k}\left(A^{-1}, A^{-1} C^{\top}\right)($ EKSM, Rational)
- $\mathcal{R K}_{k}\left(A, C^{\top}, \mathbf{s}\right):=$

$$
\text { Range }\left(\left[C^{\top},\left(A-s_{2} I\right)^{-1} C^{\top}, \ldots, \prod_{j=1}^{k-1}\left(A-s_{j+1} I\right)^{-1} C^{\top}\right]\right)
$$

(RKSM, Rational)

* Matrix $B B^{\top}$ not involved (nonlinear term!)
* Parameters s_{j} (adaptively) chosen in field of values of $-A$

Performance of solvers

Problem: A : 3D Laplace operator, B, C randn matrices, tol $=10^{-8}$
$(n, p, s)=(125000,5,5)$

	its	inner its	time	space dim	$\operatorname{rank}\left(X_{f}\right)$
Newton $X_{0}=0$	15	$5, \ldots, 5$	808	100	95
GP-EKSM	20		531	200	105
GP-RKSM	25		524	125	105

$(n, p, s)=(125000,20,20)$

	its	inner its	time	space dim	$\operatorname{rank}\left(X_{f}\right)$
Newton $X_{0}=0$	19	$5, \ldots, 5$	2332	400	346
GP-EKSM	15		622	600	364
GP-RKSM	20		720	400	358

$\mathrm{GP}=$ Galerkin projection
(V.Simoncini \& D.Szyld \& M.Monsalve, 2014)

A numerical example on the role of $B B^{\top}$
Consider the 500×500 Toeplitz matrix

$$
A=\operatorname{toeplitz}(-1, \underline{2.5}, 1,1,1), \quad C=[1,-2,1,-2, \ldots], B=\mathbf{1}
$$

Parameter computation:
Left: adaptive RKSM on A

A numerical example on the role of $B B^{\top}$
Consider the 500×500 Toeplitz matrix

$$
A=\operatorname{toeplitz}(-1, \underline{2.5}, 1,1,1), \quad C=[1,-2,1,-2, \ldots], B=\mathbf{1}
$$

Parameter computation:
Left: adaptive RKSM on $A \quad$ Right: adaptive RKSM on $A-B B^{\top} \mathbf{X}_{k}$
(Lin \& Simoncini 2015)

On the residual matrix and adaptive RKSM

$$
R_{k}:=A \mathbf{X}_{k}+\mathbf{X}_{k} A-\mathbf{X}_{k} B B^{\top} \mathbf{X}_{k}+C^{\top} C
$$

$$
\begin{aligned}
& \text { THEOREM. Let } \mathcal{T}_{k}=T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k} \text {. Then } \\
& R_{k}=\widehat{R}_{k} V_{k}^{\top}+V_{k} \widehat{R}_{k}^{\top}, \quad \text { with } \quad \widehat{R}_{k}=A V_{k} \mathbf{Y}_{k}+V_{k} \mathbf{Y}_{k} \mathcal{T}_{k}^{\top}+C^{\top}\left(C V_{k}\right) \\
& \text { so that }\left\|R_{k}\right\|_{F}=\sqrt{2}\left\|\widehat{R}_{k}\right\|_{F}
\end{aligned}
$$

At least formally:
$\Rightarrow V_{k} \mathbf{Y}_{k} V_{k}^{\top}$ is a solution to the Riccati equation $\left(R_{k}=0\right)$ if and only if $Z_{k}=V_{k} \mathbf{Y}_{k}$ is the solution to the Sylvester equation ($\widehat{R}_{k}=0$)

On the residual matrix and adaptive RKSM

$$
R_{k}=\widehat{R}_{k} V_{k}^{\top}+V_{k} \widehat{R}_{k}^{\top}
$$

Expression for the semi-residual \widehat{R}_{k} :
Theorem. Assume $C^{\top} \in \mathbb{R}^{n}$, Range $\left(V_{k}\right)=\mathcal{R} \mathcal{K}_{k}\left(A, C^{\top}\right.$, s). Assume that $\mathcal{T}_{k}=T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k}$ is diagonalizable. Then

$$
\widehat{R}_{k}=\psi_{k, T_{k}}(A) C^{\top} C V_{k}\left(\psi_{k, T_{k}}\left(-\mathcal{T}_{k}^{\top}\right)\right)^{-1} .
$$

where

$$
\psi_{k, T_{k}}(z)=\frac{\operatorname{det}\left(z I-T_{k}\right)}{\prod_{j=1}^{k}\left(z-s_{j}\right)}
$$

(see also Beckermann 2011 for the linear case)

On the choice of the next parameters s_{k+1}

$$
\widehat{R}_{k}=\psi_{k, T_{k}}(A) C^{\top} C V_{k}\left(\psi_{k, T_{k}}\left(-\mathcal{T}_{k}^{\top}\right)\right)^{-1}
$$

with $\psi_{k, T_{k}}(z)=\frac{\operatorname{det}\left(z I-T_{k}\right)}{\prod_{j=1}^{k}\left(z-s_{j}\right)}$

* Greedy strategy: Next shift should make $\left(\psi_{k, T_{k}}\left(-\mathcal{T}_{k}^{\top}\right)\right)^{-1}$ smaller \Downarrow

Determine for which s in the spectral region of \mathcal{T}_{k} the quantity $\left(\psi_{k, T_{k}}(-s)\right)^{-1}$ is large, and add a root there

$$
s_{k+1}=\arg \max _{s \in \partial \mathbb{S}_{k}}\left|\frac{1}{\psi_{k, T_{k}}(s)}\right|
$$

\mathbb{S}_{k} region enclosing the eigenvalues of $-\mathcal{T}_{k}=-\left(T_{k}-B_{k} B_{k}^{\top} \mathbf{Y}_{k}\right)$
(This argument is new also for linear equations)

Selection of s_{k+1} in RKSM. An example
A: 900×900 2D Laplacian, $B=t \mathbf{1}$ with $t_{j}=5 \cdot 10^{-j}$,
$C=[1,-2,1,-2,1,-2, \ldots]$

RKSM convergence with and without modified shift selection as t varies
Solid curves: use of \mathcal{T}_{k}
Dashed curves: use of T_{k}

Further results not presented but relevant

- Stabilization properties of the approx solution \mathbf{X}_{k}
- Accuracy tracking as the approximation space grows
- Interpretation via invariant subspace approximation
(V.Simoncini, 2016)

Wrap-up and outlook

\bigcirc Projection-type methods fill the gap between MOR and Riccati equation
\bigcirc Clearer role of the non-linear term during the projection

Wrap-up and outlook

\bigcirc Projection-type methods fill the gap between MOR and Riccati equation
\bigcirc Clearer role of the non-linear term during the projection
A Projected Differential Riccati equations (see, e.g., Koskela \& Mena, tr 2017)

A Parameterized Algebraic Riccation equations
(see, e.g., Schmidt \& Haasdonk, tr 2017)

Wrap-up and outlook

\bigcirc Projection-type methods fill the gap between MOR and Riccati equation
\bigcirc Clearer role of the non-linear term during the projection
A Projected Differential Riccati equations (see, e.g., Koskela \& Mena, tr 2017)

A Parameterized Algebraic Riccation equations (see, e.g., Schmidt \& Haasdonk, tr 2017)

References

- V. Simoncini, Daniel B. Szyld and Marlliny Monsalve,

On two numerical methods for the solution of large-scale algebraic Riccati equations IMA Journal of Numerical Analysis, (2014)

- Yiding Lin and V. Simoncini,

A new subspace iteration method for the algebraic Riccati equation
Numerical Linear Algebra w/Appl., (2015)

- V.Simoncini, Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations SIAM J. Matrix Anal.Appl, (2016)
- V. Simoncini, Computational methods for linear matrix equations SIAM Review, (2016)

