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Some large-scale NLA problems

Typical problems encountered in NLA

▶ Linear systems, (non-)linear matrix equations

▶ (Non-)linear eigenvalue problems

▶ Matrix function evaluations

Common strategy

▶ Determine a rich “dictionary”

▶ Compute an approximation by imposing some condition

Our dictionary: Krylov subspaces

Km(A, v) = span{v ,Av , . . . ,Am−1v}
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Well-known bottlenecks

Full-orth based Krylov subspaces may be “expensive”

▶ “expensive” in different ways: Memory, computation, communication, etc.

▶ General concern :
linear systems, eigenvalue problems, matrix function evaluations, etc.

Imperative

Keep the Krylov recurrence short and cheap!
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A general framework. 1

Main ingredient: Krylov decomposition (Stewart, ’01)

AUk = UkBk + uk+1b
∗
k+1

with

- Bk is k × k, Rayleigh quotient (oblique projection of A)

- [Uk , uk+1] are linearly independent, build a Krylov space (here, bk+1 = βk+1ek )

Procedures fitting this framework:

- Full orth Arnoldi

- Truncated Arnoldi, restarted Arnoldi

- Chebyshev, Newton, ... iterations

- Nonsymmetric Lanczos

All methods suffer from lack/loss of orthogonality properties!
(in exact or finite precision arithmetic)

(Rich literature from the 1990s and early 2000s)
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A general framework. 2

Main ingredient: Krylov decomposition (Stewart, ’01)

AUk = UkBk + uk+1b
∗
k+1 (∗)

Krylov decompositions are very flexible (“invariant”):

▶ Closed wrto translations: Set ηk ûk+1 := uk+1 − Ukgk , ηk ̸= 0. Substituting into (*)

AUk = Uk(Bk + gkb
∗
k+1) + ûk+1ηkb

∗
k+1

(rank-one modification of Rayleigh quotient matrix)

▶ Closed wrto similarity transformations: Given R ∈ Rk×k nonsingular, (*) becomes

AUkR
−1 = UkR

−1(RBkR
−1) + uk+1(b

∗
k+1R

−1)
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Krylov decompositions

AUk = UkBk + uk+1b
∗
k+1

Question:

How can we exploit this invariance to make Krylov-based methods more effective?

⇒ Use randomized methods (sketching):

i) Determine S ∈ Rs×n, s ≪ n but s > k
ii) Reduce space as SUk

⇒ Provide theoretical ground for their use
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Sketching strategies. Subspace embedding.

A (1± ε) ℓ2-subspace embedding for V ∈ Rn×k is an operator S such that

(1− ε)∥Vx∥22 ≤ ∥S(Vx)∥22 ≤ (1 + ε)∥Vx∥22, ∀x ∈ Rk

Oblivious subspace samplings (not associated to a specific subspace)

A typical choice of randomization operator (Rademacher)

S(v) :=
√

n

s
PCDv , S(·) is an s × n matrix

with
D “rotation” (diag. matrix of random distr. ±1 with prob. 1/2)
C fast cosine transform
P coordinate sampling

⋆ For notational simplicity, S(v) = Sv (S never constructed explicitly)

See, e.g., Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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Subspace embedding in Krylov decomposition

Let SUk = QkRk be the reduced QR decomp.

Ûk := UkR
−1
k

▶ Reduced Krylov relation (Palitta, Schweitzer, Simoncini, 2025)

SAÛk = SÛk(B̂k + dke
∗
k ) + qk+1χke

∗
k , qk+1 ⊥ SÛk

▶ Conditioning properties

κ2(Ûk) ≤
√

1 + ε

1− ε

Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.

Paradigm: Stabilize while constructing

At each iteration k

▶ Compute next vector uk

▶ Compute embedded vector S(uk )
▶ Update QR of embedded basis (i.e. stabilization matrix Rk )

▶ Update and use B̂k + dke
∗
k
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Sketched basis as a Krylov decomposition

AUk = UkBk + uk+1e
∗
k

With the QR decomposition SUk+1 = Qk+1Rk+1 and

Ûk+1 := Uk+1R
−1
k+1

(whitening)

Proposition (Simoncini, Wang 2025)

Assume that Uk+1 = [Uk , uk+1] is full rank.

Let Rk+1 = [Rk , rk+1; 0, ρk+1], and Ûk+1 = [Ûk , ûk+1] = Uk+1R
−1
k+1.

Then any Krylov decomposition can be transformed by sketching and whitening in the
following equivalent Krylov decomposition

AÛk = Ûk B̂k + ûk+1β̂k+1e
T
k , B̂k = RkBkR

−1
k + rk+1bk+1,ke

T
k R−1

k ,

β̂k+1 = ρk+1bk+1,k r
−1
k,k .
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Sketched vs ideal quantities (Simoncini, Wang 2025)

Standard full Krylov (ideal):

▶ [Uk , uk+1] orthonormal columns

▶ Bk such that W(Bk) ⊆ W(A) (fov)

Krylov decomposition via sketching:

AÛk = Ûk B̂k + ûk+1β̂k+1e
T
k

▶ Let Θk(Ûk , ûk+1) = minv∈Ûk ,∥v∥=1 ∠(v , ûk+1). Then

cos(Θk) ≤ ε.

▶ FoV property:

Let λ be an eigenvalue of B̂k . Then with high probability there exists a unit norm vector
y ∈ Cn such that

|λ− y∗Ay | ≤
√
1 + ε√
1− ε

ε ∥A∥.
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cos(Θk) ≤ ε.

▶ FoV property:

Let λ be an eigenvalue of B̂k . Then with high probability there exists a unit norm vector
y ∈ Cn such that

|λ− y∗Ay | ≤
√
1 + ε√
1− ε

ε ∥A∥.

V. Simoncini - Sketching strategies as Krylov-space companion 10 / 13



Sketched vs ideal quantities (Simoncini, Wang 2025)

Standard full Krylov (ideal):

▶ [Uk , uk+1] orthonormal columns

▶ Bk such that W(Bk) ⊆ W(A) (fov)

Krylov decomposition via sketching:

AÛk = Ûk B̂k + ûk+1β̂k+1e
T
k
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Warning on finite precision arithmetic failures

⋆ In exact arithmetic: Uk , Ûk full rank and

span(Uk) = span(Ûk) = Kk(A, c)

⋆ In finite precision arithmetic spurious sketched vectors may arise:

Original basis

Assume that Uk is not numerically full rank. Then Range(Uk) ⊂ Kk(A, c)

Sketched basis

Ûk is better conditioned, with high probability, but it will partially build a different
subspace than a Krylov subspace

Indeed, let Uk = ŨkMk be the reduced QR, with Mk numerically singular
For the sketched basis

Ûk = UkR
−1
k = Ũk(MkR

−1
k ),

so that Range(Ûk) = Range(Ũk), where Range(Ũk) may contain spurious vectors, that is
vectors that do not belong to Kk(A, c)
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k = Ũk(MkR

−1
k ),
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so that Range(Ûk) = Range(Ũk), where Range(Ũk) may contain spurious vectors, that is
vectors that do not belong to Kk(A, c)

V. Simoncini - Sketching strategies as Krylov-space companion 11 / 13



Warning on finite precision arithmetic failures

⋆ In exact arithmetic: Uk , Ûk full rank and
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Ûk = UkR
−1
k = Ũk(MkR
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Spurious space. A computational example.

Data: A ∈ Rn×n with n = 16 641 stemming from FE discretization of

L(u) = −ϵ∆u + 2y(1− x2)ux + 2x(1− y2)uy

convection diffusion with recirculating wind with ϵ = 0.1, on [0, 1]2 and homogeneous bc, IFISS

Methods: Full Krylov vs Sketched k-truncated Arnoldi and Sketched Lanczos
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Cosine of all canonical angles after m iterations.
Left: m = 150; Middle: m = 230; Right: m = 290.
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Conclusions

▶ Randomized sketching is a good companion to classical cost-reducing strategies

▶ Sketching as a practical tool for core NLA solvers
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