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.
Some large-scale NLA problems

Typical problems encountered in NLA
> Linear systems, (non-)linear matrix equations
» (Non-)linear eigenvalue problems

» Matrix function evaluations
Common strategy
» Determine a rich “dictionary”

» Compute an approximation by imposing some condition

Our dictionary: Krylov subspaces

Km(A, v) = span{v, Av,..., A" v}
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E——
Well-known bottlenecks

Full-orth based Krylov subspaces may be “expensive” J

» ‘“expensive’ in different ways: Memory, computation, communication, etc.

» General concern :
linear systems, eigenvalue problems, matrix function evaluations, etc.

Imperative

Keep the Krylov recurrence short and cheap!
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.
A general framework. 1

Main ingredient: Krylov decomposition (Stewart, '01)
AU, = UBy + Uk+1b,*<+1

with
- By is k x k, Rayleigh quotient (oblique projection of A)

- [Uk, uk+1] are linearly independent, build a Krylov space (here, by1 = Bri1ex)
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.
A general framework. 1

Main ingredient: Krylov decomposition (Stewart, '01)
AU, = UBy + Uk+1b;+1

with
- By is k x k, Rayleigh quotient (oblique projection of A)

- [Uk, uk+1] are linearly independent, build a Krylov space (here, by1 = Bri1ex)

Procedures fitting this framework:

- Full orth Arnoldi

- Truncated Arnoldi, restarted Arnoldi
- Chebyshev, Newton, ... iterations

- Nonsymmetric Lanczos

All methods suffer from lack/loss of orthogonality properties!
(in exact or finite precision arithmetic) J

(Rich literature from the 1990s and early 2000s)
_V. Simoncini - Sketching strategies as Krylov-space compan 4/13



.
A general framework. 2

Main ingredient: Krylov decomposition (Stewart, '01)

AUy = UiBy + Uk+1bz+1 ()
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A general framework. 2

Main ingredient: Krylov decomposition (Stewart, '01)
AU, = UcBy + Uk+1bZ+1 (*)
Krylov decompositions are very flexible ( “invariant”):

> Closed wrto translations:  Set N, lkr1 = Ukt1 — Ukgk, nk 7 0. Substituting into (*)
AUk = Uk(Bx + 8kbri1) + U1k biy1

(rank-one modification of Rayleigh quotient matrix)
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.
A general framework. 2

Main ingredient: Krylov decomposition (Stewart, '01)

AUy = UiBy + Uk+lbz+1 ()

Krylov decompositions are very flexible ( “invariant”):

> Closed wrto translations:  Set N, lkr1 = Ukt1 — Ukgk, nk 7 0. Substituting into (*)
AUk = Uk(Bx + 8kbri1) + U1k biy1

(rank-one modification of Rayleigh quotient matrix)

» Closed wrto similarity transformations: Given R € R¥** nonsingular, (*) becomes

AUKR™ = UKRTY(RBKR™Y) + uis1 (b, R™Y)
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-
Krylov decompositions

AU, = UBy + Uk+1b:+1

Question:

How can we exploit this invariance to make Krylov-based methods more effective?
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-
Krylov decompositions

AU, = UBy + Uk+1b:+1

Question:

How can we exploit this invariance to make Krylov-based methods more effective?

= Use randomized methods (sketching):

i) Determine S € R°*", s < n but s > k
ii) Reduce space as SUy

= Provide theoretical ground for their use
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.
Sketching strategies. Subspace embedding.

A (1 + ) lr-subspace embedding for VV € R™*k is an operator S such that

(1— o) Vx5 < IS(VX)3 < (1 +e)llVx[3,  Vx € R

Oblivious subspace samplings (not associated to a specific subspace)
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.
Sketching strategies. Subspace embedding.

A (14 €) f-subspace embedding for VV € R™* is an operator S such that

(1—)lIVxl3 < [S(VIi3 < (1 +e)llVxll,  ¥x € R J
Oblivious subspace samplings (not associated to a specific subspace) J
A typical choice of randomization operator (Rademacher)

S(v) = EPCDV, S(+) is an s X n matrix
s

with

D “rotation” (diag. matrix of random distr. £1 with prob. 1/2)
C fast cosine transform

P coordinate sampling

* For notational simplicity, S(v) = Sv (S never constructed explicitly)

See, e.g., Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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.
Subspace embedding in Krylov decomposition

Let SUy = QxR be the reduced QR decomp.

U := UkR; !
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.
Subspace embedding in Krylov decomposition

Let SUy = QxR be the reduced QR decomp.
Uk = UkRk_1
» Reduced Krylov relation (Palitta, Schweitzer, Simoncini, 2025)
SAU, = SUk(By + dief) + quraxeei,  aurn L SU

» Conditioning properties

~ 1+¢
<
ro(Ui) < 1—c¢

Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.

Paradigm: Stabilize while constructing

At each iteration k
» Compute next vector uy
» Compute embedded vector S(uk)
»> Update QR of embedded basis (i.e. stabilization matrix Ry)
>

Update and use §k + dieg
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-
Sketched basis as a Krylov decomposition

AU, = UcBy + uk+1e,f

With the QR decomposition SUx11 = Qx11Rk+1 and

i o -1
Uk1 = Ukl R

(whitening)

Proposition (Simoncini, Wang 2025)

Assume that U1 = [Uk, uk41] is full rank.

Let Rk+1 = [Rk, rk+1: 0, prt1], and Uxy1 = [Uk, Uk11] = Uk+1Rk_+11-
Then any Krylov decomposition can be transformed by sketching and whitening in the
following equivalent Krylov decomposition

O . N . S
AU = Uk By + U1 Bk+1€ Bk = RkBkR, ™ + riv1bitakex R -,

) 1
Br+1 = Pr+1bict1kl -
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-
Sketched vs ideal quantities (Simoncini, Wang 2025)

Standard full Krylov (ideal):
» [Ux, uki1] orthonormal columns
» By such that W(Bx) C W(A) (fov)
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Krylov decomposition via sketching:

o
AUy = Ui Bk + U1 Bk+1€,
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Sketched vs ideal quantities (Simoncini, Wang 2025)

Standard full Krylov (ideal):
» [Ux, uki1] orthonormal columns
» By such that W(Bx) C W(A) (fov)

Krylov decomposition via sketching:

o
AUy = Ui Bk + U1 Bk+1€,

> Let Gk(Uk, Uk11) = min Z(v, Ug+1). Then

vely, |v|=1

cos(Oy) < e.
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-
Sketched vs ideal quantities (Simoncini, Wang 2025)

Standard full Krylov (ideal):
» [Ux, uki1] orthonormal columns
» By such that W(Bx) C W(A) (fov)

Krylov decomposition via sketching:

~ s
AUy = Uk By + U1 Br+1€¢

> Let Gk(Uk, Uk+1) = min Z(v, Ug+1). Then

vely,||v]|=1
cos(Oy) < e.

» FoV property:

Let A be an eigenvalue of §k. Then with high probability there exists a unit norm vector

y € C" such that
V1ite
Vv1—¢

A=y Ay| < ellAl-
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-
Warning on finite precision arithmetic failures

* In exact arithmetic: Us, Uk full rank and

span(Uyx) = span( Uk) = K«(A, c)
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Warning on finite precision arithmetic failures

* In exact arithmetic: Us, Uk full rank and

span(Ux) = span(U) = Kk(A, )

* In finite precision arithmetic spurious sketched vectors may arise:

Original basis

Assume that Uy is not numerically full rank. Then Range(Ux) C Kk(A, ¢)
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-
Warning on finite precision arithmetic failures

* In exact arithmetic: Us, Uk full rank and

span(Ux) = span(U) = Kk(A, )

* In finite precision arithmetic spurious sketched vectors may arise:

Original basis

Assume that Uy is not numerically full rank. Then Range(Ux) C Kk(A, ¢)

Sketched basis

Uk is better conditioned, with high probability, but it will partially build a different
subspace than a Krylov subspace

Indeed, let Uy = UkMk be the reduced QR, with My numerically singular
For the sketched basis R ~
U = UkR = Uk(MKRY),

so that Range(Uy) = Range(Uj), where Range(Uy) may contain spurious vectors, that is
vectors that do not belong to Kx(A, ¢)
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Spurious space. A computational example.

Data: A € R™" with n = 16641 stemming from FE discretization of

convection diffusion with recirculating wind with ¢ = 0.1, on [0, 1]?> and homogeneous bc, IFISS

L(u) = —eAu+2y(1 — x*)ux +2x(1 — y?)u,

Methods: Full Krylov vs Sketched k-truncated Arnoldi and Sketched Lanczos

== Full Amoldi vs Sk-Tr-Arnoldi, k=5

= Full Amoldi vs Sk-Tr-Arnoldi, k=10
|— Full Amoldi vs Sk-Lanczos
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E——
Conclusions

» Randomized sketching is a good companion to classical cost-reducing strategies

» Sketching as a practical tool for core NLA solvers
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