

Spectral analysis of saddle point matrices with indefinite leading blocks

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it

Partially joint work with Nick Gould, RAL

The problem

$$\begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

- Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Image restoration
- ... Survey: Benzi, Golub and Liesen, Acta Num 2005

The problem

$$\begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Hypotheses:

- $\star A \in \mathbb{R}^{n \times n}$ (non-)symmetric
- $\star~B^{\top} \in \mathbb{R}^{n \times m}$ tall, $m \leq n$
- \star C symmetric positive (semi)definite

More hypotheses later...

Why are we interested in spectral bounds?

• To detect "sensitive" blocks in the coeff. matrix (guidelines for preconditioning strategies)

Why are we interested in spectral bounds?

- To detect "sensitive" blocks in the coeff. matrix (guidelines for preconditioning strategies)
- To "tune" the stabilization parameter (matrix C)

Why are we interested in spectral bounds?

- To detect "sensitive" blocks in the coeff. matrix (guidelines for preconditioning strategies)
- To "tune" the stabilization parameter (matrix C)
- To predict convergence behavior of the iterative solver

$$\mathcal{M}x = b$$

 $\mathcal{M} \text{ is symmetric and indefinite } \rightarrow \text{MINRES}$

$$x_k \in x_0 + K_k(\mathcal{M}, r_0), \quad \text{s.t.} \quad \min \|b - \mathcal{M}x_k\|$$

 $r_k = b - \mathcal{M} x_k$, $k = 0, 1, \ldots, x_0$ starting guess

$$\mathcal{M}x = b$$

 \mathcal{M} is symmetric and indefinite \rightarrow MINRES

$$x_k \in x_0 + K_k(\mathcal{M}, r_0),$$
 s.t. $\min \|b - \mathcal{M} x_k\|$
 $r_k = b - \mathcal{M} x_k, \ k = 0, 1, \dots, x_0$ starting guess

If $\mu(\mathcal{M}) \subset [-a, -b] \cup [c, d]$, with |b - a| = |d - c|, then $\|b - \mathcal{M}x_{2k}\| \leq 2\left(\frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}\right)^k \|b - \mathcal{M}x_0\|$

Note: more general but less tractable bounds available

$$\mathcal{M}x = b$$

 $\mathcal{M} \text{ is nonsymmetric and indefinite } \rightarrow \quad \mathsf{GMRES}$

$$x_k \in x_0 + K_k(\mathcal{M}, r_0), \quad \text{s.t.} \quad \min \|b - \mathcal{M}x_k\|$$

$$\mathcal{M}x = b$$

 $\mathcal{M} \text{ is nonsymmetric and indefinite } \rightarrow \quad \mathsf{GMRES}$

$$x_k \in x_0 + K_k(\mathcal{M}, r_0), \quad \text{s.t.} \quad \min \|b - \mathcal{M}x_k\|$$

For ${\mathcal M}$ non-normal indefinite :

- In theory, complete stagnation is possible;
- Rule of thumb: tight spectral clusters help

Note: \mathcal{M} indefinite \Rightarrow Elman's bound not applicable

GMRES: Nonstagnation condition (Simoncini & Szyld, '08)

Let
$$H = \frac{1}{2}(\mathcal{M} + \mathcal{M}^{\top})$$
, $S = \frac{1}{2}(\mathcal{M} - \mathcal{M}^{\top})$. If

H nonsingular and $||SH^{-1}|| < 1$

Then

$$||r_2|| \le \left(1 - \frac{\theta_{\min}^2}{||\mathcal{M}^2||^2}\right)^{\frac{1}{2}} ||r_0|| \quad \theta_{\min} = \lambda_{\min}(\frac{1}{2}(\mathcal{M}^2 + (\mathcal{M}^2)^{\top})) > 0$$

The same relation holds at every other iteration

 \mathcal{M} symmetric indefinite. Well-exercised spectral properties

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} 0 < \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 < \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \end{array}$$

 $\mu(\mathcal{M})$ subset of (Rusten & Winther 1992)

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$$

 ${\mathcal M}$ symmetric indefinite. Well-exercised spectral properties

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} \mathbf{0} < \boldsymbol{\lambda}_{n} \leq \cdots \leq \lambda_{1} & \text{eigs of } A \\ 0 < \sigma_{m} \leq \cdots \leq \sigma_{1} & \text{sing. vals of } B \end{array}$$

 $\mu(\mathcal{M})$ subset of (Rusten & Winther 1992)

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\frac{\lambda_n}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$$

 \boldsymbol{A} positive definite

 ${\mathcal M}$ symmetric indefinite. Well-exercised spectral properties

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} \mathbf{0} = \boldsymbol{\lambda}_{n} \leq \cdots \leq \boldsymbol{\lambda}_{1} & \text{eigs of } A \\ 0 < \sigma_{m} \leq \cdots \leq \sigma_{1} & \text{sing. vals of } B \end{array}$$

 $\mu(\mathcal{M})$ subset of

$$\begin{bmatrix} \frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2}) \end{bmatrix} \cup \begin{bmatrix} \alpha_0, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2}) \end{bmatrix}$$

$$A \text{ semidefinite but } \frac{u^\top A u}{u^\top u} > \alpha_0 > 0, \ u \in \operatorname{Ker}(B) \qquad \text{Perugia \& S., '00}$$

 \mathcal{M} symmetric indefinite. Well-exercised spectral properties

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} 0 < \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 < \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \end{array}$$

$$\begin{split} &\mu(\mathcal{M}) \text{ subset of } \qquad (\text{Rusten \& Winther 1992}) \\ &\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right] \\ &B \text{ full rank} \end{split}$$

$$\mathcal{M} \text{ symmetric indefinite. Well-exercised spectral properties}$$
$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \quad \begin{array}{l} 0 < \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 = \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \end{array}$$
$$\mu(\mathcal{M}) \text{ subset of} \qquad (\text{Silvester & Wathen 1994}) \\ \begin{bmatrix} \frac{1}{2}(-\gamma_1 + \lambda_n - \sqrt{(\gamma_1 + \lambda_n)^2 + 4\sigma_1^2}) & \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\theta}) \end{bmatrix} \cup \begin{bmatrix} \lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2}) \end{bmatrix}$$
$$B \text{ rank deficient, but} \quad \theta = \lambda_{\min}(BB^{\top} + C) \text{ full rank}$$
$$\gamma_1 = \lambda_{\max}(C)$$

Spectral properties. Interpretation.

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} 0 < \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 < \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \end{array}$$

 $\mu(\mathcal{M}) \text{ subset of} \qquad (\text{Rusten & Winther 1992})$ $\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$ $\text{Good (= slim) spectrum: } \lambda_1 \approx \lambda_n, \quad \sigma_1 \approx \sigma_m$

Spectral properties. Interpretation.

$$\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} 0 < \lambda_n \leq \cdots \leq \lambda_1 & \text{eigs of } A \\ 0 < \sigma_m \leq \cdots \leq \sigma_1 & \text{sing. vals of } B \end{array}$$

 $\mu(\mathcal{M}) \text{ subset of} \qquad (\text{Rusten & Winther 1992})$ $\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\lambda_n, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$ $\text{Good (= slim) spectrum: } \lambda_1 \approx \lambda_n, \quad \sigma_1 \approx \sigma_m$ e.g.

$$\mathcal{M} = \left[\begin{array}{cc} I & U^{\top} \\ U & O \end{array} \right], \quad UU^{\top} = I$$

Block diagonal Preconditioner
*
$$A \operatorname{spd}, C = 0$$
:

$$\mathcal{P}_0 = \begin{bmatrix} A & 0 \\ 0 & BA^{-1}B^{\top} \end{bmatrix}$$

$$\Rightarrow \quad \mathcal{P}_0^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_0^{-\frac{1}{2}} = \begin{bmatrix} I & A^{-\frac{1}{2}}B^{\top}(BA^{-1}B^{\top})^{-\frac{1}{2}} \\ (BA^{-1}B^{\top})^{-\frac{1}{2}}BA^{-\frac{1}{2}} & 0 \end{bmatrix}$$
MINRES converges in at most 3 iterations. $\mu(\mathcal{P}_0^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_0^{-\frac{1}{2}}) = \{1, 1/2 \pm \sqrt{5}/2\}$

Block diagonal Preconditioner
*
$$A \operatorname{spd}, C = 0$$
:

$$\mathcal{P}_{0} = \begin{bmatrix} A & 0 \\ 0 & BA^{-1}B^{\top} \end{bmatrix}$$

$$\Rightarrow \quad \mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}} = \begin{bmatrix} I & A^{-\frac{1}{2}}B^{\top}(BA^{-1}B^{\top})^{-\frac{1}{2}} \\ (BA^{-1}B^{\top})^{-\frac{1}{2}}BA^{-\frac{1}{2}} & 0 \end{bmatrix}$$
MINRES converges in at most 3 iterations. $\mu(\mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{M} \mathcal{P}_{0}^{-\frac{1}{2}}) = \{1, 1/2 \pm \sqrt{5}/2\}$
A more practical choice:

$$\mathcal{P} = \begin{bmatrix} \widetilde{A} & 0 \\ 0 & \widetilde{S} \end{bmatrix} \quad \text{spd.} \quad \widetilde{A} \approx A \quad \widetilde{S} \approx BA^{-1}B^{\top}$$

eigs in $[-a,-b] \cup [c,d], \quad a,b,c,d > 0$

Still an Indefinite Problem, but possibly much easier to solve

Indefinite A $\mathcal{M} = \begin{bmatrix} A & B^{\top} \\ B & O \end{bmatrix} \qquad \begin{array}{c} \lambda_{n} \leq \cdots \leq \lambda_{1} & \text{eigs of } A \\ 0 < \sigma_{m} \leq \cdots \leq \sigma_{1} & \text{sing. vals of } B \\ A \text{ pos.def. on } \operatorname{Ker}(B) \end{array}$

$$\begin{split} &\sigma(\mathcal{M}) \text{ subset of} \\ & \left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\Gamma, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right] \\ & \text{ If } m = n, \quad \Gamma = \frac{1}{2}(\lambda_n + \sqrt{\lambda_n^2 + 4\sigma_m^2}) \end{split}$$

Indefinite
$$A$$
, $C = 0$. Cont'd

$$\left[\frac{1}{2}(\lambda_n - \sqrt{\lambda_n^2 + 4\sigma_1^2}), \frac{1}{2}(\lambda_1 - \sqrt{\lambda_1^2 + 4\sigma_m^2})\right] \quad \cup \quad \left[\Gamma, \frac{1}{2}(\lambda_1 + \sqrt{\lambda_1^2 + 4\sigma_1^2})\right]$$

Letting $\alpha_0 > 0$ be s.t. $\frac{u^{\top}Au}{u^{\top}u} > \alpha_0$, $u \in \text{Ker}(B)$

$$\Gamma \geq \begin{cases} \frac{\alpha_0 \sigma_m^2}{|\alpha_0 \lambda_n - \|A\|^2 - \sigma_m^2|} & \text{if } \alpha_0 + \lambda_n \leq 0 \\ \\ \frac{\alpha_0 \lambda_n - \|A\|^2 - \sigma_m^2}{2(\alpha_0 + \lambda_n)} + \sqrt{\left(\frac{\alpha_0 \lambda_n - \|A\|^2 - \sigma_m^2}{2(\alpha_0 + \lambda_n)}\right)^2 + \frac{\alpha_0 \sigma_m^2}{\alpha_0 + \lambda_n}} \\ & \text{otherwise.} \end{cases}$$

Sharpness of the bounds						
Ex.1. $A = \begin{bmatrix} 1 & -3 \\ -3 & 2 \end{bmatrix}, B^{\top} = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} \mu(\mathcal{M}) = \{-1.5441, 0.0014257, 4.5427\}$						
Ex.2. $A = \begin{bmatrix} 0.01 & 3 \\ 3 & -0.01 \end{bmatrix}$, $B = \begin{bmatrix} 0, 3 \end{bmatrix} \mu(\mathcal{M}) = \{-4.2452, 5.0 \cdot 10^{-3}, 4.2402\}$						
$\mathbf{Ex.3.} A = \begin{bmatrix} 1 & -4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, B^{\top} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \ \boldsymbol{\mu}(\mathcal{M}) = \begin{cases} -4.3528, & -0.22974, \\ 0.22974, & 2, & 4.3528 \end{cases}$						
case	λ_n	λ_1	$lpha_0$	σ_m, σ_1	\mathcal{I}^-	\mathcal{I}^+
Ex.1	-1.5414	4.5414	1.0	0.1	[-1.5478 , -0.0022]	[0.0004, <mark>4.5436</mark>]
Ex.2	-3.0000	3.0000	0.01	3	[-4.8541, -1.8541]	$[4.9917 \cdot 10^{-3}, 4.8541]$
Ex.3	-4.1231	4.1231	2.0	1	[-4.3528, -0.22974]	[0.0762, <mark>4.3528</mark>]

Augmenting the (1,1) block

Equivalent formulation (C = 0):

$$\begin{bmatrix} A + \tau B^{\top} B & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a + \tau B^{\top} b \\ b \end{bmatrix}, \quad \tau \in \mathbb{R}$$

coefficient matrix: $\mathcal{M}(\tau)$

Augmenting the (1,1) block

Equivalent formulation (C = 0):

$$\begin{bmatrix} A + \tau B^{\top} B & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a + \tau B^{\top} b \\ b \end{bmatrix}, \quad \tau \in \mathbb{R}$$

coefficient matrix: $\mathcal{M}(\tau)$

Condition on τ for definiteness of $A + \tau B^{\top}B$:

$$\tau > \frac{1}{\sigma_m^2} \left(\frac{\|A\|^2}{\alpha_0} - \lambda_n \right)$$

$$\begin{split} \mathbf{Ex.2.} \ A &= \begin{bmatrix} 0.01 & 3 \\ 3 & -0.01 \end{bmatrix}, \ \mu(\mathcal{M}) = \{-4.2452, 5.0 \cdot 10^{-3}, 4.2402\} \\ \frac{1}{\sigma_m^2} \left(\frac{\|A\|^2}{\alpha_0} - \lambda_n\right) &= 100.33 \\ \text{for } \tau &= 100 \to A + \tau B^\top B \text{ is indefinite} \end{split}$$

Augmenting the (1,1) block

Assume "good" au is taken.

$$\begin{bmatrix} A + \tau B^{\top} B & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a + \tau B^{\top} b \\ b \end{bmatrix}, \quad \tau \in \mathbb{R}$$

Spectral intervals for (1,1) spd may be obtained

"Regularized" problem

$$\begin{bmatrix} A & B^{\top} \\ B & -C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a + \tau B^{\top} b \\ b \end{bmatrix}, \quad \tau \in \mathbb{R}$$
Coefficient matrix: \mathcal{M}_C
Warning: for A indefinite, conditions on C required:

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{singular!}$$
Note: Perturbation results yield spectral bounds assuming $\lambda_{\max}^C < \Gamma$

More accurate result:

If
$$\lambda_{\max}^C < \frac{\alpha_0 \sigma_m^2}{\|A\|^2 - \lambda_n \alpha_0}$$
, then $\mu(\mathcal{M}_C) \subset \mathcal{I}^- \cup \mathcal{I}^+$ with

$$\mathcal{I}^{-} = \left[\frac{1}{2}\left(\lambda_{n} - \lambda_{\max}^{C} - \sqrt{(\lambda_{n} + \lambda_{\max}^{C})^{2} + 4\sigma_{1}^{2}}\right), \frac{1}{2}\left(\lambda_{1} - \sqrt{(\lambda_{1})^{2} + 4\sigma_{m}^{2}}\right)\right] \subset \mathbb{R}^{-}$$
$$\mathcal{I}^{+} = \left[\Gamma_{C}, \frac{1}{2}\left(\lambda_{1} + \sqrt{(\lambda_{1})^{2} + 4\sigma_{1}^{2}}\right)\right] \subset \mathbb{R}^{+},$$

For
$$m = n$$
, $\Gamma_C = \frac{1}{2} \left(\lambda_n - \lambda_{\max}^C + \sqrt{(\lambda_n + \lambda_{\max}^C)^2 + 4\sigma_m^2} \right)$

more complicated (but explicit!) estimate for m < n

An example:

$$\mathcal{M}_C = \begin{bmatrix} \lambda_n & 0 & \sigma \\ 0 & \lambda_1 & 0 \\ \sigma & 0 & -\gamma^C \end{bmatrix},$$

with $\lambda_n < 0, \lambda_1 > 0, \sigma > 0$. If $\gamma^C = -\sigma^2/\lambda_n$ then \mathcal{M}_C is singular.

An example:

$$\mathcal{M}_C = \begin{bmatrix} \lambda_n & 0 & \sigma \\ 0 & \lambda_1 & 0 \\ \sigma & 0 & -\gamma^C \end{bmatrix},$$

with $\lambda_n < 0, \lambda_1 > 0, \sigma > 0$. If $\gamma^C = -\sigma^2/\lambda_n$ then \mathcal{M}_C is singular.

Our estimate requires (for $||A|| = \alpha_0 = -\lambda_n$): $0 \le \gamma^C \le \frac{1}{2} \frac{-\sigma^2}{\lambda_n}$ (half the value from singularity!)

An example:

$$\mathcal{M}_C = \begin{bmatrix} \lambda_n & 0 & \sigma \\ 0 & \lambda_1 & 0 \\ \sigma & 0 & -\gamma^C \end{bmatrix},$$

with $\lambda_n < 0, \lambda_1 > 0, \sigma > 0$. If $\gamma^C = -\sigma^2/\lambda_n$ then \mathcal{M}_C is singular.

Our estimate requires (for $||A|| = \alpha_0 = -\lambda_n$): $0 \le \gamma^C \le \frac{1}{2} \frac{-\sigma^2}{\lambda_n}$ (half the value from singularity!)

Related results: Bai, Ng, Wang ('09) qualitatively similar bound based on $B^{\top}C^{-1}B$, $A + B^{\top}C^{-1}B$ (no full rank hyp. on *B*) Bai (tech.rep.'09)

Full rank assumption of ${\cal B}$

In some optimization problems:

$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \text{ and } C = \begin{bmatrix} C_1 & 0 \\ 0 & 0 \end{bmatrix},$$

with positive definite C_1

Natural assumption: $A + B_1^{\top} C_1^{-1} B_1$ definite on the null space of the full-rank B_2 . In this case,

$$\mathcal{M}_C = \begin{bmatrix} \begin{pmatrix} A & B_1^\top \\ B_1 & -C_1 \end{pmatrix} & \begin{pmatrix} B_2^\top \\ 0 \end{pmatrix} \\ \begin{pmatrix} B_2 & 0 \end{pmatrix} & 0 \end{bmatrix}$$

Spectral analysis: Use Bai, Ng, Wang result to get spectral intervals for the "(1,1)" block, and then apply our bounds for \mathcal{M}_C

Application to ideal block diagonal preconditioners

Indefinite preconditioner, C = 0:

1. Let $\mathcal{P}_+ = \text{blkdiag}(A, BA^{-1}B^{\top})$. Then

$$\mu(\mathcal{P}_+^{-1}\mathcal{M}) \subset \left\{1, \frac{1}{2}(1+\sqrt{5}), \frac{1}{2}(1-\sqrt{5})\right\} \subset \mathbb{R};$$

2. Let $\mathcal{P}_{-} = \text{blkdiag}(A, -BA^{-1}B^{\top})$. Then

$$\mu(\mathcal{P}_{-}^{-1}\mathcal{M}) \subset \left\{1, \frac{1}{2}(1+i\sqrt{3}), \frac{1}{2}(1-i\sqrt{3})\right\} \subset \mathbb{C}^+$$

Application to practical block diagonal preconditioners Indefinite preconditioner, C = 0:

Let
$$\mathcal{P}_{\pm} = \text{blkdiag}(A, \pm \widetilde{S})$$
 with A, \widetilde{S} nonsingular. Then

$$\mu(\mathcal{P}_{\pm}^{-1}\mathcal{M}) \subset \left\{1, \frac{1}{2}(1 + \sqrt{1 + 4\xi}), \frac{1}{2}(1 - \sqrt{1 + 4\xi})\right\} \subset \mathbb{C},$$

 ξ : (possibly complex) eigenvalues of $(BA^{-1}B^{\top},\pm\widetilde{S})$

Application to ideal block diagonal preconditioners

Indefinite preconditioner, $C \neq 0$:

Let
$$\mathcal{P}_{+} = \text{blkdiag}(A, C + BA^{-1}B^{\top})$$
. Then

$$\mu(\mathcal{P}_{+}^{-1}\mathcal{M}) \subset \left\{1, \frac{1}{2}(1 \pm \sqrt{5}), \frac{1}{2\theta}(\theta - 1 \pm \sqrt{(1 - \theta)^{2} + 4\theta^{2}})\right\} \subset \mathbb{R}.$$

 $\boldsymbol{\theta}$ finite eigs of $(C+BA^{-1}B^{\top},C)$

Similar results for $\mathcal{P}_{-} = \text{blkdiag}(A, -C - BA^{-1}B^{\top})$

Application to ideal block diagonal preconditioners

Definite preconditioner, C = 0:

$$\mathcal{P}(\tau) = \begin{bmatrix} P_A & \\ & P_C \end{bmatrix}, \quad \begin{array}{c} P_A \approx P_A(\tau) = A + \tau B^\top B \\ & P_C \approx P_C(\tau) = B(A + \tau B^\top B)^{-1} B^\top \end{array}$$

• Definite preconditioner on definite problem:

 $\mathcal{P}(\tau)^{-1}\mathcal{M}(\tau)$ has eigenvalues

1,
$$\frac{1}{2}(1+\sqrt{5})$$
, $\frac{1}{2}(1-\sqrt{5})$

with multiplicity n - m, m and m, respectively.

General nonsymmetric problem

$$\mathcal{M} = \begin{bmatrix} F & B^{\top} \\ B & -\beta C \end{bmatrix} \qquad F \quad \text{nonsymmetric}$$

Preconditioning strategies (other alternatives are possible):

$$\mathcal{P}_{tr} = \begin{bmatrix} \widetilde{F} & B \\ & \pm \widetilde{C} \end{bmatrix} \qquad \mathcal{P}_{d} = \begin{bmatrix} \widetilde{F} & \\ & \pm \widetilde{C} \end{bmatrix} \text{ with } \widetilde{C} > 0$$

- $\widetilde{F} \approx F$
- $\widetilde{F} \approx F + B^{\top} \widetilde{C}^{-1} B$ (augmentation block precond.) For $+\widetilde{C}$: $\mathcal{P}^{-1} \mathcal{M}$ indefinite

 \star Appealing for F singular

For $+\widetilde{C}$:

$$\mathcal{P}_d^{-1}\mathcal{M}$$
, $\mathcal{P}_{tr}^{-1}\mathcal{M}$ have clusters in \mathbb{C}^- and \mathbb{C}^+

 \Rightarrow Indefinite matrix \Rightarrow Elman's bound not applicable

Analysis of clusters:

- Schötzau & Greif '06 (F sym)
- Cao '07

Nonstagnation condition revisited. Grear tech.rep'89 Let ϕ_k be polynomial with $\phi_k(0) = 0$. If $\frac{1}{2}(\phi_k(\mathcal{M}) + \phi_k(\mathcal{M})^\top) > 0$ then

$$\|r_k\| \le \left(1 - \frac{\theta_{\min}^2}{\|\phi_k(\mathcal{M})\|^2}\right)^{\frac{1}{2}} \|r_0\| \quad \theta_{\min} = \lambda_{\min}(\frac{1}{2}(\phi_k(\mathcal{M}) + \phi_k(\mathcal{M})^{\top}))$$

Elman's bound: k = 1

Nonstagnation condition revisited. Grear tech.rep'89 Let ϕ_k be polynomial with $\phi_k(0) = 0$. If $\frac{1}{2}(\phi_k(\mathcal{M}) + \phi_k(\mathcal{M})^\top) > 0$ then

$$\|r_k\| \le \left(1 - \frac{\theta_{\min}^2}{\|\phi_k(\mathcal{M})\|^2}\right)^{\frac{1}{2}} \|r_0\| \quad \theta_{\min} = \lambda_{\min}(\frac{1}{2}(\phi_k(\mathcal{M}) + \phi_k(\mathcal{M})^{\top}))$$

Elman's bound: k = 1

The simplest case: k = 2

If $\phi_2(H) > 0$, then $\phi_2(\mathcal{M}) > 0$ iff $||S\phi_2(H)^{-1/2}|| < 1$

Nonstagnation condition revisited. Grear tech.rep'89 Let ϕ_k be polynomial with $\phi_k(0) = 0$. If $\frac{1}{2}(\phi_k(\mathcal{M}) + \phi_k(\mathcal{M})^{\top}) > 0$ then

$$\|r_k\| \le \left(1 - \frac{\theta_{\min}^2}{\|\phi_k(\mathcal{M})\|^2}\right)^{\frac{1}{2}} \|r_0\| \quad \theta_{\min} = \lambda_{\min}(\frac{1}{2}(\phi_k(\mathcal{M}) + \phi_k(\mathcal{M})^{\top}))$$

Elman's bound: k = 1

The simplest case: k = 2

If $\phi_2(H) > 0$, then $\phi_2(\mathcal{M}) > 0$ iff $||S\phi_2(H)^{-1/2}|| < 1$

 \Rightarrow In Simoncini & Szyld '08: $\phi_2(\lambda)=\lambda^2$

$$\Rightarrow \text{ Here: } \phi_2(\lambda) = \lambda(\lambda - \alpha), \quad \alpha = \max\{0, \lambda_+(H) + \lambda_-(H)\} \\ (\lambda_+(H), \lambda_-(H): \text{ closest pos/neg eigs to zero})$$

Example. Navier-Stokes problem

IFISS Package (Elman, Ramage, Silvester)

"Flow over a step". Uniform grid, Q1-P0 elements

Prec	blocks	$\lambda_{\min}(H)$	$\lambda_{\max}(S^{\top}S,\phi_2(H))$	α	# its
$P_{d,aug}$	$\widetilde{C}(0)$	-3.5512	0.9906	0.3951	16
	$\widetilde{C}(10^{-1})$	-2.7567	0.9724	0.4252	19
	Q	-4.2339	1.5620	0.3558	29
$P_{tr,aug}$	$\widetilde{C}(0)$	-3.8091	0.9672	0	14
	$\widetilde{C}(10^{-1})$	-3.0814	1.1063	0.0216	21
	$\widetilde{C}(10^{-2})$	-3.7450	0.97097	0	16
P_{tr}	$\widehat{F}, W(1)$	-7.3000	0.9923	0	11
	$\widehat{F}, W(0)$	-13.818	0.9924	0	17

 $\widetilde{C}(\text{tol}) = B\widetilde{F}^{-1}B^{\top} + \beta C$ $\widetilde{F} = \text{luinc}(F, \text{tol})$ (2,2) block: $W(s_1) = B\widehat{F}^{-1}B^{\top} + s_1\beta C$ $\widehat{F} = \text{luinc}(F, 10^{-2})$

Example. Navier-Stokes problem

IFISS Package (Elman, Ramage, Silvester)

"Flow over a step". Uniform grid, Q1-P0 elements

Prec	blocks	$\lambda_{\min}(H)$	$\lambda_{\max}(S^{\top}S,\phi_2(H))$	lpha	# its
$P_{d,aug}$	$\widetilde{C}(0)$	-3.5512	0.9906	0.3951	16
	$\widetilde{C}(10^{-1})$	-2.7567	0.9724	0.4252	19
	Q	-4.2339	1.5620	0.3558	29
P _{tr,aug}	$\widetilde{C}(0)$	-3.8091	0.9672	0	14
	$\widetilde{C}(10^{-1})$	-3.0814	1.1063	0.0216	21
	$\widetilde{C}(10^{-2})$	-3.7450	0.97097	0	16
P_{tr}	$\widehat{F}, W(1)$	-7.3000	0.9923	0	11
	$\widehat{F}, W(0)$	-13.818	0.9924	0	17

 $\widetilde{C}(\text{tol}) = B\widetilde{F}^{-1}B^{\top} + \beta C$ $\widetilde{F} = \text{luinc}(F, \text{tol})$ (2,2) block: $W(s_1) = B\widehat{F}^{-1}B^{\top} + s_1\beta C$ $\widehat{F} = \text{luinc}(F, 10^{-2})$

Mesh independence

$$P_{tr,aug}$$
. (2,2) block: $\widetilde{C} = \beta C + BF^{-1}B^{\top}$,

n	m	$\lambda_{\min}(H)$	$\lambda_{\max}(S^{\top}S, \phi_2(H))$	lpha	# its
418	176	-3.8091	0.9672	0	14
1538	704	-3.7057	0.9662	0	15
5890	2816	-3.6710	0.9660	0	13

Final considerations and outlook

Symmetric case:

- Sharp bounds obtained for symmetric indefinite (1,1) block
- Future work: exploit this knowledge to devise and analyze effective preconditioners

Final considerations and outlook

Symmetric case:

- Sharp bounds obtained for symmetric indefinite (1,1) block
- Future work: exploit this knowledge to devise and analyze effective preconditioners

Nonsymmetric case:

- First attempt to provide convergence information on indefinite problem
- Future work: devise more complete convergence analysis

References

- V. S. and Daniel B. Szyld , New conditions for non-stagnation of minimal residual methods. Numerische Mathematik, v. 109, n.3 (2008), pp. 477-487.
- Nick Gould and V. S., Spectral Analysis of saddle point matrices with indefinite leading blocks. August 2008, To appear in SIAM J. Matrix Analysis Appl.
- 3. V.S., On the non-stagnation condition for GMRES and application to saddle point matrices, In preparation.