Computational methods for large-scale linear matrix equations and application to FDEs

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

Joint work with:
Tobias Breiten, University of Graz (A)
Martin Stoll, Max Planck Institute Magdeburg (G)

A motivational example with spatial fractional derivatives
Let $\Omega=\left(a_{x}, b_{x}\right) \times\left(a_{y}, b_{y}\right) \subset \mathbb{R}^{2}$. Consider
$(u=u(x, y, t), f=f(x, y, t)$, with $(x, y, t) \in \Omega \times(0, T])$

$$
\begin{aligned}
\frac{d u}{d t}-{ }_{x} D_{R}^{\beta_{1}} u-{ }_{y} D_{R}^{\beta_{2}} u & =f, \\
u(x, y, t) & =0, \quad(x, y, t) \in \partial \Omega \times[0, T] \\
u(x, y, 0) & =0, \quad(x, y) \in \Omega
\end{aligned}
$$

where $\beta_{1}, \beta_{2} \in(1,2)$ and

$$
\begin{aligned}
{ }_{x} D_{R}^{\beta_{1}} u & =\frac{1}{\Gamma\left(-\beta_{1}\right)} \lim _{n_{x} \rightarrow \infty} \frac{1}{h_{x}^{\beta_{1}}} \sum_{k=0}^{n_{x}} \frac{\Gamma\left(k-\beta_{1}\right)}{\Gamma(k+1)} u\left(x-(k-1) h_{x}, y, t\right) \\
{ }_{y} D_{R}^{\beta_{2}} u & =\frac{1}{\Gamma\left(-\beta_{2}\right)} \lim _{n_{y} \rightarrow \infty} \frac{1}{h_{y}^{\beta_{2}}} \sum_{k=0}^{n_{y}} \frac{\Gamma\left(k-\beta_{2}\right)}{\Gamma(k+1)} u\left(x, y-(k-1) h_{y}, t\right)
\end{aligned}
$$

After finite-difference spatial discretization, implicit Euler yields

$$
\mathbf{A}_{\beta_{1}, \tau} \mathbf{U}^{n+1}+\mathbf{U}^{n+1} \mathbf{B}_{\beta_{2}, \tau}=\mathbf{U}^{n}+\tau \mathbf{F}^{n+1}
$$

to be solved for the matrix \mathbf{U}^{n+1}, at each time step t_{n+1}

Before we start. Kronecker products

- $(\mathbf{I} \otimes \mathbf{A}) \mathbf{u} \leftrightarrow \mathbf{A U}$, where $\mathbf{u}=\operatorname{vec}(\mathbf{U})$
- $\left(\mathbf{B}^{T} \otimes \mathbf{I}\right) \mathbf{u} \leftrightarrow \mathbf{U B}$
- $\left(\mathbf{I} \otimes \mathbf{A}+\mathbf{B}^{T} \otimes \mathbf{I}\right) \mathbf{u} \leftrightarrow \mathbf{A U}+\mathbf{U B}$

Fractional calculus and Grünwald formulas

- Caputo fractional derivative (usually employed in time):

$$
{ }_{a}^{C} D_{t}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{f^{(n)}(s) d s}{(t-s)^{\alpha-n+1}}, \quad n-1<\alpha \leq n
$$

$\Gamma(x)$: Gamma function

- Left-sided Riemann-Liouville fractional derivative:

$$
{ }_{a}^{R L} D_{t}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{a}^{t} \frac{f(s) d s}{(t-s)^{\alpha-n+1}}, \quad a<t<b \quad n-1<\alpha \leq n
$$

- Right-sided Riemann-Liouville fractional derivative:

$$
{ }_{t}^{R L} D_{b}^{\alpha} f(t)=\frac{(-1)^{n}}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{t}^{b} \frac{f(s) d s}{(s-t)^{\alpha-n+1}}, \quad a<t<b
$$

- Symmetric Riesz derivative of order α :

$$
\frac{d^{\alpha} f(t)}{d|t|^{\alpha}}={ }_{t} D_{R}^{\alpha} f(t)=\frac{1}{2}\left({ }_{a}^{R L} D_{t}^{\alpha} f(t)+{ }_{t}^{R L} D_{b}^{\alpha} f(t)\right) .
$$

(Podlubny 1998, Podlubny etal 2009, Samko etal 1993)

Towards the numerical approximation of fractional derivatives
For the left-sided derivative it holds:

$$
{ }_{a}^{R L} D_{x}^{\alpha} f(x, t)=\lim _{M \rightarrow \infty} \frac{1}{h^{\alpha}} \sum_{k=0}^{M} g_{\alpha, k} f(x-k h, t), \quad h=\frac{x-a}{M}
$$

with

$$
g_{\alpha, k}=\frac{\Gamma(k-\alpha)}{\Gamma(-\alpha) \Gamma(k+1)}=(-1)^{k}\binom{\alpha}{k} .
$$

Analogously for the right-sided derivative.

For stability reasons. Shifted version:

$$
{ }_{a}^{R L} D_{x}^{\alpha} f(x, t)=\lim _{M \rightarrow \infty} \frac{1}{h^{\alpha}} \sum_{k=0}^{M} g_{\alpha, k} f(x-(k-1) h, t)
$$

(Meerschaert \& Tadjeran 2004)

A simple 1D model problem

$$
\begin{aligned}
\frac{d u(x, t)}{d t}-{ }_{x} D_{R}^{\beta} u(x, t) & =f(x, t), & & (x, t) \in(0,1) \times(0, T], \quad \beta \in(1,2) \\
u(0, t)=u(1, t) & =0, & & t \in[0, T] \\
u(x, 0) & =0, & & x \in[0,1]
\end{aligned}
$$

\star Time discretization. implicit Euler scheme of step size τ :

$$
\frac{u^{n+1}-u^{n}}{\tau}-{ }_{x} D_{R}^{\beta} u^{n+1}=f^{n+1}
$$

where $u^{n+1}:=u\left(x, t_{n+1}\right), f^{n+1}:=f\left(x, t_{n+1}\right)$
at time $t_{n+1}=(n+1) \tau$
\star Space discretization. First consider one-sided operator:

$$
{ }_{a}^{R L} D_{x}^{\beta} u_{i}^{n+1} \approx \frac{1}{h_{x}^{\beta}} \sum_{k=0}^{i+1} g_{\beta, k} u_{i-k+1}^{n+1}
$$

(n_{x} number of interior points in space), giving for all i,

$$
\mathbf{T}_{\beta}^{n_{x}} \mathbf{u}^{n+1}:=\frac{1}{h_{x}^{\beta}}\left[\begin{array}{ccccc}
g_{\beta, 1} & g_{\beta, 0} & 0 & \cdots & 0 \\
g_{\beta, 2} & g_{\beta, 1} & g_{\beta, 0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & g_{\beta, 0} & 0 \\
g_{\beta, n_{x}-1} & \ddots & \ddots & g_{\beta, 1} & g_{\beta, 0} \\
g_{\beta, n_{x}} & g_{\beta, n_{x}-1} & \cdots & g_{\beta, 2} & g_{\beta, 1}
\end{array}\right]\left[\begin{array}{c}
u_{1}^{n+1} \\
u_{2}^{n+1} \\
\vdots \\
\vdots \\
u_{n_{x}}^{n+1}
\end{array}\right]
$$

A simple 1D model problem. Cont'd

For the Riesz derivative (left-right average) ${ }_{x} D_{R}^{\beta} u(x, t)$:

$$
{ }_{x} D_{R}^{\beta} u(x, t) \approx \mathbf{L}_{\beta}^{n_{x}} \mathbf{u}^{n+1}:=\frac{1}{2}\left(\mathbf{T}_{\beta}^{n_{x}}+\left(\mathbf{T}_{\beta}^{n_{x}}\right)^{T}\right) \mathbf{u}^{n+1}
$$

(Meerschaert \& Tadjeran 2006)

Therefore, the discretized version of the original equation reads:

$$
\left(\mathbf{I}^{n_{x}}-\tau \mathbf{L}_{\beta}^{n_{x}}\right) \mathbf{u}^{n+1}=\mathbf{u}^{n}+\tau \mathbf{f}^{n+1}
$$

with $\left(\mathbf{I}^{n_{x}}-\tau \mathbf{L}_{\beta}^{n_{x}}\right)$ Toeplitz structure.

Numerical solution: direct FFT-based or preconditioned iterative solvers

The initial 2D (in space) problem
Let $\Omega=\left(a_{x}, b_{x}\right) \times\left(a_{y}, b_{y}\right) \subset \mathbb{R}^{2}$. Consider

$$
\begin{aligned}
\frac{d u}{d t}-{ }_{x} D_{R}^{\beta_{1}} u-{ }_{y} D_{R}^{\beta_{2}} u & =f, \\
u(x, y, t) & =0, \quad(x, y, t) \in \partial \Omega \times[0, T] \\
u(x, y, 0) & =0, \quad(x, y) \in \Omega
\end{aligned}
$$

where $\beta_{1}, \beta_{2} \in(1,2)$
A similar discretization procedure yields:

$$
\frac{1}{\tau}\left(\mathbf{u}^{n+1}-\mathbf{u}^{n}\right)=\underbrace{\left(\mathbf{I}^{n_{y}} \otimes \mathbf{L}_{\beta_{1}}^{n_{x}}+\mathbf{L}_{\beta_{2}}^{n_{y}} \otimes \mathbf{I}^{n_{x}}\right)}_{\mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}} \mathbf{u}^{n+1}+\mathbf{f}^{n+1}
$$

where $h_{x}=\frac{b_{x}-a_{x}}{n_{x}+1}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}+1}$ with $n_{x}+2$ and $n_{y}+2$ inner nodes.
At each time step, we need to solve

$$
\left(\mathbf{I}^{n_{x} n_{y}}-\tau \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}\right) \mathbf{u}^{n+1}=\mathbf{u}^{n}+\tau \mathbf{f}^{n+1}
$$

The initial 2D (in space) problem. Cont'd

$$
\left(\mathbf{I}^{n_{x} n_{y}}-\tau \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}\right) \mathbf{u}^{n+1}=\mathbf{u}^{n}+\tau \mathbf{f}^{n+1}
$$

The coefficient matrix satisfies:

$$
\mathbf{I}^{n_{x} n_{y}}-\tau \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}=\mathbf{I}^{n_{y}} \otimes\left(\frac{1}{2} \mathbf{I}^{n_{x}}-\tau \mathbf{L}_{\beta_{1}}^{n_{x}}\right)+\left(\frac{1}{2} \mathbf{I}^{n_{y}}-\tau \mathbf{L}_{\beta_{2}}^{n_{y}}\right) \otimes \mathbf{I}^{n_{x}}
$$

The initial 2D (in space) problem. Cont'd

$$
\left(\mathbf{I}^{n_{x} n_{y}}-\tau \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}\right) \mathbf{u}^{n+1}=\mathbf{u}^{n}+\tau \mathbf{f}^{n+1}
$$

The coefficient matrix satisfies:

$$
\mathbf{I}^{n_{x} n_{y}}-\tau \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}=\mathbf{I}^{n_{y}} \otimes\left(\frac{1}{2} \mathbf{I}^{n_{x}}-\tau \mathbf{L}_{\beta_{1}}^{n_{x}}\right)+\left(\frac{1}{2} \mathbf{I}^{n_{y}}-\tau \mathbf{L}_{\beta_{2}}^{n_{y}}\right) \otimes \mathbf{I}^{n_{x}}
$$

By "unfolding" the Kronecker products:
Sylvester matrix equation:

$$
\left(\frac{1}{2} \mathbf{I}^{n_{x}}-\tau \mathbf{L}_{\beta_{1}}^{n_{x}}\right) \mathbf{U}^{n+1}+\mathbf{U}^{n+1}\left(\frac{1}{2} \mathbf{I}^{n_{y}}-\tau \mathbf{L}_{\beta_{2}}^{n_{y}}\right)^{T}=\mathbf{U}^{n}+\tau \mathbf{F}^{n+1}
$$

Coefficient matrices are different and have Toeplitz structure

Time fractional derivative

For $\alpha \in(0,1)$ and $\beta \in(1,2)$ consider the problem

$$
\begin{aligned}
{ }_{0}^{C} D_{t}^{\alpha} u(x, t)-{ }_{x} D_{R}^{\beta} u(x, t) & =f(x, t), & & (x, t) \in(0,1) \times(0, T], \\
u(0, t)=u(1, t) & =0, & & t \in[0, T], \\
u(x, 0) & =0, & & x \in[0,1],
\end{aligned}
$$

Discretizing the Caputo derivative in time, we obtain

$$
\left.\begin{array}{r}
\left(\left(\mathbf{T}_{\alpha}^{n_{t}} \otimes \mathbf{I}^{n_{x}}\right)-\left(\mathbf{I}^{n_{t}} \otimes \mathbf{L}_{\beta}^{n_{x}}\right)\right) \mathbf{u}=\tilde{\mathbf{f}}
\end{array} \quad \Leftrightarrow \quad \mathbf{U}\left(\mathbf{T}_{\alpha}^{n_{t}}\right)^{T}-\mathbf{L}_{\beta}^{n_{x}} \mathbf{U}=\mathbf{F}\right)
$$

Note: $\operatorname{dim}\left(\mathbf{T}_{\alpha}^{n_{t}}\right)$ may be much smaller than $\operatorname{dim}\left(\mathbf{L}_{\beta}^{n_{x}}\right)$

Numerical solution of the Sylvester equation

$$
\mathbf{A} \mathbf{U}+\mathbf{U B}=\mathbf{G}
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$\mathbf{A}^{*}=U R U^{*}, \mathbf{B}=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \mathbf{Y}+\mathbf{Y} S=U^{*} \mathbf{G} V$ for \mathbf{Y};
3. Compute $\mathbf{U}=U \mathbf{Y} V^{*}$.

Numerical solution of the Sylvester equation

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$\mathbf{A}^{*}=U R U^{*}, \mathbf{B}=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \mathbf{Y}+\mathbf{Y} S=U^{*} \mathbf{G} V$ for \mathbf{Y};
3. Compute $\mathbf{U}=U \mathbf{Y} V^{*}$.

- Large A and small B: Column decoupling

1. Compute the decomposition $\mathbf{B}=W S W^{-1}, S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$
2. Set $\widehat{\mathbf{G}}=\mathbf{G} W$
3. For $i=1, \ldots, m$ solve $\left(\mathbf{A}+s_{i} I\right)(\widehat{\mathbf{U}})_{i}=(\widehat{\mathbf{G}})_{i}$
4. Compute $\mathbf{U}=\widehat{\mathbf{U}} W^{-1}$

Numerical solution of the Sylvester equation

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$\mathbf{A}^{*}=U R U^{*}, \mathbf{B}=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \mathbf{Y}+\mathbf{Y} S=U^{*} \mathbf{G} V$ for \mathbf{Y};
3. Compute $\mathbf{U}=U \mathbf{Y} V^{*}$.

- Large A and small B: Column decoupling

1. Compute the decomposition $\mathbf{B}=W S W^{-1}, S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$
2. Set $\widehat{\mathbf{G}}=\mathbf{G} W$
3. For $i=1, \ldots, m$ solve $\left(\mathbf{A}+s_{i} I\right)(\widehat{\mathbf{U}})_{i}=(\widehat{\mathbf{G}})_{i}$
4. Compute $\mathbf{U}=\widehat{\mathbf{U}} W^{-1}$

- Large A and large B: Iterative solution (G low rank)

Numerical solution of large scale Sylvester equations
 $$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

with \mathbf{G} low rank

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of large scale Sylvester equations

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

with \mathbf{G} low rank

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Projection methods
Seek $\mathbf{U}_{k} \approx \mathbf{U}$ of low rank:

$$
\mathbf{U}_{k}=\left[\mathbf{U}_{k}^{(1)}\right]\left[\left(\mathbf{U}_{k}^{(2)}\right)^{*}\right]
$$

with $\mathbf{U}_{k}^{(1)}, \mathbf{U}_{k}^{(2)}$ tall

Index k "related" to the approximation rank

Galerkin projection methods

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

Consider two (approximation) spaces Range (V) and $\operatorname{Range}(W)$ with V, W having orthonormal columns
$\star \operatorname{dim}(\operatorname{Range}(V)) \ll \operatorname{size}(\mathbf{A})$ and $\operatorname{dim}(\operatorname{Range}(W)) \ll \operatorname{size}(\mathbf{B})$

- Write $\mathbf{U}_{k}=V \mathbf{Y} W^{*}$ with \mathbf{Y} to be determined

Galerkin projection methods

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

Consider two (approximation) spaces Range (V) and $\operatorname{Range}(W)$ with V, W having orthonormal columns
$\star \operatorname{dim}(\operatorname{Range}(V)) \ll \operatorname{size}(\mathbf{A})$ and dim $(\operatorname{Range}(W)) \ll \operatorname{size}(\mathbf{B})$

- Write $\mathbf{U}_{k}=V \mathbf{Y} W^{*}$ with \mathbf{Y} to be determined
- Impose Galerkin condition on the residual matrix $\mathbf{R}_{k}=\mathbf{A} \mathbf{U}_{k}+\mathbf{U}_{k} \mathbf{B}-\mathbf{G}$:

$$
V^{*} \mathbf{R}_{k} W=0
$$

condition corresponds to $(W \otimes V)^{*} \operatorname{vec}\left(\mathbf{R}_{\mathrm{k}}\right)=0$

Galerkin projection methods

$$
\mathbf{A} \mathbf{U}+\mathbf{U B}=\mathbf{G}
$$

Consider two (approximation) spaces Range (V) and Range (W) with V, W having orthonormal columns
$\star \operatorname{dim}(\operatorname{Range}(V)) \ll \operatorname{size}(\mathbf{A})$ and dim $($ Range $(W)) \ll \operatorname{size}(\mathbf{B})$

- Write $\mathbf{U}_{k}=V \mathbf{Y} W^{*}$ with \mathbf{Y} to be determined
- Impose Galerkin condition on the residual matrix $\mathbf{R}_{k}=\mathbf{A} \mathbf{U}_{k}+\mathbf{U}_{k} \mathbf{B}-\mathbf{G}$:

$$
V^{*} \mathbf{R}_{k} W=0
$$

condition corresponds to $(W \otimes V)^{*} \operatorname{vec}\left(\mathbf{R}_{\mathrm{k}}\right)=0$

- Substituting the residual \mathbf{R}_{k} and \mathbf{U}_{k} :

$$
\begin{gathered}
V^{*}\left(\mathbf{A} V \mathbf{Y} W^{*}+V \mathbf{Y} W^{*} \mathbf{B}-\mathbf{G}\right) W=0 \\
V^{*} \mathbf{A} V \mathbf{Y} W^{*} W+V^{*} V \mathbf{Y} W^{*} \mathbf{B} W-V^{*} \mathbf{G} W=0
\end{gathered}
$$

that is

$$
\left(V^{*} \mathbf{A} V\right) \mathbf{Y}+\mathbf{Y}\left(W^{*} \mathbf{B} W\right)-V^{*} \mathbf{G} W=0
$$

Reduced (small) Sylvester equation

Galerkin projection methods. Cont'd

From large scale

$$
\mathbf{A} \mathbf{U}+\mathbf{U B}=\mathbf{G}
$$

to reduced scale

$$
\left(V^{*} \mathbf{A} V\right) \mathbf{Y}+\mathbf{Y}\left(W^{*} \mathbf{B} W\right)=V^{*} \mathbf{G} W
$$

so that $\mathbf{U}_{k}=V \mathbf{Y} W^{*} \approx \mathbf{U}$

Key issue: Choice of approximation spaces $\mathcal{V}=\operatorname{Range}(V), \mathcal{W}=\operatorname{Range}(W)$

Galerkin projection methods. Cont'd

From large scale

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}
$$

to reduced scale

$$
\left(V^{*} \mathbf{A} V\right) \mathbf{Y}+\mathbf{Y}\left(W^{*} \mathbf{B} W\right)=V^{*} \mathbf{G} W
$$

so that $\mathbf{U}_{k}=V \mathbf{Y} W^{*} \approx \mathbf{U}$

Key issue: Choice of approximation spaces $\mathcal{V}=\operatorname{Range}(V), \mathcal{W}=\operatorname{Range}(W)$

Desired features:

- "Rich" in problem information while of small size
- Nested, that is, $\mathcal{V}_{k} \subseteq \mathcal{V}_{k+1}, \mathcal{W}_{k} \subseteq \mathcal{W}_{k+1}$
- Memory/computational-cost effective

Krylov subspaces for Galerkin projection

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}, \quad \mathbf{G}=\mathbf{G}_{1} \mathbf{G}_{2}^{*}
$$

- Standard Krylov subspace

$$
\mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{1}, \mathbf{A} \mathbf{G}_{1}, \mathbf{A}^{2} \mathbf{G}_{1}, \ldots, \mathbf{A}^{k-1} \mathbf{G}_{1}\right]\right)
$$

And analogously,
$\mathcal{W}_{k}\left(\mathbf{B}^{*}, \mathbf{G}_{2}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{2}, \mathbf{B}^{*} \mathbf{G}_{2},\left(\mathbf{B}^{*}\right)^{2} \mathbf{G}_{2}, \ldots,\left(\mathbf{B}^{*}\right)^{k-1} \mathbf{G}_{2}\right]\right)$

Krylov subspaces for Galerkin projection

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}, \quad \mathbf{G}=\mathbf{G}_{1} \mathbf{G}_{2}^{*}
$$

- Standard Krylov subspace

$$
\mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{1}, \mathbf{A} \mathbf{G}_{1}, \mathbf{A}^{2} \mathbf{G}_{1}, \ldots, \mathbf{A}^{k-1} \mathbf{G}_{1}\right]\right)
$$

And analogously,
$\mathcal{W}_{k}\left(\mathbf{B}^{*}, \mathbf{G}_{2}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{2}, \mathbf{B}^{*} \mathbf{G}_{2},\left(\mathbf{B}^{*}\right)^{2} \mathbf{G}_{2}, \ldots,\left(\mathbf{B}^{*}\right)^{k-1} \mathbf{G}_{2}\right]\right)$

- Extended Krylov subspace

$$
\begin{aligned}
\mathcal{E} \mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right) & =\mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right)+\mathcal{V}_{k}\left(\mathbf{A}^{-1}, \mathbf{A}^{-1} \mathbf{G}_{1}\right) \\
& =\operatorname{Range}\left(\left[\mathbf{G}_{1}, \mathbf{A}^{-1} \mathbf{G}_{1}, \mathbf{A} \mathbf{G}_{1}, \mathbf{A}^{-2} \mathbf{G}_{1}, \mathbf{A}^{2} \mathbf{G}_{1}, \mathbf{A}^{-3} \mathbf{G}_{1}, \ldots,\right]\right)
\end{aligned}
$$

and analogously for $\mathcal{E} \mathcal{W}_{k}\left(\mathbf{B}^{*}, \mathbf{G}_{2}\right)$

Krylov subspaces for Galerkin projection

$$
\mathbf{A U}+\mathbf{U B}=\mathbf{G}, \quad \mathbf{G}=\mathbf{G}_{1} \mathbf{G}_{2}^{*}
$$

- Standard Krylov subspace

$$
\mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{1}, \mathbf{A} \mathbf{G}_{1}, \mathbf{A}^{2} \mathbf{G}_{1}, \ldots, \mathbf{A}^{k-1} \mathbf{G}_{1}\right]\right)
$$

And analogously,
$\mathcal{W}_{k}\left(\mathbf{B}^{*}, \mathbf{G}_{2}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{2}, \mathbf{B}^{*} \mathbf{G}_{2},\left(\mathbf{B}^{*}\right)^{2} \mathbf{G}_{2}, \ldots,\left(\mathbf{B}^{*}\right)^{k-1} \mathbf{G}_{2}\right]\right)$

- Extended Krylov subspace

$$
\begin{aligned}
\mathcal{E} \mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right) & =\mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}\right)+\mathcal{V}_{k}\left(\mathbf{A}^{-1}, \mathbf{A}^{-1} \mathbf{G}_{1}\right) \\
& =\operatorname{Range}\left(\left[\mathbf{G}_{1}, \mathbf{A}^{-1} \mathbf{G}_{1}, \mathbf{A} \mathbf{G}_{1}, \mathbf{A}^{-2} \mathbf{G}_{1}, \mathbf{A}^{2} \mathbf{G}_{1}, \mathbf{A}^{-3} \mathbf{G}_{1}, \ldots,\right]\right)
\end{aligned}
$$

and analogously for $\mathcal{E} \mathcal{W}_{k}\left(\mathbf{B}^{*}, \mathbf{G}_{2}\right)$

- Rational Krylov subspace

$$
\mathcal{R} \mathcal{V}_{k}\left(\mathbf{A}, \mathbf{G}_{1}, \mathbf{s}\right)=\operatorname{Range}\left(\left[\mathbf{G}_{1},\left(\mathbf{A}-s_{2} \mathbf{I}\right)^{-1} \mathbf{G}_{1}, \ldots,\left(\mathbf{A}-s_{k} \mathbf{I}\right)^{-1} \mathbf{G}_{1}\right]\right)
$$

and analogously for $\mathcal{R} \mathcal{W}_{k}\left(\mathbf{B}^{*}, \mathbf{G}_{2}, \mathbf{s}\right)$

Krylov subspaces for Galerkin projection. Cont'd

In all these instances, spaces are nested

$$
\mathcal{V}_{k} \subset \mathcal{V}_{k+1}, \quad \mathcal{W}_{k} \subset \mathcal{W}_{k+1}
$$

At step k :

$$
\left(V_{k}^{*} \mathbf{A} V_{k}\right) \mathbf{Y}+\mathbf{Y}\left(W_{k}^{*} \mathbf{B} W_{k}\right)=V_{k}^{*} \mathbf{G} W_{k}
$$

At step $k+1$:

$$
\left(V_{k+1}^{*} \mathbf{A} V_{k+1}\right) \mathbf{Y}+\mathbf{Y}\left(W_{k+1}^{*} \mathbf{B} W_{k+1}\right)=V_{k+1}^{*} \mathbf{G} W_{k+1}
$$

\Rightarrow Size of reduced problem increases

More general FDE settings. I

- Fractional derivatives both in time and 2D space:

$$
{ }_{0}^{C} D_{t}^{\alpha} u-{ }_{x} D_{R}^{\beta_{1}} u-{ }_{y} D_{R}^{\beta_{2}} u=f, \quad(x, y, t) \in \Omega \times(0, T],
$$

yields a linear system with a double tensor structure:

$$
\left(\mathbf{T}_{\alpha}^{n_{t}} \otimes \mathbf{I}^{n_{x} n_{y}}-\mathbf{I}^{n_{t}} \otimes \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}\right) \mathbf{u}=\tilde{\mathbf{f}}
$$

with $\mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}=\left(\mathbf{I}^{n_{y}} \otimes \mathbf{L}_{\beta_{1}}^{n_{x}}+\mathbf{L}_{\beta_{2}}^{n_{y}} \otimes \mathbf{I}^{n_{x}}\right)$

More general FDE settings. I

- Fractional derivatives both in time and 2D space:

$$
{ }_{0}^{C} D_{t}^{\alpha} u-{ }_{x} D_{R}^{\beta_{1}} u-{ }_{y} D_{R}^{\beta_{2}} u=f, \quad(x, y, t) \in \Omega \times(0, T],
$$

yields a linear system with a double tensor structure:

$$
\left(\mathbf{T}_{\alpha}^{n_{t}} \otimes \mathbf{I}^{n_{x} n_{y}}-\mathbf{I}^{n_{t}} \otimes \mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}\right) \mathbf{u}=\tilde{\mathbf{f}}
$$

with $\mathbf{L}_{\beta_{1}, \beta_{2}}^{n_{x} n_{y}}=\left(\mathbf{I}^{n_{y}} \otimes \mathbf{L}_{\beta_{1}}^{n_{x}}+\mathbf{L}_{\beta_{2}}^{n_{y}} \otimes \mathbf{I}^{n_{x}}\right)$
\Rightarrow Numerical solution: tensor-train (TT) representation, and Alternating Minimal Energy Method (AMEN)
(Oseledets 2011, Tyrtyshnikov, Oseledets etal, Oseledets \& Dolgov 2012)

More general FDE settings. II

- Variable coefficient case:

$$
\begin{aligned}
\frac{d u}{d t}= & p_{+}(x, y){ }_{0}^{\mathrm{RL}} D_{x}^{\beta_{1}} u+p_{-}(x, y){ }_{x}^{\mathrm{RL}} D_{1}^{\beta_{1}} u \\
& \quad+q_{+}(x, y){ }_{0}^{\mathrm{RL}} D_{y}^{\beta_{2}} u+q_{-}(x, y){ }_{y}^{\mathrm{RL}} D_{1}^{\beta_{2}} u+f, \quad(x, y, t) \in \Omega \times(0, T]
\end{aligned}
$$

(separable coefficients, e.g., $p_{+}(x, y)=p_{+, 1}(x) p_{+, 2}(y)$)
After the Grünwald-Letnikov discretization, we obtain $\mathbf{A u}=\mathbf{f}$ with $\mathbf{A}=\mathbf{T}_{\alpha}^{n_{t}} \otimes \mathbf{I}^{n_{2} n_{1}}-\mathbf{I}^{n_{t}} \otimes \mathbf{I}^{n_{2}} \otimes\left(\mathbf{P}_{+} \mathbf{T}_{\beta_{1}}+\mathbf{P}_{-} \mathbf{T}_{\beta_{1}}^{\top}\right)-\mathbf{I}^{n_{t}} \otimes\left(\mathbf{Q}_{+} \mathbf{T}_{\beta_{2}}+\mathbf{Q}_{-} \mathbf{T}_{\beta_{2}}^{\top}\right) \otimes \mathbf{I}^{n_{1}}$
\mathbf{T}_{β} : one-sided derivative
$\mathbf{P}_{+}, \mathbf{P}_{-}, \mathbf{Q}_{+}, \mathbf{Q}_{-}$: diagonal matrices with the grid values of $p_{+}, p_{-}, q_{+}, q_{-}$

More general FDE settings. II

- Variable coefficient case:

$$
\begin{aligned}
\frac{d u}{d t}= & p_{+}(x, y){ }_{0}^{\mathrm{RL}} D_{x}^{\beta_{1}} u+p_{-}(x, y){ }_{x}^{\mathrm{RL}} D_{1}^{\beta_{1}} u \\
& \quad+q_{+}(x, y){ }_{0}^{\mathrm{RL}} D_{y}^{\beta_{2}} u+q_{-}(x, y){ }_{y}^{\mathrm{RL}} D_{1}^{\beta_{2}} u+f, \quad(x, y, t) \in \Omega \times(0, T]
\end{aligned}
$$

(separable coefficients, e.g., $p_{+}(x, y)=p_{+, 1}(x) p_{+, 2}(y)$)
After the Grünwald-Letnikov discretization, we obtain $\mathbf{A u}=\mathbf{f}$ with
$\mathbf{A}=\mathbf{T}_{\alpha}^{n_{t}} \otimes \mathbf{I}^{n_{2} n_{1}}-\mathbf{I}^{n_{t}} \otimes \mathbf{I}^{n_{2}} \otimes\left(\mathbf{P}_{+} \mathbf{T}_{\beta_{1}}+\mathbf{P}_{-} \mathbf{T}_{\beta_{1}}^{\top}\right)-\mathbf{I}^{n_{t}} \otimes\left(\mathbf{Q}_{+} \mathbf{T}_{\beta_{2}}+\mathbf{Q}_{-} \mathbf{T}_{\beta_{2}}^{\top}\right) \otimes \mathbf{I}^{n_{1}}$
\mathbf{T}_{β} : one-sided derivative
$\mathbf{P}_{+}, \mathbf{P}_{-}, \mathbf{Q}_{+}, \mathbf{Q}_{-}$: diagonal matrices with the grid values of $p_{+}, p_{-}, q_{+}, q_{-}$
\Rightarrow Various numerical strategies:

- TT format
- GMRES solver with Sylvester-equation-based preconditioner
- Sylvester solver for special cases (our example) (see also talk by Mariarosa Mazza)

Numerical experiments

Goals:

- Test robustness wrt time and space discretization parameters
- Suitability for different orders of differentiation

1D (space) pb, constant coeff. Two different values for β with zero initial condition and zero Dirichlet boundary condition. (510 and 10 space and time points, resp.)

1D problem. Constant/variable coeffs.
$f=80 \sin (20 x) \cos (10 x)$
Variable coefficient case: $p_{+}=\Gamma(1.2) x_{1}^{\beta_{1}}$ and $p_{-}=\Gamma(1.2)\left(2-x_{1}\right)^{\beta_{1}}$.
Solvers:

* CG preconditioned by Strang circulant precond (constant coeff)
\star GMRES preconditioned by approx constant coeff oper. (variable coeff)
* Convergence tolerance 10^{-6}, Time-step $\tau=h_{x} / 2$.

	Constant Coeff.		Variable Coeff.	
n_{x}	$\beta=1.3$	$\beta=1.7$	$\beta=1.3$	$\beta=1.7$
32768	$6.0(0.43)$	$7.0(0.47)$	$6.8(0.90)$	$6.0(0.81)$
65536	$6.0(0.96)$	$7.0(0.97)$	$6.4(1.93)$	$6.0(1.75)$
131072	$6.0(1.85)$	$7.0(2.23)$	$5.9(3.93)$	$5.9(3.89)$
262144	$6.0(7.10)$	$7.1(8.04)$	$5.4(12.78)$	$6.0(13.52)$
524288	$6.0(15.42)$	$7.8(19.16)$	$5.1(25.71)$	$6.0(27.40)$
1048576	$6.0(34.81)$	$8.0(41.76)$	$4.9(51.02)$	$6.3(62.57)$

2D (space) problem. Constant/variable coeffs.
$F=100 \sin (10 x) \cos (y)+\sin (10 t) x y$
Variable coefficient case:
$p_{+}=\Gamma(1.2) x^{\beta_{1}}, p_{-}=\Gamma(1.2)(2-x)^{\beta_{1}}, q_{+}=\Gamma(1.2) y^{\beta_{2}}, q_{-}=\Gamma(1.2)(2-y)^{\beta_{2}}$
Solvers:

* Extended Krylov projection method (constant coeff)
\star GMRES preconditioned by Sylvester solver (variable coeff)
* Convergence tolerance 10^{-6} Time-step $\tau=h_{x} / 2$. solution after 8 time steps

n_{x}	n_{y}	Variable Coeff.		Constant Coeff.	
		$\beta_{1}=1.3$	$\beta_{1}=1.7$	$\beta_{1}=1.3$	$\beta_{1}=1.7$
		$\beta_{2}=1.7$	$\beta_{2}=1.9$	$\beta_{2}=1.7$	$\beta_{2}=1.9$
	it(CPUtime)	it(CPUtime)	it(CPUtime)	it(CPUtime)	
1024	1024	$2.3(19.35)$	$2.5(15.01)$	$2.9(9.89)$	$2.5(18.51)$
1024	2048	$2.8(47.17)$	$2.9(22.25)$	$3.0(23.07)$	$3.2(22.44)$
2048	2048	$3.0(76.72)$	$2.6(36.01)$	$2.0(51.23)$	$2.3(34.43)$
4096	4096	$3.0(171.30)$	$2.6(199.82)$	$2.0(164.20)$	$2.2(172.24)$

Conclusions

- FDEs provide challenging linear algebra settings
- The two fields are evolving in parallel
- Effective numerical solution for representative large problems

References

T. Breiten, V. Simoncini, M. Stoll, Low-rank solvers for fractional differential equations, ETNA (2016) v.45, pp.107-132.
V. Simoncini, Computational methods for linear matrix equations, SIAM Review, Sept. 2016.

