Krylov Subspace Methods

for Linear Systems and Matrix Equations

V. Simoncini

Dipartimento di Matematica
Università di Bologna
valeria@dm.unibo.it
http://www.dm.unibo.it/~simoncin

Projection methods for large-scale problems

Given the system of n equations

$$
\mathcal{F}(x)=0 \quad x \in \mathbb{R}^{n}
$$

- Construct approximation space \mathcal{K}_{m}

$$
\left(m=\operatorname{dim}\left(\mathcal{K}_{m}\right)\right)
$$

- Find $\widetilde{x} \in \mathcal{K}_{m}$ such that $\widetilde{x} \approx x$
* Projection onto a much smaller space $\quad m \ll n$

Projection methods for large-scale problems

Given the system of n equations

$$
\mathcal{F}(x)=0 \quad x \in \mathbb{R}^{n}
$$

- Construct approximation space \mathcal{K}_{m}

$$
\left(m=\operatorname{dim}\left(\mathcal{K}_{m}\right)\right)
$$

- Find $\widetilde{x} \in \mathcal{K}_{m}$ such that $\widetilde{x} \approx x$
* Projection onto a much smaller space $\quad m \ll n$

Approximation process:

$$
\text { residual: } \quad r:=\mathcal{F}(\widetilde{x})
$$

Construct (left) space \mathcal{L}_{m} of dimension m and impose

$$
r \perp \mathcal{L}_{m}
$$

Challenges

- How to select \mathcal{K}_{m}

Challenges

- How to select \mathcal{K}_{m}
- How to derive good \mathcal{L}_{m} so that it also carries other good properties

Challenges

- How to select \mathcal{K}_{m}
- How to derive good \mathcal{L}_{m} so that it also carries other good properties

General idea:
Construct sequence of approximation spaces $\mathcal{K}_{m} \subset \mathcal{K}_{m+1}$ such that

$$
\widetilde{x}_{m} \in \mathcal{K}_{m} \quad \text { and } \quad \widetilde{x}_{m} \rightarrow x \quad \text { as } \quad m \rightarrow \infty
$$

(in some sense)
Analogously, $\mathcal{L}_{m} \subset \mathcal{L}_{m+1}$

More specific problems

$$
\mathcal{F}(x)=0
$$

$A \in \mathbb{R}^{n \times n}$

- $A x-b=0 \quad\left(\varphi_{k}(A) x-b=0\right)$ where $\quad \varphi_{k}$ polynomial of degree k

More specific problems

$$
\mathcal{F}(x)=0
$$

$A \in \mathbb{R}^{n \times n}$

- $A x-b=0 \quad\left(\varphi_{k}(A) x-b=0\right)$ where $\quad \varphi_{k}$ polynomial of degree k
- $A x-\lambda M x=0 \quad\left(\varphi_{k}\left(\lambda, A_{0}, A_{1}, \ldots, A_{k}\right) x=0\right)$

More specific problems

$$
\mathcal{F}(x)=0
$$

$A \in \mathbb{R}^{n \times n}$

- $A x-b=0 \quad\left(\varphi_{k}(A) x-b=0\right)$ where $\quad \varphi_{k}$ polynomial of degree k
- $A x-\lambda M x=0 \quad\left(\varphi_{k}\left(\lambda, A_{0}, A_{1}, \ldots, A_{k}\right) x=0\right)$
- $A X+X A^{T}+Q=0$

More specific problems

$$
\mathcal{F}(x)=0
$$

$A \in \mathbb{R}^{n \times n}$

- $A x-b=0 \quad\left(\varphi_{k}(A) x-b=0\right)$ where $\quad \varphi_{k}$ polynomial of degree k
- $A x-\lambda M x=0 \quad\left(\varphi_{k}\left(\lambda, A_{0}, A_{1}, \ldots, A_{k}\right) x=0\right)$
- $A X+X A^{T}+Q=0$
- Evaluation of Transfer and other matrix functions

Choosing \mathcal{L}_{m}

Focus on linear system:

$$
A x=b, \quad A \text { nonsing } .
$$

$x_{m} \in \mathcal{K}_{m}:$

Choosing \mathcal{L}_{m}

Focus on linear system:

$$
A x=b, \quad A \text { nonsing } .
$$

$x_{m} \in \mathcal{K}_{m}:$
$\star \quad \mathcal{L}_{m}=\mathcal{K}_{m} \quad$ If A symmetric positive definite,

$$
r_{m}=b-A x_{m} \quad \perp \quad \mathcal{L}_{m} \quad \Leftrightarrow \quad\left\|x-x_{m}\right\|_{A}=\min _{\widetilde{x} \in \mathcal{K}_{m}}!
$$

Choosing \mathcal{L}_{m}

Focus on linear system:

$$
A x=b, \quad A \text { nonsing } .
$$

$x_{m} \in \mathcal{K}_{m}:$
$\star \quad \mathcal{L}_{m}=\mathcal{K}_{m} \quad$ If A symmetric positive definite,

$$
r_{m}=b-A x_{m} \quad \perp \quad \mathcal{L}_{m} \quad \Leftrightarrow \quad\left\|x-x_{m}\right\|_{A}=\min _{\widetilde{x} \in \mathcal{K}_{m}}!
$$

$\star \quad \mathcal{L}_{m}=A \mathcal{K}_{m}$

$$
r_{m}=b-A x_{m} \quad \perp \quad \mathcal{L}_{m} \quad \Leftrightarrow \quad\left\|r_{m}\right\|_{2}=\min _{\widetilde{x} \in \mathcal{K}_{m}}!
$$

Choosing \mathcal{L}_{m}

Focus on linear system:

$$
A x=b, \quad A \text { nonsing } .
$$

$x_{m} \in \mathcal{K}_{m}:$
$\star \quad \mathcal{L}_{m}=\mathcal{K}_{m} \quad$ If A symmetric positive definite,

$$
r_{m}=b-A x_{m} \quad \perp \quad \mathcal{L}_{m} \quad \Leftrightarrow \quad\left\|x-x_{m}\right\|_{A}=\min _{\widetilde{x} \in \mathcal{K}_{m}}!
$$

$\star \quad \mathcal{L}_{m}=A \mathcal{K}_{m}$

$$
r_{m}=b-A x_{m} \quad \perp \quad \mathcal{L}_{m} \quad \Leftrightarrow \quad\left\|r_{m}\right\|_{2}=\min _{\widetilde{x} \in \mathcal{K}_{m}}!
$$

"Optimal" properties hold for any choice of \mathcal{K}_{m}
Eiermann \& Ernst A.N. '01

Typically: $\quad \mathcal{L}_{m}=\mathcal{K}_{m} \quad \Rightarrow$ FOM, CG $\quad \mathcal{L}_{m}=A \mathcal{K}_{m} \quad \Rightarrow$ GMRES, MINRES

Relaxing optimality in \mathcal{L}_{m}. Truncation

Example: A is non-normal, but "nice" $\quad \mathcal{L}_{m}=A \mathcal{K}_{m}$

Relaxing optimality in \mathcal{L}_{m}. Truncation

Example: A is non-normal, but "nice" $\quad \mathcal{L}_{m}=A \mathcal{K}_{m}$

$(-): r \perp \mathcal{L}_{m} \quad(--): r \perp_{l o c} \mathcal{L}_{m}$
k gives "locality"

Relaxing optimality in $\mathcal{L} m$. Truncation

Example: A is non-normal, more "nasty" $\quad \mathcal{L}_{m}=A \mathcal{K}_{m}$

$(-): r \perp \mathcal{L}_{m}$
$(--): r \perp_{l o c} \mathcal{L}_{m}$
Simoncini \&Szyld, Num.Math.'05

Choosing \mathcal{K}_{m}

The "classical" approach

$$
\mathcal{K}_{m}:=\mathcal{K}_{m}(A, v)=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\}
$$

(e.g., $v=b$ in linear systems)
$\widetilde{x} \in \mathcal{K}_{m}, \quad \widetilde{x}=p_{m-1}(A) v$

Choosing \mathcal{K}_{m}

The "classical" approach

$$
\mathcal{K}_{m}:=\mathcal{K}_{m}(A, v)=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\}
$$

(e.g., $v=b$ in linear systems)
$\widetilde{x} \in \mathcal{K}_{m}, \quad \widetilde{x}=p_{m-1}(A) v$
Nice Properties:

- For m sufficiently large, $\mathcal{K}_{m}(A, v)$ invariant for A
- Convergence (analysis) in terms of spectral properties of A
- Variants of "basic" methods by acting on polynomial p_{m-1}

Choosing \mathcal{K}_{m}

The "classical" approach

$$
\mathcal{K}_{m}:=\mathcal{K}_{m}(A, v)=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\}
$$

(e.g., $v=b$ in linear systems)
$\widetilde{x} \in \mathcal{K}_{m}, \quad \widetilde{x}=p_{m-1}(A) v$
Nice Properties:

- For m sufficiently large, $\mathcal{K}_{m}(A, v)$ invariant for A
- Convergence (analysis) in terms of spectral properties of A
- Variants of "basic" methods by acting on polynomial p_{m-1}

This choice of \mathcal{K}_{m} is good, but no longer sufficiently good

Getting greedy

$$
\mathcal{K}_{m}=\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k} \quad \text { New question: } \quad \mathcal{S}_{k} ?
$$

Getting greedy

$$
\mathcal{K}_{m}=\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k} \quad \text { New question: } \quad \mathcal{S}_{k} ?
$$

* Faster approximation when spectral a-priori knowledge is available (even for A Hermitian)

Getting greedy

$$
\mathcal{K}_{m}=\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k} \quad \text { New question: } \quad \mathcal{S}_{k} ?
$$

* Faster approximation when spectral a-priori knowledge is available (even for A Hermitian)
* Main motivating problem:

Large m may be required for accurate approximation x_{m}

Computational/Memory costs increase nonlinearly with m (A non-normal)

Intermezzo. Restarting procedure

Computational/Memory costs increase nonlinearly with m (A non-normal)

Restarting procedure: $\quad x_{0}$ initial approx, $r_{0}=b-A x_{0}$

$$
\begin{array}{rll}
\mathcal{K}_{m}\left(A, r_{0}\right) & \rightarrow & x_{m}^{(1)}, r_{m}^{(1)} \\
\mathcal{K}_{m}\left(A, r_{m}^{(1)}\right) & \rightarrow & x_{m}^{(2)}, r_{m}^{(2)} \\
\vdots & \rightarrow & \vdots
\end{array}
$$

Warning: Larger m not always implies faster convergence (Embree, Ernst, ...)

Restarted Methods

Convergence strongly depends on choice of $m \ldots$

Restarted Methods

Convergence strongly depends on choice of $m \ldots$ true?

Restarted Methods

Switch to FOM residual vector only at the very first restart

Pictures from Simoncini, SIMAX 2000.

Augmented projection spaces

$$
\mathcal{K}_{m}=\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k}
$$

- \mathcal{S}_{k} from spectral information of A

$$
\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k}=\operatorname{span}\left\{v, A v, \ldots, A^{m-k-1} v, y_{1}, y_{2}, \ldots, y_{k}\right\}
$$

y_{1}, \ldots, y_{k} approximate eigenvectors of A associated to cluster
(Baglama, Calvetti, Erhel, Morgan, Nabben, Reichel, Saad, Sorensen, Vuik ...)

Augmented projection spaces

$$
\mathcal{K}_{m}=\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k}
$$

- \mathcal{S}_{k} from spectral information of A

$$
\mathcal{K}_{m-k}(A, v) \cup \mathcal{S}_{k}=\operatorname{span}\left\{v, A v, \ldots, A^{m-k-1} v, y_{1}, y_{2}, \ldots, y_{k}\right\}
$$

y_{1}, \ldots, y_{k} approximate eigenvectors of A associated to cluster
(Baglama, Calvetti, Erhel, Morgan, Nabben, Reichel, Saad, Sorensen, Vuik ...)

- \mathcal{S}_{k} important space from previous restarts

Ranking based on "error" or "effectiveness" of the past spaces
(De Sturler, Baker, Jessup, Manteuffel, ...)

Augmented method. Spectral Information available.

Structural Dynamics problem:

$$
\left(\mathcal{A B}^{-1}+\sigma I\right) x=b
$$

\mathcal{A}, \mathcal{B} complex sym. $n=86,000$. Solve for σ in a wide interval
Note: at each iteration solve system with matrix \mathcal{B}
$\mathcal{B}=\mathcal{B}(\kappa) \quad \kappa$ related to artificial stiff springs at ground boundaries
\mathcal{B} numerically singular as $\kappa \rightarrow 0$

Augmented method. Spectral Information available.

Structural Dynamics problem:
 $$
\left(\mathcal{A B}^{-1}+\sigma I\right) x=b
$$

\mathcal{A}, \mathcal{B} complex sym. $n=86,000$. Solve for σ in a wide interval
Note: at each iteration solve system with matrix \mathcal{B}
$\mathcal{B}=\mathcal{B}(\kappa) \quad \kappa$ related to artificial spring stiffness at ground boundaries
\mathcal{B} numerically singular as $\kappa \rightarrow 0$

	Fill-in p=5		Fill-in p=15	
	E. Time	\# its	E. Time	\# its
	$[\mathrm{s}]$	(outer/ avg. inner)	[s]	(outer/ avg. inner)
$\kappa=0$ ACG	14066	$296 / 38$	12790	$281 / 33$
$\kappa=100$	14072	$117 / 120$	13739	$121 / 102$
$\kappa=1000$	8694	$88 / 96$	8724	$89 / 83$

$\kappa=1000$ unrealistic Perotti \& Simoncini, '02

ACG: Augmented CG, Saad \& Yeung \& Ehrel \& Guyomarc'h, 2000

Example of Augmented method. Error Space

Tricky way to enhance approximation space
$A \quad$ from $L(u)=-1000 \Delta u+2 e^{4\left(x^{2}+y^{2}\right)} u_{x}-2 e^{4\left(x^{2}+y^{2}\right)} u_{y} \quad n=40000$

Example of Augmented method. Error Space

Tricky way to enhance approximation space (E. De Sturler)
A from $L(u)=-1000 \Delta u+2 e^{4\left(x^{2}+y^{2}\right)} u_{x}-2 e^{4\left(x^{2}+y^{2}\right)} u_{y} \quad n=40000$

Code: courtesy of Oliver Ernst
see also Baker, Jessup, Manteuffel '05

Changing \mathcal{K}_{m}

Modify \mathcal{K}_{m} instead of augmenting it!

- Increase flexibility
- Cope with "involved" operators

Changing \mathcal{K}_{m}. Flexible methods

Original problem

$$
A P^{-1} x=b \quad P \text { preconditioner }
$$

$\mathcal{K}_{m}\left(A P^{-1}, b\right)=\operatorname{span}\left\{b, A P^{-1} b, \ldots,\left(A P^{-1}\right)^{m-1} b\right\}$
at each iteration $i: \quad z_{i}=P^{-1} v_{i}$

Changing \mathcal{K}_{m}. Flexible methods

Original problem

$$
A P^{-1} x=b \quad P \text { preconditioner }
$$

$\mathcal{K}_{m}\left(A P^{-1}, b\right)=\operatorname{span}\left\{b, A P^{-1} b, \ldots,\left(A P^{-1}\right)^{m-1} b\right\}$
at each iteration $i: \quad z_{i}=P^{-1} v_{i}$

Flexible variant:

$$
\text { Iteration } i: \quad z_{i}=P^{-1} v_{i} \quad \Rightarrow \quad z_{i}=P_{i}^{-1} v_{i}
$$

$$
\widetilde{x}_{m} \in \operatorname{span}\left\{b, z_{1}, z_{2}, \ldots, z_{m-1}\right\} \neq \mathcal{K}_{m}\left(A P^{-1}, b\right)
$$

Flexible methods. An example

Flexible method may be used as a Truncated/Augmented method.
$z=P^{-1} v \quad \Leftrightarrow z \approx A^{-1} v$

$$
\operatorname{span}\left\{b, z_{1}, z_{2}, \ldots, z_{m-1}\right\}
$$

Flexible methods. An example

Flexible method may be used as a Truncated/Augmented method.
$z=P^{-1} v \quad \Leftrightarrow z \approx A^{-1} v$

$$
\operatorname{span}\left\{b, z_{1}, z_{2}, \ldots, z_{m-1}\right\}
$$

$A \quad$ from $L(u)=-\Delta u+1000 x u_{x}$

$$
n=900
$$

Simoncini \& Szyld, SINUM '03

Flexible methods. A second example

Flexible method may be used as a Truncated/Augmented method. $z=P^{-1} v \quad \Leftrightarrow z \approx A^{-1} v \quad \operatorname{span}\left\{b, z_{1}, z_{2}, \ldots, z_{m-1}\right\}$
$A \quad$ from $L(u)=-1000 \Delta u+2 e^{4\left(x^{2}+y^{2}\right)} u_{x}-2 e^{4\left(x^{2}+y^{2}\right)} u_{y}$ $n=40000$

Simoncini \& Szyld, SINUM '03

Changing \mathcal{K}_{m}. Inexact methods.

Original problem

$$
A x=b \quad A \quad \text { Possibly not available exactly }
$$

$\mathcal{K}_{m}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{m-1} b\right\}$

Changing \mathcal{K}_{m}. Inexact methods.

Original problem

$$
A x=b \quad A \quad \text { Possibly not available exactly }
$$

$\mathcal{K}_{m}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{m-1} b\right\}$

Inexact (relaxed) variant:

$$
\begin{aligned}
& \text { Iteration } i: \quad z_{i}=A v_{i} \quad \Rightarrow \quad z_{i}=A v_{i}+f_{i} \\
& \widetilde{x}_{m} \in \operatorname{span}\left\{b, z_{1}, z_{2}, \ldots, z_{m-1}\right\} \neq \mathcal{K}_{m}(A, b)
\end{aligned}
$$

Changing \mathcal{K}_{m}. Inexact methods.

Original problem

$$
A x=b \quad A \quad \text { Possibly not available exactly }
$$

$\mathcal{K}_{m}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{m-1} b\right\}$

Inexact (relaxed) variant:

$$
\begin{aligned}
& \text { Iteration } i: \quad z_{i}=A v_{i} \quad \Rightarrow \quad z_{i}=A v_{i}+f_{i} \\
& \widetilde{x}_{m} \in \operatorname{span}\left\{b, z_{1}, z_{2}, \ldots, z_{m-1}\right\} \neq \mathcal{K}_{m}(A, b)
\end{aligned}
$$

\& "Worse" than for Flexible methods:

$$
r_{m}=b-A x_{m} \quad \text { not available! }
$$

Available: $\quad \widetilde{r}_{m}$ computable residual

Inexact Methods. An example

if $\quad\left\|f_{i}\right\|=O\left(\frac{\varepsilon}{\left\|\widetilde{r}_{i-1}\right\|}\right) \quad \forall i \quad \Rightarrow\left\|b-A x_{m}\right\| \leq \varepsilon \quad$ for m large enough

Inexact Methods. An example

$$
\text { if }\left\|f_{i}\right\|=O\left(\frac{\varepsilon}{\left\|\tilde{r i}_{i-1}\right\|}\right) \quad \forall i \quad \Rightarrow\left\|b-A x_{m}\right\| \leq \varepsilon \quad \text { for } m \text { large enough }
$$

$$
\underbrace{B^{T} S^{-1} B}_{A} x=b
$$

At each it. i solve:

$$
S w_{i}=B v_{i}
$$

$$
\begin{aligned}
& \left\|S w_{i}-B v_{i}\right\| \leq \epsilon_{\text {inner }}\left(\left\|f_{i}\right\|\right) \\
& \delta_{m}=\left\|r_{m}-\widetilde{r}_{m}\right\|
\end{aligned}
$$

Simoncini \& Szyld, SISC '03

A different application. The Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

with A dissipative, $Q=B B^{T}$ of low rank $\quad X \approx \tilde{X} \quad$ low rank

A different application. The Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

with A dissipative, $Q=B B^{T}$ of low rank
$X \approx \widetilde{X} \quad$ low rank

- Standard Krylov approach: $\quad \widetilde{X} \in \mathcal{K}_{m}(A, B)$ and

$$
\begin{aligned}
& \quad R=A \widetilde{X}+\widetilde{X} A^{T}+Q \quad \perp \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, B) \\
& \widetilde{X}=V_{m} Y_{m} V_{m}^{T} \text { for some } Y_{m} \quad \text { Range }\left(V_{m}\right)=\mathcal{K}_{m}(A, B) \quad \text { Saad, '90 }
\end{aligned}
$$

A different application. The Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

with A dissipative, $Q=B B^{T}$ of low rank $\quad X \approx \widetilde{X}$

- Standard Krylov approach: $\quad \widetilde{X} \in \mathcal{K}_{m}(A, B)$ and

$$
R=A \widetilde{X}+\widetilde{X} A^{T}+Q \quad \perp \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, B)
$$

$$
\widetilde{X}=V_{m} Y_{m} V_{m}^{T} \text { for some } Y_{m} \quad \operatorname{Range}\left(V_{m}\right)=\mathcal{K}_{m}(A, B)
$$

- New "Enhanced" approach: $\widetilde{X} \in \mathcal{K}_{k}(A, B) \cup \mathcal{K}_{k}\left(A^{-1}, B\right)$ and

$$
R=A \widetilde{X}+\widetilde{X} A^{T}+Q \quad \perp \quad \mathcal{L}_{m}=\mathcal{K}_{k}(A, B) \cup \mathcal{K}_{k}\left(A^{-1}, B\right)
$$

A different application. The Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

with A dissipative, $Q=B B^{T}$ of low rank $\quad X \approx \tilde{X} \quad$ low rank

- Standard Krylov approach: $\quad \widetilde{X} \in \mathcal{K}_{m}(A, B)$ and

$$
R=A \widetilde{X}+\widetilde{X} A^{T}+Q \quad \perp \quad \mathcal{L}_{m}=\mathcal{K}_{m}(A, B)
$$

$$
\widetilde{X}=V_{m} Y_{m} V_{m}^{T} \text { for some } Y_{m} \quad \operatorname{Range}\left(V_{m}\right)=\mathcal{K}_{m}(A, B)
$$

- New "Enhanced" approach: $\widetilde{X} \in \mathcal{K}_{k}(A, B) \cup \mathcal{K}_{k}\left(A^{-1}, B\right)$ and

$$
R=A \widetilde{X}+\widetilde{X} A^{T}+Q \quad \perp \quad \mathcal{L}_{m}=\mathcal{K}_{k}(A, B) \cup \mathcal{K}_{k}\left(A^{-1}, B\right)
$$

* Very competitive w.r.to Cyclic ADI method

Simoncini, tr. 2006

An example. Time-invariant linear system

$$
\mathbf{x}^{\prime}=\mathbf{x}_{x x}+\mathbf{x}_{y y}+\mathbf{x}_{z z}-10 x \mathbf{x}_{x}-1000 y \mathbf{x}_{y}-10 z \mathbf{x}_{z}+\mathbf{b}(x, y) \mathbf{u}(t)
$$

A matrix $\quad 18^{3} \times 18^{3}$

An example. Time-invariant linear system

$$
\mathbf{x}^{\prime}=\mathbf{x}_{x x}+\mathbf{x}_{y y}+\mathbf{x}_{z z}-10 x \mathbf{x}_{x}-1000 y \mathbf{x}_{y}-10 z \mathbf{x}_{z}+\mathbf{b}(x, y) \mathbf{u}(t)
$$

A matrix $\quad 18^{3} \times 18^{3}$

approximation space dim.: 146 (Standard Krylov)
112 (Enhanced Krylov)

An example. Time-invariant linear system

$$
\mathbf{x}^{\prime}=\mathbf{x}_{x x}+\mathbf{x}_{y y}+\mathbf{x}_{z z}-10 x \mathbf{x}_{x}-1000 y \mathbf{x}_{y}-10 \mathbf{x}_{z}+\mathbf{b}(x, y) \mathbf{u}(t)
$$

A matrix $\quad 18^{3} \times 18^{3}$

approximation space dim.: 146 (Standard Krylov) 112 (Enhanced Krylov)

Conclusions and Pointers

- Projection is a versatile tool

Lots of room for improvements on hard problems

Conclusions and Pointers

- Projection is a versatile tool

Lots of room for improvements on hard problems

- Survey
" Recent computational developments in Krylov Subspace Methods for linear systems"
with Daniel Szyld, Temple University

To appear in J. Numerical Linear Algebra w/Appl. (352 refs)

This and other papers at
http://www.dm.unibo.it/~simoncin

Structural Dynamics Problem

$$
\mathbf{M} \ddot{\mathbf{q}}+\mathbf{C} \dot{\mathbf{q}}+\mathbf{K q}=\mathbf{f}(t) \quad n \text { d.o.f. }
$$

- Linearization under small deformations
- Direct frequency analysis for damping modeling
(as opposed to modal or time analysis)
* ideal for mechanical properties depending on frequency
- influence of deformation velocity on materials
- presence of hysteretic damping, ...

In the frequency domain: $\left(\overline{\mathbf{a}}=-(2 \pi f)^{2} \overline{\mathbf{q}}(f)\right)$:

$$
\left(\frac{1}{-(2 \pi f)^{2}} \mathbf{K}_{*}+\frac{1}{i(2 \pi f)} \mathbf{C}_{V}+\mathbf{M}\right) \overline{\mathbf{a}}=\mathbf{b}
$$

$\mathbf{C}=\mathbf{C}_{V}+\frac{1}{2 \pi f} \mathbf{C}_{H}, \quad \Rightarrow \mathbf{K}_{*}:=\mathbf{K}+i \mathbf{C}_{H}$

PLAN VIEW
\qquad

Concrete Slab
Elements

Model Problem: 3D Soil-Structure interaction

\star viscous damping at the boundary $\quad \Rightarrow \quad \mathbf{K}_{*}$ singular
\Rightarrow FE discretization, \mathbf{K}_{*} almost singular

Algebraic Linearization: $\quad\left(\sigma^{2} \mathbf{K}_{*}+\sigma i \mathbf{C}_{V}-\mathbf{M}\right) \mathbf{x}=\mathbf{b}, \quad \mathbf{x}=\mathbf{x}(\sigma)$ equivalent to

$$
(\underbrace{\left[\begin{array}{cc}
i \mathbf{C}_{V} & -\mathbf{M} \\
-\mathbf{M} & 0
\end{array}\right]}_{\mathcal{A}}+\sigma \underbrace{\left[\begin{array}{cc}
\mathbf{K}_{*} & 0 \\
0 & \mathbf{M}
\end{array}\right]}_{\mathcal{B}})\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
0
\end{array}\right]
$$

with $\mathbf{y}=\sigma \mathbf{x}$

