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Projection methods for large-scale problems

Given the system of n equations

F(x) = 0 x ∈ R
n

- Construct approximation space Km (m = dim(Km) )

- Find x̃ ∈ Km such that x̃ ≈ x

? Projection onto a much smaller space m ¿ n

Approximation process:

residual: r := F(x̃)

Construct (left) space Lm of dimension m and impose

r ⊥ Lm
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Challenges

How to select Km

How to derive good Lm so that it also carries other good properties

General idea:

Construct sequence of approximation spaces Km ⊂ Km+1 such that

x̃m ∈ Km and x̃m → x as m → ∞

(in some sense)

Analogously, Lm ⊂ Lm+1
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More specific problems

F(x) = 0

A ∈ R
n×n

Ax− b = 0 (ϕk(A)x− b = 0) where ϕk polynomial of degree k

Ax − λMx = 0 (ϕk(λ, A0, A1, . . . , Ak)x = 0)

AX + XAT + Q = 0

Evaluation of Transfer and other matrix functions
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Choosing Lm

Focus on linear system:

Ax = b, A nonsing.

xm ∈ Km:

? Lm = Km If A symmetric positive definite,

rm = b − Axm ⊥ Lm ⇔ ‖x − xm‖A = min
ex∈Km

!

? Lm = AKm

rm = b − Axm ⊥ Lm ⇔ ‖rm‖2 = min
ex∈Km

!

“Optimal” properties hold for any choice of Km Eiermann & Ernst A.N. ’01

Typically: Lm = Km ⇒ FOM, CG Lm = AKm ⇒ GMRES, MINRES
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Relaxing optimality in Lm. Truncation

Example: A is non-normal, but “nice” Lm = AKm
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(-): r ⊥ Lm (- -): r ⊥loc Lm k gives “locality”
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Relaxing optimality in Lm. Truncation

Example: A is non-normal, more “nasty” Lm = AKm
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(-): r ⊥ Lm (- -): r ⊥loc Lm Simoncini &Szyld, Num.Math.’05
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Choosing Km

The “classical” approach

Km := Km(A, v) = span{v, Av, . . . , Am−1v}

(e.g., v = b in linear systems)

x̃ ∈ Km, x̃ = pm−1(A)v

Nice Properties:

For m sufficiently large, Km(A, v) invariant for A

Convergence (analysis) in terms of spectral properties of A

Variants of “basic” methods by acting on polynomial pm−1

This choice of Km is good, but no longer sufficiently good
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Getting greedy

Km = Km−k(A, v) ∪ Sk New question: Sk?

? Faster approximation when spectral a-priori knowledge is available
(even for A Hermitian)

? Main motivating problem:

Large m may be required for accurate approximation xm

⇓

Computational/Memory costs increase nonlinearly with m

(A non-normal)
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Intermezzo. Restarting procedure

Computational/Memory costs increase nonlinearly with m

(A non-normal)

Restarting procedure: x0 initial approx, r0 = b − Ax0

Km(A, r0) → x(1)
m , r(1)

m

Km(A, r(1)
m ) → x(2)

m , r(2)
m

... →
...

Warning: Larger m not always implies faster convergence
(Embree, Ernst, ...)
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Restarted Methods

Convergence strongly depends on choice of m ...
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Restarted Methods

Convergence strongly depends on choice of m ... true?
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Restarted Methods

Switch to FOM residual vector only at the very first restart
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Pictures from Simoncini, SIMAX 2000. Intermezzo ends.
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Augmented projection spaces

Km = Km−k(A, v) ∪ Sk

Sk from spectral information of A

Km−k(A, v) ∪ Sk = span{v, Av, . . . , Am−k−1v, y1, y2, . . . , yk}

y1, . . . , yk approximate eigenvectors of A associated to cluster

(Baglama, Calvetti, Erhel, Morgan, Nabben, Reichel, Saad, Sorensen, Vuik ...)

Sk important space from previous restarts
Ranking based on “error” or “effectiveness” of the past spaces

(De Sturler, Baker, Jessup, Manteuffel, ...)
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Augmented method. Spectral Information available.
Structural Dynamics problem: (AB−1 + σI)x = b

A,B complex sym. n = 86, 000. Solve for σ in a wide interval

Note: at each iteration solve system with matrix B

B = B(κ) κ related to artificial stiff springs at ground boundaries

B numerically singular as κ → 0
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Augmented method. Spectral Information available.
Structural Dynamics problem: (AB−1 + σI)x = b

A,B complex sym. n = 86, 000. Solve for σ in a wide interval

Note: at each iteration solve system with matrix B

B = B(κ) κ related to artificial spring stiffness at ground boundaries

B numerically singular as κ → 0

Fill-in p=5 Fill-in p=15

E. Time # its E. Time # its

[s] (outer/ avg. inner) [s] (outer/ avg. inner)

κ = 0 ACG 14066 296/38 12790 281/33

κ = 100 14072 117/120 13739 121/102

κ = 1000 8694 88/96 8724 89/83

κ = 1000 unrealistic Perotti & Simoncini, ’02

ACG: Augmented CG, Saad & Yeung & Ehrel & Guyomarc’h, 2000
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Example of Augmented method. Error Space
Tricky way to enhance approximation space

A from L(u) = −1000∆u + 2e4(x2+y2)ux − 2e4(x2+y2)uy n = 40 000
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Example of Augmented method. Error Space
Tricky way to enhance approximation space (E. De Sturler)

A from L(u) = −1000∆u + 2e4(x2+y2)ux − 2e4(x2+y2)uy n = 40 000
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GCROT(7,23,23,4,1,0)

Code: courtesy of Oliver Ernst see also Baker, Jessup, Manteuffel ’05
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Changing Km

Modify Km instead of augmenting it!

Increase flexibility

Cope with “involved” operators

...
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Changing Km. Flexible methods

Original problem

AP−1x = b P preconditioner

Km(AP−1, b) = span{b, AP−1b, . . . , (AP−1)m−1b}

at each iteration i: zi = P−1vi

Flexible variant: Saad, ’93

Iteration i: zi = P−1vi ⇒ zi = P−1
i vi

x̃m ∈ span{b, z1, z2, . . . , zm−1} 6= Km(AP−1, b)
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Flexible methods. An example
Flexible method may be used as a Truncated/Augmented method.

z = P−1v ⇔ z ≈ A−1v span{b, z1, z2, . . . , zm−1}

A from L(u) = −∆u + 1000xux n = 900
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Flexible methods. A second example
Flexible method may be used as a Truncated/Augmented method.
z = P−1v ⇔ z ≈ A−1v span{b, z1, z2, . . . , zm−1}

A from L(u) = −1000∆u + 2e4(x2+y2)ux − 2e4(x2+y2)uy n = 40 000
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Changing Km. Inexact methods.

Original problem

Ax = b A Possibly not available exactly

Km(A, b) = span{b, Ab, . . . , Am−1b}

Inexact (relaxed) variant:

Iteration i: zi = Avi ⇒ zi = Avi + fi

x̃m ∈ span{b, z1, z2, . . . , zm−1} 6= Km(A, b)

♣ “Worse” than for Flexible methods:

rm = b − Axm not available!

Available: r̃m computable residual
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Inexact Methods. An example

if ‖fi‖ = O

(
ε

‖r̃i−1‖

)
∀i ⇒ ‖b − Axm‖ ≤ ε for m large enough

BT S−1B︸ ︷︷ ︸
A

x = b

At each it. i solve:

Swi = Bvi

‖Swi − Bvi‖ ≤ εinner(‖fi‖)

δm = ‖rm − erm‖
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A different application. The Lyapunov equation

AX + XAT + Q = 0

with A dissipative, Q = BBT of low rank X ≈ X̃ low rank

Standard Krylov approach: X̃ ∈ Km(A, B) and

R = AX̃ + X̃AT + Q ⊥ Lm = Km(A, B)

X̃ = VmYmV T
m for some Ym Range(Vm) = Km(A, B) Saad, ’90

New “Enhanced” approach: X̃ ∈ Kk(A, B) ∪ Kk(A−1, B) and

R = AX̃ + X̃AT + Q ⊥ Lm = Kk(A, B) ∪ Kk(A−1, B)

? Very competitive w.r.to Cyclic ADI method
Simoncini, tr. 2006
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An example. Time-invariant linear system

x′ = xxx + xyy + xzz − 10xxx − 1000yxy − 10zxz + b(x, y)u(t)

A matrix 183 × 183
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An example. Time-invariant linear system

x′ = xxx + xyy + xzz − 10xxx − 1000yxy − 10xz + b(x, y)u(t)
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Conclusions and Pointers

Projection is a versatile tool

Lots of room for improvements on hard problems

Survey

“ Recent computational developments in Krylov Subspace Methods
for linear systems”

with Daniel Szyld, Temple University

To appear in J. Numerical Linear Algebra w/Appl. (352 refs)

This and other papers at

http://www.dm.unibo.it/˜simoncin
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Structural Dynamics Problem

Mq̈ + Cq̇ + Kq = f(t) n d.o.f.

Linearization under small deformations

Direct frequency analysis for damping modeling
(as opposed to modal or time analysis)
? ideal for mechanical properties depending on frequency
- influence of deformation velocity on materials
- presence of hysteretic damping, ...

In the frequency domain: (a = −(2πf)2q(f)):

(
1

−(2πf)2
K∗ +

1

i(2πf)
CV + M

)
a = b

C = CV + 1
2πf

CH , ⇒ K∗ := K + iCH
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Model Problem: 3D Soil-Structure interaction

? viscous damping at the boundary ⇒ K∗ singular

⇒ FE discretization, K∗ almost singular

Algebraic Linearization:
(
σ2K∗ + σiCV − M

)
x = b, x = x(σ)

equivalent to



[
iCV −M

−M 0

]

︸ ︷︷ ︸
A

+σ

[
K∗ 0

0 M

]

︸ ︷︷ ︸
B




[
y

x

]
=

[
b

0

]

with y = σx
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