

Model-assisted effective large scale matrix computations

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

A slow start

Solution of a (square) algebraic linear system of large dimension. Find $\mathbf{u} \in \mathbb{R}^n$ such that

$\mathbf{A}\mathbf{u}=\mathbf{f}$

with A symmetric and positive definite:

 $\langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle > 0 \ \forall \mathbf{x} \neq 0$

Very large dimension \Rightarrow iterative procedure

Given an initial guess $\mathbf{u}_0 \in \mathbb{R}^n$ ($\mathbf{u}_0 = 0$ in the following), generate sequence

$$\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m, \dots
ightarrow \mathbf{u}$$

"Projection" methods (or, reduction methods) • Approximation vector space K_m . At each iteration m $\{\mathbf{u}_m\}$ such that $\mathbf{u}_m \in K_m$ K_m : dimension^a m, with the "expansion" property:

 $K_m \subseteq K_{m+1}$

• Computation of iterate. Galerkin condition:

residual $\mathbf{r}_m := \mathbf{f} - \mathbf{A}\mathbf{u}_m \perp K_m$

 \Rightarrow This condition uniquely defines $\mathbf{u}_m \in K_m$

^aAt most

"Projection" methods (or, reduction methods) • Approximation vector space K_m . At each iteration m $\{\mathbf{u}_m\}$ such that $\mathbf{u}_m \in K_m$ K_m : dimension^a m, with the "expansion" property:

 $K_m \subseteq K_{m+1}$

• Computation of iterate. Galerkin condition:

residual $\mathbf{r}_m := \mathbf{f} - \mathbf{A}\mathbf{u}_m \perp K_m$

 \Rightarrow This condition uniquely defines $\mathbf{u}_m \in K_m$

(Conjugate Gradients, Hestenes & Stiefel, '52)

^aAt most

Optimality property of Galerkin projection method Let \mathbf{u}^* be the true solution. Galerkin property: residual $\mathbf{r}_m := \mathbf{f} - \mathbf{A}\mathbf{u}_m \perp K_m$ is equivalent to: \mathbf{u}_m solution to $\min_{\mathbf{u}\in K_m} \|\mathbf{u}^\star-\mathbf{u}\|_{\mathbf{A}}$ where $\|\cdot\|_{\mathbf{A}}$ is the energy norm, namely $\|\mathbf{x}\|_{\mathbf{A}}^2 := \langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle$

Optimality property of Galerkin projection method Let \mathbf{u}^{\star} be the true solution. Galerkin property: residual $\mathbf{r}_m := \mathbf{f} - \mathbf{A}\mathbf{u}_m \perp K_m$ is equivalent to: solution to $\min_{\mathbf{u}\in K_m} \|\mathbf{u}^{\star}-\mathbf{u}\|_{\mathbf{A}}$ \mathbf{u}_m where $\|\cdot\|_{\mathbf{A}}$ is the energy norm, namely $\|\mathbf{x}\|_{\mathbf{A}}^2 := \langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle$ Note: $\|\mathbf{u}^{\star} - \mathbf{u}\|_{\mathbf{A}}$ cannot be computed! But, it can be easily estimated - particularly well if convergence is fast (Strakoš, Tichy, Meurant, Golub, Arioli, ...)

Optimality property of Galerkin projection method Let \mathbf{u}^{\star} be the true solution. Galerkin property: residual $\mathbf{r}_m := \mathbf{f} - \mathbf{A}\mathbf{u}_m \perp K_m$ is equivalent to: \mathbf{u}_m solution to $\min_{\mathbf{u}\in K_m} \|\mathbf{u}^{\star}-\mathbf{u}\|_{\mathbf{A}}$ where $\|\cdot\|_{\mathbf{A}}$ is the energy norm, namely $\|\mathbf{x}\|_{\mathbf{A}}^2 := \langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle$ Note: $\|\mathbf{u}^{\star} - \mathbf{u}\|_{\mathbf{A}}$ cannot be computed! But, it can be easily estimated - particularly well if convergence is fast (Strakoš, Tichy, Meurant, Golub, Arioli, ...)

 \Rightarrow Use estimate of $\|\mathbf{u}^{\star} - \mathbf{u}_m\|_{\mathbf{A}}$ as stopping criterion

Convergence and spectral properties

- In exact arithmetic (i.e., in theory), finite termination property
- A-priori bound for energy norm of the error:

If $K_m = \operatorname{span}{\mathbf{f}, \mathbf{Af}, \dots, \mathbf{A}^{m-1}\mathbf{f}}$, then

$$\|\mathbf{u}^{\star} - \mathbf{u}_{m}\|_{\mathbf{A}} \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{m} \|\mathbf{u}^{\star} - \mathbf{u}_{0}\|_{\mathbf{A}}$$

where $\kappa = rac{\lambda_{\max}(\mathbf{A})}{\lambda_{\min}(\mathbf{A})}$

Convergence and spectral properties

- In exact arithmetic (i.e., in theory), finite termination property
- A-priori bound for energy norm of the error:

If $K_m = \operatorname{span}{\mathbf{f}, \mathbf{Af}, \dots, \mathbf{A}^{m-1}\mathbf{f}}$, then

$$\|\mathbf{u}^{\star} - \mathbf{u}_m\|_{\mathbf{A}} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^m \|\mathbf{u}^{\star} - \mathbf{u}_0\|_{\mathbf{A}}$$

where $\kappa = rac{\lambda_{\max}(\mathbf{A})}{\lambda_{\min}(\mathbf{A})}$

Consequences:

- Convergence: The closer κ to 1 the faster
- Convergence depends on spectral properties, not directly on problem size!

Exploring the intuitive relation. $-\Delta u = f$

V space of continuous solns, V_h discrete space of approximate solns $V_h \approx V$, V_h e.g., space of piecewise low degree polynomials

Q1 finite element subdivision square domain Ω 1.5 1.5 0.5 0.5 0 -0.5 -0.5 -1 -1.5 -1.5 -1.5 -1.5 -0.5 0.5 1.5 \Rightarrow -0.5 0.5 -1 0 1 -1 0 1 1.5 Exploring the intuitive relation. $-\Delta u = f$

V space of continuous solns, V_h discrete space of approximate solns

Continuous weak formulation

Find $u \in V$ s.t. $(\nabla u, \nabla v) = (f, v), \ \forall v \in V_0$ $(x, y) = \int_{\Omega} xy$

Exploring the intuitive relation. $-\Delta u = f$ V space of continuous solns, V_h discrete space of approximate solns Continuous weak formulation Find $u \in V$ s.t. $(\nabla u, \nabla v) = (f, v), \forall v \in V_0$ $(x, y) = f_{\Omega} xy$ Discrete weak formulation Find $u_h \in V_h$ s.t. $(\nabla u_h, \nabla v_h) = (f, v_h), \forall v_h \in V_{h,0}$ \Leftrightarrow $\mathbf{Au} = \mathbf{f}$ $\{\phi_k\}$ basis for V_h , then $u_h = \sum \phi_k \mathbf{u}(k)$

Exploring the intuitive relation. $-\Delta u = f$ V space of continuous solns, V_h discrete space of approximate solns Continuous weak formulation Find $u \in V$ s.t. $(\nabla u, \nabla v) = (f, v), \ \forall v \in V_0$ $(x, y) = \int_{\Omega} xy$ Discrete weak formulation Find $u_h \in V_h$ s.t. $(\nabla u_h, \nabla v_h) = (f, v_h), \ \forall v_h \in V_{h,0} \qquad \Leftrightarrow \qquad \mathbf{Au} = \mathbf{f}$ $\{\phi_k\}$ basis for V_h , then $u_h = \sum \phi_k \mathbf{u}(k)$ Error minimization property $\min_{w_h \in V_h} \|\nabla u - \nabla w_h\| \qquad \Leftrightarrow \qquad \min_{\mathbf{w} \in K_m} \|\mathbf{u} - \mathbf{w}\|_{\mathbf{A}}$

Exploring the intuitive relation.
$$-\Delta u = f$$

 V space of continuous solns, V_h discrete space of approximate solns
Continuous weak formulation
Find $u \in V$ s.t. $(\nabla u, \nabla v) = (f, v), \forall v \in V_0$ $(x, y) = f_{\Omega} xy$
Discrete weak formulation
Find $u_h \in V_h$ s.t. $(\nabla u_h, \nabla v_h) = (f, v_h), \forall v_h \in V_{h,0}$ \Leftrightarrow $\mathbf{Au} = \mathbf{f}$
 $\{\phi_k\}$ basis for V_h , then $u_h = \sum \phi_k \mathbf{u}(k)$
Error minimization property
 $\min_{w_h \in V_h} \|\nabla u - \nabla w_h\|$ \Leftrightarrow $\min_{\mathbf{w} \in K_m} \|\mathbf{u} - \mathbf{w}\|_{\mathbf{A}}$
So what?

From intuition to practice

- 1. Spectral properties of ${\bf A}$ depend on problem
- 2. The error energy norms (functional and algebraic) are related

From intuition to practice

- 1. Spectral properties of ${\bf A}$ depend on problem
- 2. The error energy norms (functional and algebraic) are related

1. Spectral properties of \mathbf{A} depend on problem. Crucial in

$$\|\mathbf{u}^{\star} - \mathbf{u}_{m}\|_{\mathbf{A}} \leq \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{m} \|\mathbf{u}^{\star} - \mathbf{u}_{0}\|_{\mathbf{A}}$$

and $\kappa = O(\frac{1}{h^2})$

h	κ	n	# iterations
2^{-1}	3.33	25	3
2^{-3}	51.71	289	24
2^{-5}	829.86	4225	101

Model-based algebraic acceleration strategies

Spectrally equivalent matrices: $\tilde{\mathbf{A}} \sim \mathbf{A}$ if \exists positive c_1, c_2 such that

 $c_1 \langle \mathbf{x}, \tilde{\mathbf{A}} \mathbf{x} \rangle \leq \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \leq c_2 \langle \mathbf{x}, \tilde{\mathbf{A}} \mathbf{x} \rangle \quad \forall \mathbf{x} \in \mathbb{R}^n$

... usually, c_1, c_2 do not depend on h

A Realization: Geometric/Algebraic Multigrid

(Brandt, Bramble, Ruge, Stüben, Hackbusch, Trottenberg, Briggs, Henson, McCormick, ...)

Model-based algebraic acceleration strategies

Spectrally equivalent matrices: $\tilde{\mathbf{A}} \sim \mathbf{A}$ if \exists positive c_1, c_2 such that

 $c_1 \langle \mathbf{x}, \tilde{\mathbf{A}} \mathbf{x} \rangle \le \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \le c_2 \langle \mathbf{x}, \tilde{\mathbf{A}} \mathbf{x} \rangle \quad \forall \mathbf{x} \in \mathbb{R}^n$

... usually, c_1, c_2 do not depend on h

A Realization: Geometric/Algebraic Multigrid

(Brandt, Bramble, Ruge, Stüben, Hackbusch, Trottenberg, Briggs, Henson, McCormick, ...)

Formally, if $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$ and $\mathbf{M} = \mathbf{L}^{-1}\mathbf{A}\mathbf{L}^{-T}$, then $\kappa(\mathbf{M}) = O(\frac{c_2}{c_1})$ and

 $\mathbf{A}\mathbf{u} = \mathbf{f} \qquad \Rightarrow \qquad \mathbf{M}\tilde{\mathbf{u}} = \tilde{\mathbf{f}}, \qquad \mathbf{u} = \mathbf{L}^T \tilde{\mathbf{u}}, \ \mathbf{f} = \mathbf{L}\tilde{\mathbf{f}}$

h	n	# iterations
2^{-3}	289	7
2^{-5}	4225	8
2^{-8}	66049	9

Exploring the intuitive relation

2. The energy norm of the error:

$$\|\nabla u - \nabla u_h\| \quad \Leftrightarrow \quad \|\mathbf{u}^{\star} - \mathbf{u}_m\|_{\mathbf{A}}$$

Let $u_{h,m} \in V_h$, with coefficients \mathbf{u}_m (similarly for u_h). Then $\|\nabla(u - u_{h,m})\|^2 = \|\nabla(u - u_h)\|^2 + \|\mathbf{u}^* - \mathbf{u}_m\|_{\mathbf{A}}^2$

with

$$\|\nabla(u-u_h)\| = O(h)$$

(other constants depend, e.g., on the regularity of the solution)

Exploring the intuitive relation

2. The energy norm of the error:

$$\|\nabla u - \nabla u_h\| \quad \Leftrightarrow \quad \|\mathbf{u}^{\star} - \mathbf{u}_m\|_{\mathbf{A}}$$

Let $u_{h,m} \in V_h$, with coefficients \mathbf{u}_m (similarly for u_h). Then

$$\|\nabla(u - u_{h,m})\|^2 = \|\nabla(u - u_h)\|^2 + \|\mathbf{u}^* - \mathbf{u}_m\|^2_{\mathbf{A}}$$

with

 $\|\nabla(u-u_h)\| = O(h)$

(other constants depend, e.g., on the regularity of the solution)

 \Rightarrow Stopping criterion for the iterative method:

 $\|\mathbf{u}^{\star} - \mathbf{u}_m\|_{\mathbf{A}} = O(h)$

- Very loose linear system accuracy (cheap...)
- Different perspective from Gauss elimination type solvers

(Arioli, Noulard, Russo, Loghin, Wathen, Jiránek, Strakoš, Vohralík, ...)

An application to the Stokes equations

$$\begin{aligned} -\nabla^2 \, \vec{u} + \nabla p &= \vec{0}, \\ \nabla \cdot \, \vec{u} &= 0, \end{aligned}$$

on some domain $\Omega \subset \mathbb{R}^n$, with b.c. $\vec{u} = \vec{w}$ on $\partial \Omega$

An application to the Stokes equations

$$-\nabla^2 \, \vec{u} + \nabla p = \vec{0},$$
$$\nabla \cdot \, \vec{u} = 0,$$

on some domain $\Omega \subset \mathbb{R}^n$, with b.c. $\vec{u} = \vec{w}$ on $\partial \Omega$

With the appropriate choices of bilinear forms and approximation spaces, we obtain:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{g} \end{bmatrix} \qquad \Leftrightarrow \qquad \mathcal{M} \mathbf{x} = \mathbf{b}$$

with ${\boldsymbol{\mathcal{M}}}$ large, real indefinite symmetric matrix

Saddle point algebraic linear system (cf. Benzi & Golub & Liesen, '05)

Iterative solver and accelerator

 $\mathbf{\mathcal{M}} \mathbf{x} = \mathbf{b}$

 \mathcal{M} is symmetric and indefinite. Petrov-Galerkin condition:

 $\mathbf{x}_m \in K_m$, s.t. $\min \|\mathbf{b} - \mathcal{M}\mathbf{x}_m\|_2$

 $\mathbf{r}_m = \mathbf{b} - \mathcal{M} \mathbf{x}_m$, $m = 0, 1, \dots$ (Paige & Saunders, '75)

Iterative solver and accelerator

$$\mathcal{M} \mathbf{x} = \mathbf{b}$$

 \mathcal{M} is symmetric and indefinite. Petrov-Galerkin condition:

$$\mathbf{x}_{m} \in K_{m}, \quad \text{s.t.} \qquad \min \|\mathbf{b} - \mathcal{M}\mathbf{x}_{m}\|_{2}$$
$$\mathbf{r}_{m} = \mathbf{b} - \mathcal{M}\mathbf{x}_{m}, \ m = 0, 1, \dots \qquad (\text{Paige & Saunders, '75})$$
$$\text{If } \mathcal{P} = \mathbf{H}\mathbf{H}^{T} \text{ is an accelerator (sym. pos.def.),}$$
$$\mathbf{x}_{m} \in K_{m}, \quad \text{s.t.} \qquad \min \|\mathbf{b} - \mathcal{M}\mathbf{x}_{m}\|_{\mathcal{P}^{-1}}$$

where $K_m = \mathbf{H}^{-1} \operatorname{span} \{ \mathbf{b}, \mathcal{MP}^{-1} \mathbf{b}, \dots, (\mathcal{MP}^{-1})^{m-1} \mathbf{b} \}$

An accelerator for Stokes mixed approximation

$$\mathcal{M} = \left[egin{array}{cc} \mathbf{A} & \mathbf{B}^T \ \mathbf{B} & \mathbf{0} \end{array}
ight], \quad \mathcal{P} = \left[egin{array}{cc} \widetilde{\mathbf{A}} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{S}} \end{array}
ight] \qquad \widetilde{\mathbf{A}} \sim \mathbf{A}, \quad \widetilde{\mathbf{S}} \sim \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$$

An accelerator for Stokes mixed approximation

$$\mathcal{M} = \left[egin{array}{cc} \mathbf{A} & \mathbf{B}^T \ \mathbf{B} & \mathbf{0} \end{array}
ight], \quad \mathcal{P} = \left[egin{array}{cc} \widetilde{\mathbf{A}} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{S}} \end{array}
ight] \qquad \widetilde{\mathbf{A}} \sim \mathbf{A}, \quad \widetilde{\mathbf{S}} \sim \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$$

An example: from IFISS 3.1 (Elman, Ramage, Silvester): Lid driven cavity; Q2-Q1 approximation

$$\begin{split} \widetilde{\mathbf{S}} &\to \text{pressure mass matrix} \\ \widetilde{\mathbf{A}} &\to \text{Algebraic MG} \\ \text{(spectrally equivalent matrix)} \end{split}$$

(Mardal & Winther, '11)

An accelerator for Stokes mixed approximation

$$\mathcal{M} = \left[egin{array}{cc} \mathbf{A} & \mathbf{B}^T \ \mathbf{B} & \mathbf{0} \end{array}
ight], \quad \mathcal{P} = \left[egin{array}{cc} \widetilde{\mathbf{A}} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{S}} \end{array}
ight] \qquad \widetilde{\mathbf{A}} \sim \mathbf{A}, \quad \widetilde{\mathbf{S}} \sim \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$$

An example: from IFISS 3.1 (Elman, Ramage, Silvester): Lid driven cavity; Q2-Q1 approximation

2D. Final residual norm $< 10^{-6}$

$ ilde{\mathbf{S}} ightarrow$ pressure mass matrix	$size(\mathcal{M})$	its	Time (secs)
$\widetilde{\mathbf{A}} ightarrow Algebraic \ MG$	578	26	0.04
(spectrally equivalent matrix)	2178	26	0.14
(Mardal & Winther, '11)	8450	26	0.50
	132098	26	11.17

A stopping criterion for Stokes mixed approximation

$$\mathcal{M} = \left[egin{array}{cc} \mathbf{A} & \mathbf{B}^T \ \mathbf{B} & \mathbf{0} \end{array}
ight], \quad \mathcal{P} = \left[egin{array}{cc} \widetilde{\mathbf{A}} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{S}} \end{array}
ight] \qquad \widetilde{\mathbf{A}} \sim \mathbf{A}, \quad \widetilde{\mathbf{S}} \sim \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$$

Ideal case: $\widetilde{\mathbf{A}} = \mathbf{A}, \, \widetilde{\mathbf{S}} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$. Then a "natural" norm:

energy norm in u-space and L_2 norm in p-space:

$$\|\mathbf{x} - \mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}_{\text{ideal}}}^2 = \|\mathbf{u} - \mathbf{u}_m\|_{\mathbf{A}}^2 + \|\mathbf{p} - \mathbf{p}_m\|_{\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T}^2$$

A stopping criterion for Stokes mixed approximation

$$\mathcal{M} = \left[egin{array}{cc} \mathbf{A} & \mathbf{B}^T \ \mathbf{B} & \mathbf{0} \end{array}
ight], \quad \mathcal{P} = \left[egin{array}{cc} \widetilde{\mathbf{A}} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{S}} \end{array}
ight] \qquad \widetilde{\mathbf{A}} \sim \mathbf{A}, \quad \widetilde{\mathbf{S}} \sim \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$$

Ideal case: $\widetilde{\mathbf{A}} = \mathbf{A}, \, \widetilde{\mathbf{S}} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$. Then a "natural" norm:

energy norm in u-space and L_2 norm in p-space:

$$\|\mathbf{x} - \mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}_{\text{ideal}}}^2 = \|\mathbf{u} - \mathbf{u}_m\|_{\mathbf{A}}^2 + \|\mathbf{p} - \mathbf{p}_m\|_{\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T}^2$$

For stable discretization, heuristic relation between error and residual:

$$\|\mathbf{x} - \mathbf{x}_m\|_{\mathcal{P}_{\text{ideal}}} \leq \frac{\sqrt{2}}{\gamma^2} \|\mathbf{b} - \mathcal{M}\mathbf{x}_m\|_{\mathcal{P}_{\text{ideal}}^{-1}}$$

$$\gamma \text{ inf-sup constant:} \qquad \gamma^2 \leq \frac{\mathbf{q}^T \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^T \mathbf{q}}{\mathbf{q}^T \mathbf{Q} \mathbf{q}}, \quad \forall \mathbf{q} \neq 0$$

A stopping criterion for Stokes mixed approximation

$$\mathcal{M} = \left[egin{array}{cc} \mathbf{A} & \mathbf{B}^T \ \mathbf{B} & \mathbf{0} \end{array}
ight], \quad \mathcal{P} = \left[egin{array}{cc} \widetilde{\mathbf{A}} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{S}} \end{array}
ight] \qquad \widetilde{\mathbf{A}} \sim \mathbf{A}, \quad \widetilde{\mathbf{S}} \sim \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$$

Ideal case: $\widetilde{\mathbf{A}} = \mathbf{A}, \, \widetilde{\mathbf{S}} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$. Then a "natural" norm:

energy norm in u-space and L_2 norm in p-space:

$$\|\mathbf{x} - \mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}_{\text{ideal}}}^2 = \|\mathbf{u} - \mathbf{u}_m\|_{\mathbf{A}}^2 + \|\mathbf{p} - \mathbf{p}_m\|_{\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T}^2$$

For stable discretization, heuristic relation between error and residual:

$$\|\mathbf{x} - \mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}_{\text{ideal}}} \leq \frac{\sqrt{2}}{\gamma^2} \|\mathbf{b} - \boldsymbol{\mathcal{M}}\mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}_{\text{ideal}}^{-1}} \sim \frac{\sqrt{2}}{\gamma^2} \|\mathbf{b} - \boldsymbol{\mathcal{M}}\mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}^{-1}} < tol$$

$$\gamma \text{ inf-sup constant:} \qquad \gamma^2 \leq \frac{\mathbf{q}^T \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^T \mathbf{q}}{\mathbf{q}^T \mathbf{Q} \mathbf{q}}, \quad \forall \mathbf{q} \neq 0$$

Estimating the inf-sup constant

Spectrum of transformed coefficient matrix:

$$\operatorname{spec}(\mathcal{MP}^{-1}) \subseteq [\Lambda_{-}, \lambda_{-}] \cup [\lambda_{+}, \Lambda_{+}]$$

with

(Elman-Silvester-Wathen, '05)

$$\lambda_{-} \leq \frac{1}{2} (\delta - \sqrt{\delta^2 + 4\delta\gamma^2}) \qquad \delta \leq \lambda_{+}$$

where $\delta = \lambda_{\min}(A\widetilde{A}^{-1}).$

Estimating the inf-sup constant

Spectrum of transformed coefficient matrix:

$$\operatorname{spec}(\mathcal{MP}^{-1}) \subseteq [\Lambda_{-}, \lambda_{-}] \cup [\lambda_{+}, \Lambda_{+}]$$

with

(Elman-Silvester-Wathen, '05)

$$\lambda_{-} \leq \frac{1}{2} (\delta - \sqrt{\delta^2 + 4\delta\gamma^2}) \qquad \delta \leq \lambda_{+}$$

where $\delta = \lambda_{\min}(A\widetilde{A}^{-1}).$

Were these bounds tight (equalities), then

$$\gamma^2 = \frac{\lambda_-^2 - \lambda_- \lambda_+}{\lambda_+}$$

Estimating the inf-sup constant

Assume that these bounds are indeed tight (equalities). Then

$$\gamma^2 = \frac{\lambda_-^2 - \lambda_- \lambda_+}{\lambda_+}$$

In practice, adaptive estimate with Harmonic Ritz values:

$$\gamma^2 \approx \gamma_m^2 = \frac{(\theta_-^{(m)})^2 - \theta_-^{(m)} \theta_+^{(m)}}{\theta_+^{(m)}},$$

mth MINRES iteration

(Silvester & Simoncini, '11)

A model-based stopping criterion

If an a-posteriori discretization error estimate $\eta^{(m)}$ is available, namely

$$c \eta^{(m)} \le \|\nabla(\vec{u} - \vec{u}_h^{(m)})\| + \|p - p_h^{(m)}\| \le C \eta^{(m)}, \quad m = 1, 2, 3 \dots$$

with $\frac{C}{c} = O(1)$

(Ainsworth, Oden, Kay, Silvester, Elman, Wathen, Liao, Jiránek, Strakoš, Vohralík, ...)

We can devise a stopping criterion:

$$\|\mathbf{x} - \mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}_{ ext{ideal}}} \sim rac{\sqrt{2}}{\gamma_m^2} \|\mathbf{b} - \boldsymbol{\mathcal{M}}\mathbf{x}_m\|_{\boldsymbol{\mathcal{P}}^{-1}} < \eta^{(m)}$$

A model-based stopping criterion

Another IFISS example. Smooth colliding flow.

 r_m : residual at iteration m

Final consideration

Opening the black box may be rewarding, with a mutual gain

References:

* M. Benzi, G.H. Golub and J. Liesen, Numerical Solution of Saddle Point Problems, Acta Numerica, 14, 1-137 (2005)

* H. Elman, D. Silvester and A. Wathen, *Finite Elements and Fast Iterative Solvers, with applications in incompressible fluid dynamics*, Oxford University Press, (2005)

* K.A. Mardal and R. Winther, *Preconditioning discretizations of systems of partial differential equations*, Numer. Linear Algebra with Appl., 18, 1-40 (2011)

* D. Silvester and V. Simoncini An Optimal Iterative Solver for Symmetric Indefinite Systems stemming from Mixed Approximation. ACM TOMS, (2011)

* Multigrid Website MG-Net, http://www.mgnet.org (up to 2010)