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The matrix equation problem

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Ai ∈ R
n×n, Bi ∈ R

m×m, X unknown matrix

Large dimensions, sparse coefficient matrices

The problem in its full generality is far from tractable, although

the transformation to a matrix-vector equation [...] allows us to use

the considerable arsenal of numerical weapons currently avaiable for

the solution of such problems.

Peter Lancaster, SIAM Rev. 1970
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Multiterm linear matrix equation. Classical device

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Kronecker formulation
(
B⊤

1 ⊗A1 + . . .+B⊤

ℓ ⊗Aℓ

)
x = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Applications:

Control

(Stochastic) PDEs

Inverse problems and optimization
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Alternative approaches to the Kronecker form:

• Fixed point iterations (an “evergreen”...)

• Projection-type methods ⇒ low rank approximation

• Ad-hoc problem-dependent procedures

• etc.

A sample of these methodologies on different problems:

- Control problem with stochastic parameters

- PDEs on uniform discretizations

- Stochastic PDE
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A class of generalized Lyapunov equations

AX+XAT +

m∑

j=1

NjXN
T
j +BBT = 0

* A ∈ R
n×n nonsing

* Nj ∈ R
n×n low rank

* B ∈ R
n×ℓ, ℓ≪ n

Typical applications:

- Model order reduction of bilinear control systems

- Linear parameter-varying systems

- Stability analysis of linear stochastic differential equations
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Stationary iterative methods by splitting

AX+XAT +
m∑

j=1

NjXN
T
j +BBT = 0

M(X)−N (X) +BBT = 0,

where M(X) = AX+XAT (Lyapunov operator)

−N (X) =

m∑

i=1

NjXN
T
j

Assuming that (A,B) is controllable and X sym positive semi-def then

spec(A) ⊂ C
−, ρ(M−1N ) < 1

Stationary iteration:

M(Xk) = N (Xk−1)−BBT , k = 1, 2, . . . .

(Shank & Simoncini & Szyld 2016)
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Stationary iterative methods by splitting. Cont’d

AX+XAT +

m∑

j=1

NjXN
T
j +BBT = 0

Stationary iteration:

M(Xk) = N (Xk−1)−BBT , k = 1, 2, . . . .

Approximately Solve AX+XAT +BBT = 0 for X1 = Z1Z
T
1

for k = 2, 3, . . .

Set Bk = [N1Zk−1, · · · , NmZk−1, B]

Approximately Solve AX+XAT +BkB
T
k

= 0 for Xk = ZkZ
T
k

If sufficiently accurate then stop

Challenges:

Inexact solves of Lyapunov equation at each step k

Increase of Bk’s rank

Computational cost of Lyapunov solves

Memory-effective stopping criterion
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Multi-term linear matrix equations in PDEs

– uniform grids and separable coeffs –

−ε∆u+ φ1(x)ψ1(y)ux + φ2(x)ψ2(y)uy + γ1(x)γ2(y)u = f

(x, y) ∈ Ω ⊂ R
2, φi, ψi, γi, i = 1, 2 sufficiently regular func’s + b.c.

Problem discretization by means of a tensor basis

Multiterm linear equation:

−εT1U− εUT2 +Φ1B1UΨ1 +Φ2UB
⊤

2 Ψ2 + Γ1UΓ2 = F

Finite Diff.: Ui,j = U(xi, yj) approximate solution at the nodes

More than finite differences and rectangular domains!
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Multi-term linear matrix equations in PDEs

Some very classical domains

⇒ FD w/transfinite interpolation, Isogeometric Analysis, etc.
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A 3D convection-diffusion equation

−ǫ∆u+w · ∇u = 1, in Ω = (0, 1)3, with convection term

w = (x sinx, y cos y, ez
2−1)

Sylvester equation:

[I ⊗ (T1 +Φ1B1) + (T2 +Ψ2B2)
⊤ ⊗ I] U+U (T3 +B3Υ3) = 11⊤

⇔ AU+UB = F

ǫ nx FGMRES+AGMG GMRES+MI20 Sylv Solver

cpu time (# its) cpu time (# its) cpu time (# its)

0.0050 100 8.0207 (15) 9.7207 ( 7) 0.5677 (22)

0.0010 100 7.6815 (14) 9.4935 ( 7) 0.5446 (22)

0.0005 100 7.3914 (14) 9.6274 ( 7) 0.5927 (24)

• If not separable coeff., use as preconditioner

(Palitta & Simoncini 2016)
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... A classical approach

Matrix formulation is not new...

• Bickley & McNamee, 1960: Early literature on difference equations

• Wachspress, 1963: Model problem for ADI algorithm

• Ellner & Wachspress (1980’s): interplay between the matrix and

vector formulations (via preconditioning)

Novel solvers for matrix equations allow faster convergence
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u : D × Ω → R s.t. P-a.s.,




−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D

u(x, ω) = 0 on ∂D

f : deterministic;

a: random field, linear function of finite no. of real-valued random variables

ξr : Ω → Γr ⊂ R

Common choice: truncated Karhunen–Loève (KL) expansion,

a(x, ω) = µ(x) + σ

m∑

r=1

√
λrφr(x)ξr(ω),

µ(x): expected value of diffusion coef. σ: std dev.

(λr, φr(x)) eigs of the integral operator V wrto V (x,x′) = 1
σ2C(x,x′)

(λr ց C : D ×D → R covariance fun. )
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Stochastic Galerkin discretization. The SPDE-practitioner approach.

Approx with space in tensor product forma Xh × Sp

Ax = b, A = G0 ⊗K0 +

m∑

r=1

Gr ⊗Kr, b = g0 ⊗ f0,

x: expansion coef. of approx to u in the tensor product basis {ϕiψk}
Kr ∈ Rnx×nx , FE matrices (sym)

Gr ∈ R
nξ×nξ , r = 0, 1, . . . ,m Galerkin matrices associated w/ Sp (sym.)

g0: first column of G0

f0: FE rhs of deterministic PDE

nξ = dim(Sp) =
(m+ p)!

m!p!
⇒ nx · nξ huge

aSp set of multivariate polyn of total degree ≤ p
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The matrix equation formulation

(G0 ⊗K0 +G1 ⊗K1 + . . .+Gm ⊗Km)x = g0 ⊗ f0

transforms into

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤

0

(G0 = I)

Solution strategy. Conjecture:

• {Kr} from trunc’d Karhunen–Loève (KL) expansion

⇓

X ≈ X̃ low rank, X̃ = X1X
T
2
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Matrix Galerkin approximation of the deterministic part.

Approximation space Kk and basis matrix Vk: X ≈ Xk = VkY

V ⊤

k Rk = 0, Rk := K0Xk +K1XkG1 + . . .+KmXkGm − f0g
⊤

0

Computational challenges:

• Generation of Kk involved m+ 1 different matrices {Kr} !

• Matrices Kr have different spectral properties

• nx, nξ so large that Xk, Rk should not be formed !

(Powell & Silvester & Simoncini 2017)
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Example 2. −∇ · (a∇u) = 1, D = (−1, 1)2. KL expansion.

µ = 1, ξr ∼ U(−
√
3,

√
3) and C(~x1, ~x2) = σ2 exp

(
− ‖~x1−~x2‖1

2

)
, nx = 65, 025,

σ = 0.3

m p nξ k inner nk rank time CG

its Kk X̃ secs time (its)

2 45 17 9.8 128 45 32.1 13.4 (8)

8 3 165 21 12.2 160 129 41.4 56.6 (10)

87% 4 495 24 14.5 183 178 51.1 197.0 (12)

5 1,287 27 16.9 207 207 64.0 553.0 (13)

2 91 15 9.9 165 89 47.8 30.0 (8)

12 3 455 18 12.2 201 196 61.6 175.0 (10)

89% 4 1,820 21 15.0 236 236 86.4 821.0 (12)

5 6,188 25 18.6 281 281 188.0 3070.0 (13)

2 231 16 9.4 281 206 111.0 94.7 (8)

20 3 1,771 23 12.3 399 399 197.0 845.0 (10)

93% 4 10,626 26 15.4 454 454 556.0 Out of Mem

% of variance integral of a
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Reduction of the stochastic space. 1

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤
0

{Ki} ⇒ Range(Vk) reduced spatial space

{Gi} ⇒ Range(Wk) reduced stocastic space ?

Goal: X ≈ X̃ = VkYkW
T
k

Some algebraic properties of the {Gi}:
Gi sym of size nξ =

(m+p)!
m!p!

with only two nonzeros per row

Eigenvalues are known and bounded (symmetric to the origin, many zeros)

G0 = I, and Gi, i = 1, . . . ,m are permutation-similar to the same

block-diagonal matrix G⋆ with
(
M−1+p

p

)
diagonal blocks.

Each of these blocks is a leading principal submatrix of a certain known[]

(p+ 1)× (p+ 1) matrix

(Powell & Elman 2009, Ernst & Ullmann 2010)

25



Reduction of the stochastic space. 1

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤
0

{Ki} ⇒ Range(Vk) reduced spatial space

{Gi} ⇒ Range(Wk) reduced stocastic space ?

Goal: X ≈ X̃ = VkYkW
T
k

Some structural properties of the {Gi}:

0 50 100 150

nz = 165

0

20

40

60

80

100

120

140

160

0 50 100 150

nz = 90

0

20

40

60

80

100

120

140

160

0 50 100 150

nz = 90

0

20

40

60

80

100

120

140

160

0 50 100 150

nz = 90

0

20

40

60

80

100

120

140

160

0 50 100 150

nz = 90

0

20

40

60

80

100

120

140

160

26



Reduction of the stochastic space. 1

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤
0

{Ki} ⇒ Range(Vk) reduced spatial space

{Gi} ⇒ Range(Wk) reduced stocastic space ?

Goal: X ≈ X̃ = VkYkW
T
k

Some algebraic properties of the {Gi}:
• Gi sym of size nξ =

(m+p)!
m!p!

with only two nonzeros per row

• Eigenvalues are known and bounded (symmetric to the origin, many zeros)

• G0 = I, and Gi, i = 1, . . . ,m are permutation-similar to the same

block-diagonal matrix G⋆ with
(
M−1+p

p

)
diagonal blocks.

• Each of these blocks is a leading principal submatrix of a certain known

(p+ 1)× (p+ 1) matrix

(Powell & Elman 2009, Ernst & Ullmann 2010)

27



Reduction of the stochastic space. 2

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤
0

X ≈ X̃ = VkYkW
T
k

• Choice of reduced basis for nested spatial space:

Vk+1 =
[
Vk, [(K1 + s1K0)

−1vk, . . . , (K1 + smK0)
−1vk]

]

(Powell & Silvester & Simoncini 2017)

Choice of reduced (sparse) basis for nested stochastic space:

Wk = [w1,w2, . . . ,wk]

where

w1 eigvecs of largest block (leading eigenvalues)

w2 eigvecs of next largest blocks

etc.

(Locatelli & Simoncini, work in progress)
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Reduction of the stochastic space. 3

nx: spatial dimension nξ: stochastic dimension

slow decay in KL expansion:

nx (m, p) nξ dim V rank(X̃) Unreduced Wk reduced Wk

16129 (5,3) 56 69 43 1.80 1.88

(7,5) 792 78 63 3.65 2.40

(9,7) 11440 95 77 494.63 29.11

65025 (5,3) 56 69 43 8.74 8.95

(7,5) 792 78 63 12.44 11.16

(9,7) 11440 95 77 548.60 40.02

fast decay in KL expansion:

nx (m, p) nξ dim V rank(X̃) Unreduced Wk reduced Wk

16129 (5,3) 56 107 30 3.07 3.17

(7,5) 792 133 45 8.88 5.90

(9,7) 11440 166 57 1432.3 92.33

65025 (5,3) 56 107 30 14.61 14.37

(7,5) 792 142 46 27.77 24.17

(9,7) 11440 162 58 1543.90 112.77
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Not discussed but in this category

• Bilinear systems of matrix equations. E.g.,

A1X +XA2 + Y B = C1

BTX = C2

...very few numerical procedures available

Sylvester-like linear matrix equations

AX + f(X)B = C

typically (but not only!): f(X) = X̄, f(X) = X⊤, or f(X) = X∗

(Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, Guillery, Hall,

Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov, Watkins, Wu, ...)

Linear systems with complex tensor structure

Ax = b with A =

k∑

j=1

In1
⊗ · · · ⊗ Inj−1

⊗Aj ⊗ Inj+1
· · · ⊗ Ink

.

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov, and many

more...
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Conclusions

Multiterm (Kron) linear equations is the new challenge

• Great advances in solving really large linear matrix equations

• Second level matrix challenges rely on strength and maturity of linear system

solvers

• Low-rank tensor formats is the new generation of approximations

Some references cited in the text:

⋆ D. Palitta and V. Simoncini, Matrix-equation-based strategies for

convection-diffusion equations, BIT Numer. Math. 2016

⋆ C. E. Powell, D. Silvester and V. Simoncini, An efficient reduced basis solver

for stochastic Galerkin matrix equations, SISC, 2017

⋆ S. D. Shank, V. Simoncini and D. B. Szyld, Efficient low-rank solutions of

Generalized Lyapunov equations, Numerische Mathematik, 2016

⋆ V. Simoncini, Computational methods for linear matrix equations, SIAM Rev.

2016
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